JPS60162229A - Recording device - Google Patents
Recording deviceInfo
- Publication number
- JPS60162229A JPS60162229A JP59017527A JP1752784A JPS60162229A JP S60162229 A JPS60162229 A JP S60162229A JP 59017527 A JP59017527 A JP 59017527A JP 1752784 A JP1752784 A JP 1752784A JP S60162229 A JPS60162229 A JP S60162229A
- Authority
- JP
- Japan
- Prior art keywords
- shutter
- liquid crystal
- signal
- electrode
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1392—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using a field-induced sign-reversal of the dielectric anisotropy
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Facsimile Heads (AREA)
- Fax Reproducing Arrangements (AREA)
- Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は光記録部に液晶シャッタを有する記録装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a recording device having a liquid crystal shutter in an optical recording section.
(従来技術及びその問題点)
液晶を光シャッタとして用い、記録信号に応じた光の通
過、遮断により感光体に像を形成する記録tVが提案さ
れている。以下に液晶を光シャッタとじて用いた記録装
置の概要を図に従って説明する。(Prior Art and its Problems) A recording tV has been proposed in which a liquid crystal is used as an optical shutter and an image is formed on a photoreceptor by passing or blocking light according to a recording signal. An outline of a recording apparatus using a liquid crystal as an optical shutter will be explained below with reference to the drawings.
第1図において光導電性記録体である感光体10表面は
予め帯電部2にて均一に帯電される。液晶光シャッタ部
3は、記録情報を受けてタイミングなどを制御する記録
制御部4により駆動され情報の電気光学変換を行い感光
体1の表面に光書込みを行う。In FIG. 1, the surface of a photoreceptor 10, which is a photoconductive recording medium, is uniformly charged in advance by a charging section 2. As shown in FIG. The liquid crystal light shutter section 3 is driven by a recording control section 4 that receives recording information and controls timing and the like, performs electro-optical conversion of the information, and performs optical writing on the surface of the photoreceptor 1.
このようにして形成された感光体l上の静電潜像は現像
部5にてトナーにより可視像化される。The electrostatic latent image thus formed on the photoreceptor l is visualized by toner in the developing section 5.
記録紙6は給紙ロール7により給送され、待機ロール8
にて前記トナー像との同期がとられて再給送され、転写
部9において記録紙6上にトナー像が転写される。分離
部10にて感光体1より分離された記録紙6は定着部1
1でトナー像が定着され、排紙ローラ12により機外に
送り出される。The recording paper 6 is fed by a paper feed roll 7, and then placed on a standby roll 8.
At , the toner image is synchronized with the toner image and fed again, and the toner image is transferred onto the recording paper 6 at the transfer section 9 . The recording paper 6 separated from the photoreceptor 1 at the separating section 10 is transferred to the fixing section 1.
1, the toner image is fixed and sent out of the machine by a paper ejection roller 12.
一方転写後の感光体1は除電部13でトナー電荷の中和
が行なわれた後クリーニング部14で残存トナーが清掃
され、イレーサ15にて感光体1の表面電荷は完全に中
和される。On the other hand, after the transfer, the toner charge on the photoreceptor 1 is neutralized in the neutralization section 13, the remaining toner is cleaned off in the cleaning section 14, and the surface charge of the photoreceptor 1 is completely neutralized in the eraser 15.
液晶光シャンク部3は第2図に示す如く、光源16.液
晶光シャッタ17.結像レンズ18の構成がとられてい
る。液晶光シャッタ17は第3図に示すような液晶パネ
ル19に少なくとも1枚の偏光板を配することによりな
る。前記液晶パネル19は2枚のガラス基板20.21
の間に液晶混合物を封入してなり、ガラス基板20には
信号電極22が交互に設けられ、ガラス基板21には共
通電極23が設けられている。マイクロシャッタ24は
信号電極22と共通電極23の交わる部分に必要な大き
さで、必要な形状に配化インジュウム(In203)や
酸化スズ(SnO2)等の透明電極により構成される。As shown in FIG. 2, the liquid crystal light shank section 3 includes a light source 16. LCD light shutter 17. An imaging lens 18 is configured. The liquid crystal light shutter 17 is constructed by disposing at least one polarizing plate on a liquid crystal panel 19 as shown in FIG. The liquid crystal panel 19 has two glass substrates 20 and 21.
The glass substrate 20 is provided with signal electrodes 22 alternately, and the glass substrate 21 is provided with a common electrode 23. The micro-shutter 24 is formed of a transparent electrode made of indium (In203), tin oxide (SnO2), etc. arranged in a necessary size and shape at the intersection of the signal electrode 22 and the common electrode 23.
液晶光シャフタ17は。The liquid crystal light shutter 17 is.
記録信号に基づき、光源16よりの入射光をマイクロシ
ャッタ24にて変調させ、結像レンズ18を経て感光体
1上に照射する。Based on the recording signal, incident light from the light source 16 is modulated by the micro shutter 24 and irradiated onto the photoreceptor 1 through the imaging lens 18 .
第2図に示した液晶光シャッタ17の構成をさらに詳し
く第4図に示す。2枚のガラス基板20゜21の間にス
ペーサ25によりギャップを維持し。FIG. 4 shows the structure of the liquid crystal light shutter 17 shown in FIG. 2 in more detail. A gap is maintained between the two glass substrates 20° 21 by a spacer 25.
二周波駆動用液晶材と色素の混合物26が封入されてい
る。第3図に示した信号電極22は透明電極27及・び
金属電極28より構成され、同じく共通電極23は透明
電極29及び金属電極30より構成され、金属電極28
.30を一部除去した部分31にマイクロシャッタ24
が形成される。これに偏光板32を配することによって
ゲスト・ホスト型の液晶光シャッタが構成される。A mixture 26 of a liquid crystal material for dual frequency driving and a dye is sealed. The signal electrode 22 shown in FIG. 3 is composed of a transparent electrode 27 and a metal electrode 28, and the common electrode 23 is composed of a transparent electrode 29 and a metal electrode 30.
.. A micro-shutter 24 is placed on the part 31 where part 30 is removed.
is formed. By disposing a polarizing plate 32 thereon, a guest-host type liquid crystal light shutter is constructed.
以上の様な記録装置では液晶の応答速度の向上や電極数
の削減を目的として時分割駆動や液晶材料の誘電異方性
を零とする交差周波数fcよりも高い周波数fHと低い
周波数fLを用いて駆動する2周波駆動が行われており
以下に説明する。In recording devices such as those described above, in order to improve the response speed of the liquid crystal and reduce the number of electrodes, a higher frequency fH and a lower frequency fL are used than the cross frequency fc that makes the dielectric anisotropy of the liquid crystal material zero. Two-frequency driving is performed, and will be explained below.
第5図において33.34は書込み選択電極である。ま
た35〜38は記録信号電極で、シャンクの開口率を大
きくとる為と、パターン間隔を広く取る為に交互に引き
出されている。39,4Qは透明電極で形成されたマイ
クロシャッタである。In FIG. 5, 33 and 34 are write selection electrodes. Further, numerals 35 to 38 are recording signal electrodes, which are drawn out alternately in order to increase the aperture ratio of the shank and to increase the pattern interval. 39 and 4Q are micro shutters formed of transparent electrodes.
マイクロシャッタ39の開閉は書込み選択電極33と記
録信号電極35に加えられる信号により制御され、マイ
クロシャッタ40の開閉は、書込み選択電極34と記録
信号電極35に加えられる信号により制御される。41
は感光体1の移動方向、即ち副走査方向を表わす。Opening and closing of the micro-shutter 39 is controlled by signals applied to the write selection electrode 33 and recording signal electrode 35, and opening and closing of the micro-shutter 40 is controlled by signals applied to the write selection electrode 34 and the recording signal electrode 35. 41
represents the moving direction of the photoreceptor 1, that is, the sub-scanning direction.
第6図は前記の書込み選択電極および記録信号電極に加
えられる信号波形の従来例である。FIG. 6 shows a conventional example of signal waveforms applied to the write selection electrode and recording signal electrode.
(a)は書込み選択電極33に加えられる信号波形であ
り、(b)は書込み選択電極34に加えられる信号波形
である。これらの波形はT、JJを1周期としてくり返
しそれぞれの電極に印加される。同図から明らかな様に
(0)と(b)は1/2’r、、、位相がずれた波形と
なっている。(a) is a signal waveform applied to the write selection electrode 33, and (b) is a signal waveform applied to the write selection electrode 34. These waveforms are repeatedly applied to each electrode with T and JJ as one period. As is clear from the figure, waveforms (0) and (b) are out of phase by 1/2'r.
以後(a)の信号波形をC0M1.(b)の信号波形を
C0M2と呼ぶ。From now on, the signal waveform of (a) will be changed to C0M1. The signal waveform in (b) is called C0M2.
(C)〜(f)は、記録信号電極に加えられる4種類の
信号波形である。以後これらの信号波形をtc)はSG
l、(dlはSG2.(e)はSG3.(f)はSG4
と呼ぶ。尚図中のfMは高周波を表わし、IfHはこれ
を反転した信号である。同様にfLは低周波を表わし、
*f、、はこれを反転した信号である。(C) to (f) are four types of signal waveforms applied to the recording signal electrode. Hereinafter, these signal waveforms tc) will be referred to as SG.
l, (dl is SG2. (e) is SG3. (f) is SG4
It is called. Note that fM in the figure represents a high frequency, and IfH is a signal obtained by inverting this. Similarly, fL represents low frequency,
*f, , is a signal obtained by inverting this.
第7図に、C6M1とSG1〜sG4の信号によって作
られる4種類のマイクロシャッタ駆動波形を示す。(a
l、 (blはマイクロシャッタを閉じる波形であり、
(C)、 +d)はマイクロシャッタを開く波形であ
る。第6図と第7図を比較するとわがる様に第7図の波
形は第6図の波形の2倍の振幅を持った交流波形となる
。FIG. 7 shows four types of micro-shutter drive waveforms created by the signals of C6M1 and SG1 to sG4. (a
l, (bl is the waveform that closes the micro shutter,
(C) and +d) are waveforms that open the micro shutter. Comparing FIG. 6 and FIG. 7, it is clear that the waveform in FIG. 7 is an AC waveform with twice the amplitude of the waveform in FIG. 6.
第7図に示した様に本駆動方式ではマイクロシャンクを
閉じる時にはfHの信号を最初に印加するが、マイクロ
シャッタを開ける時にはfHとfLの合成された重畳波
形を印加している。これは、fHとfLの合成された波
形でもf、の効果が大きく、実質的にマイクロシャッタ
を開かせる働きがあるからである。以降fH+fL、と
表す。As shown in FIG. 7, in this drive system, when closing the microshank, the fH signal is first applied, but when opening the microshutter, a combined superimposed waveform of fH and fL is applied. This is because even in the combined waveform of fH and fL, the effect of f is large and has the effect of essentially opening the micro shutter. Hereinafter, it will be expressed as fH+fL.
Twの中盤ではfH+fLの信号が加わったり。In the middle of Tw, fH + fL signals are added.
あるいは信号の加わらない無電圧状態となったりする。Or it may be in a no-voltage state where no signal is applied.
この期間はT、JJの最初に加わったマイクロシャック
の開状態あるいは閉状態を維持する期間で、fH+fL
の重畳信号によりマイクロシャタを開かせる働きと、無
電圧によりマイクロシャンクを閉じさせる働きがバラン
スしてそれ以前の状態を維持する様に働くのである。This period is the period during which the micro shack that was added at the beginning of T and JJ remains open or closed, and fH + fL
The function of opening the microshutter by the superimposed signal and the function of closing the microshank by no voltage are balanced and work to maintain the previous state.
Twの最後にはT2の信号を印加している。これは、マ
イクロシャッタを開ける働きをするが。The T2 signal is applied at the end of Tw. This works to open the micro shutter.
先のfH+fLの信号よりも、更に強力にマイクロシャ
ッタを開ける様に慟(。The micro shutter is opened more strongly than the previous fH+fL signal.
第8図に、第7図の駆動波形+8)〜(dlのそれぞれ
に対応したマイクロシャックの開閉状態を示す。FIG. 8 shows the opening and closing states of the micro shack corresponding to each of the drive waveforms +8) to (dl) in FIG. 7.
第8図かられかる様に1書込み周期Twの最初と最後で
はマイクロシャッタは必ず開いている。As shown in FIG. 8, the micro shutter is always open at the beginning and end of one writing period Tw.
これは先の第7図に於いてTwの最後に加えられていた
f、の働きによるものである。この様にfLを加える目
的は液晶の履歴効果の排除にある。This is due to the function of f added at the end of Tw in FIG. 7 above. The purpose of adding fL in this way is to eliminate the history effect of the liquid crystal.
二周波駆動用液晶はfHによりオフするがこれを長時間
印加すると、その履歴効果によりf、信号を印加しても
直ぐに液晶がオンしないという現象が起こる。これはシ
ャッタ動作には有害で長時間シャッタを閉じていると、
開けたい時に直ぐに開かなくなる。そこでfL信号を印
加しくこの場合はT、、、の終わりに2サイクル)、上
記の履歴効果を減少させている。The liquid crystal for dual-frequency driving is turned off by fH, but if this is applied for a long time, a phenomenon occurs in which the liquid crystal does not turn on immediately even when the f signal is applied due to the hysteresis effect. This is harmful to the shutter operation, and if the shutter is closed for a long time,
It won't open immediately when you want to open it. Therefore, the fL signal is applied (in this case at the end of T, 2 cycles) to reduce the above-mentioned hysteresis effect.
今まで書込み選択電極33すなわちC0M1が加わる場
合のシャッタの開閉動作について説明してきたが、書込
み選択電極34すなわちC0M2が印加される場合のシ
ャッタの開閉動作について説明する。第6図によると(
b)のC0M2の前半の波形は先にものべた様にそのま
まC0M1の後半の波形である。すなわち、C0M2に
よればTwの前半はそれ以前に液晶に与えられていた信
号を維持する期間であり、マイクロシャッタが開いてい
るか閉じているかは、その場合により異なる。Up to now, the shutter opening/closing operation when the write selection electrode 33, ie, C0M1, is applied has been described, but the shutter opening/closing operation when the write selection electrode 34, ie, C0M2 is applied, will now be described. According to Figure 6 (
The first half waveform of C0M2 in b) is the same as the second half waveform of C0M1 as described above. That is, according to C0M2, the first half of Tw is a period in which the signal previously applied to the liquid crystal is maintained, and whether the microshutter is open or closed depends on the situation.
Twの後半はC0M2と記録信号電極に加わる信号によ
り、マイクロシャッタを開、閉を決定する期間で、記録
信号電極にS01が印加されていればマイ40シヤツタ
は閉じ、SG2なら開き、S03なら閉じ、SG4なら
開く。その後の1/2Twの間は、SGI〜SG4の何
が加わろうとも書込み選択電極34上のマイクロシャッ
タはその状態を維持する。The second half of Tw is a period in which opening and closing of the micro shutter is determined by the signal applied to C0M2 and the recording signal electrode.If S01 is applied to the recording signal electrode, the My 40 shutter is closed, if SG2 is applied, it is open, and if S03 is applied, it is closed. , SG4 will open it. During the subsequent 1/2 Tw, the microshutter on the write selection electrode 34 maintains its state no matter what is added to SGI to SG4.
以上のことから、sciが印加されると、マイクロシャ
ッタ39はTwの最初に閉動作に入り。From the above, when sci is applied, the micro shutter 39 enters the closing operation at the beginning of Tw.
1/2Tw経過後にマイクロシャッタ40が閉動作を開
始する。T’、、、の終わ性にマイクロシャッタ39は
閉動作を完了し、マイクロシャンク40はその後1/2
Twの間この状態を維持し、その1/2Twの終わりに
閉動作を完了する。また、S02が印加されるとマイク
ロシャンク39は閉となり、1/ZTw後マイクロシャ
ッタ40は開となる。同様にS03が印加されると39
が開。After 1/2 Tw has elapsed, the micro shutter 40 starts its closing operation. At the end of T', the micro shutter 39 completes the closing operation, and the micro shank 40 then closes 1/2
This state is maintained for Tw, and the closing operation is completed at the end of 1/2 Tw. Further, when S02 is applied, the microshank 39 is closed, and after 1/ZTw, the microshutter 40 is opened. Similarly, when S03 is applied, 39
is open.
40が閉、SG4が印加されると39.40ともに開と
なる。40 is closed, and when SG4 is applied, both 39 and 40 become open.
すでに理解される様に1本駆動方式は2時分割駆動では
あるがシャンク動作としては、1/2T□の間に動作を
完結するのではなく、’ru+の期間をもって動作する
ので、LEDに於ける時分割駆動などとは様子が異なる
。As already understood, the single drive system is a two-time division drive, but the shank operation does not complete the operation during 1/2T□, but operates over the 'ru+ period, so the LED The situation is different from time-division driving.
この様な駆動方式によりf s =300 Kll、z
、 f L−6KHz +温度47℃にて動作させた
例を第9図に示す。第9図に於いて、(a)はT1から
T63までの63上wの間開信号(第7図(a))を与
え、T64に於いて開信号(第7図(d))を与え、こ
れをくり返したときの動作特性である。(b)は、(a
)と反対にT1からT63までの63Twの間開信号を
与え、T64に於いて閉信号を与えこれをくり返した時
の動作特性である。また(C1は開信号を連続して与え
た時の動作特性で、(d)は閉信号を連続して与えた時
の動作特性である。第9図に於いては(alの764の
期間の特性は(C)のものと同等である。With such a driving method, f s =300 Kll,z
, f L-6KHz + temperature of 47° C. is shown in FIG. 9. In Fig. 9, (a) gives an open signal (Fig. 7 (a)) on 63 upper w from T1 to T63, and gives an open signal (Fig. 7 (d)) at T64. , is the operating characteristic when this is repeated. (b) is (a
), on the contrary, an open signal is applied for 63 Tw from T1 to T63, and a close signal is applied at T64, and this is repeated. In addition, (C1 is the operating characteristic when the open signal is continuously applied, and (d) is the operating characteristic when the closed signal is continuously applied. In Fig. 9, the period 764 of (al) The characteristics of (C) are equivalent to those of (C).
又(blの764の期間の特性は(d)のものとほぼ同
等である。これはマイクロシャッタが履歴効果を受ける
事な(確実にTuu内に於いて動作している事を表わす
。言い換えれば、黒白のドツトを完全に印字できる状態
である事を示している。In addition, (the characteristics of period 764 in BL are almost the same as those in (d). This indicates that the micro shutter is not subject to the hysteresis effect (it certainly operates within Tuu. In other words, , indicates that black and white dots can be printed completely.
第10図は上記と全く同じ液晶マイクロシャッタを同じ
駆動信号により駆動したものであるが。In FIG. 10, the same liquid crystal microshutter as above is driven by the same drive signal.
液晶の温度が第9図の場合のそれと異なり43℃と約4
°低い。Unlike the case shown in Figure 9, the temperature of the liquid crystal is 43 degrees Celsius, which is about 4 degrees Celsius.
°low.
ここで(dlをみると、Twの終わりごとにfLにより
マイクロシャッタを開くという動作が完全には行なわれ
ていない。これは、温度が低い為、液晶の粘度が高くな
り、動作が緩慢になった為である。(8)をみるとT6
4の最初にマイクロシャ・7りが開ききっていない。温
度が更に低下すると764に於いてマイクロシャッタが
まったく開かない状態になってしまう。言い換えれば黒
ドツト連続後の白ドツトが印字できないという事になる
。Here (dl), the operation of opening the microshutter by fL at each end of Tw is not completed completely. This is because the viscosity of the liquid crystal increases due to the low temperature, and the operation becomes slow. This is because (8) shows that T6
At the beginning of step 4, microchamber 7 is not fully opened. If the temperature further decreases, the micro shutter will not open at all at 764. In other words, a white dot after a series of black dots cannot be printed.
第11図は、逆に液晶の温度を上げて55℃にした時の
特性である。マイクロシャッタを開く動作に問題は無い
がマイクロシャッタを閉じる動作では、それぞれのTw
の前半でマイクロシャッタが閉じようとするが、Twの
後半では、この動作を維持できずマイクロシャッタが開
いてしまう。これは温度が上がった為、液晶の粘度が下
がり、これと供にfcが高くなり、第7図の(a)の波
形中のfイ+fLの影響が強くなり、無電圧によりマイ
クロシャッタを閉じようとする力とのバランスがくずれ
た為である。第12図にT64の期間に於ける光量を積
分した値を、温度を変えてプロットしたグラフを示す。On the other hand, FIG. 11 shows the characteristics when the temperature of the liquid crystal was raised to 55°C. There is no problem with the operation of opening the micro shutter, but when closing the micro shutter, each Tw
In the first half of Tw, the micro-shutter tries to close, but in the second half of Tw, this operation cannot be maintained and the micro-shutter opens. This is because as the temperature rises, the viscosity of the liquid crystal decreases, and along with this, fc increases, and the influence of f+fL in the waveform of (a) in Figure 7 becomes stronger, causing the microshutter to close due to no voltage. This is because the balance with the force that is trying to move has been disrupted. FIG. 12 shows a graph in which the integrated value of the amount of light during the period T64 is plotted at different temperatures.
第12図に於いてAは第9図〜第11図の(a)の76
4における透過光量積分値であり、Bは同様に第9図〜
第11図の(b)のT64に於ける透過光量積分値であ
る。同様にCは第9図〜第11図の(0)に、Dは(d
)に対応している。In Figure 12, A is 76 in (a) of Figures 9 to 11.
4, and B is the integrated value of the amount of transmitted light in FIG.
This is the integrated value of the amount of transmitted light at T64 in FIG. 11(b). Similarly, C is at (0) in Figures 9 to 11, and D is at (d
) is supported.
第12図から明らかな様に43℃以下でAの特性すなわ
ち閉連続後の開応答が悪くなり、41℃以下では開信号
を与えているにもかかわらずマイクロシャッタが開かな
い状態となる。As is clear from FIG. 12, the characteristic of A, that is, the opening response after continuous closing, deteriorates below 43°C, and below 41°C, the microshutter does not open even though an open signal is applied.
逆に53℃以上になると、BおよびDの値が大きくなっ
てくる。これは閉の信号を与えているにもかかわらずマ
イクロシャッタが開きぎみになっていることを表わす。Conversely, when the temperature exceeds 53°C, the values of B and D become large. This indicates that the micro-shutter is on the verge of opening even though a close signal is being applied.
つまりこれはマイクロシャッタ閑の時の漏れ光が増加し
、白黒のコントラストの低下につながる。In other words, this increases the amount of light leaking when the micro shutter is off, leading to a decrease in black and white contrast.
このように液晶マイクロシャッタは温度により微妙にそ
の特性が変化するので、従来は正確な温度制御が必要で
あった。As described above, since the characteristics of the liquid crystal microshutter change slightly depending on the temperature, accurate temperature control has conventionally been necessary.
本発明は上記従来の欠点に鑑み、光記録部の液晶光シャ
ッタの応答特性を改善し、高品質の記録画像が得られる
記録装置を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above-mentioned conventional drawbacks, it is an object of the present invention to provide a recording apparatus that improves the response characteristics of a liquid crystal optical shutter of an optical recording section and that can obtain high-quality recorded images.
本発明は上記目的を達成するために、光導電性記録体に
画像信号に対応した光書き込みを行なう光記録部を有し
、該光記録部は光源、ドツト配列された液晶シャッタ及
び結像光学系からなる記録装置において、前記液晶シャ
ッタは液晶組成物の誘電異方性の零となる交差周波数よ
りも高い周波数の交流と直流の印加により駆動する構成
にするとともに前記直流の印加は所定周期ごとに極性を
反転させることを特徴とする。In order to achieve the above object, the present invention has an optical recording section that performs optical writing corresponding to an image signal on a photoconductive recording medium, and the optical recording section includes a light source, a dot-aligned liquid crystal shutter, and an imaging optical system. The liquid crystal shutter is configured to be driven by the application of alternating current and direct current at a frequency higher than the crossing frequency at which the dielectric anisotropy of the liquid crystal composition becomes zero, and the direct current is applied at predetermined intervals. It is characterized by reversing the polarity.
以下本発明の実施例を図面を参照しながら詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.
本発明の記録装置の構成及びその光記録部の液晶光シャ
ンクの構成は第1図乃至第5図に示すものと同様であり
その重複説明は省略する。The structure of the recording apparatus of the present invention and the structure of the liquid crystal optical shank of its optical recording section are the same as those shown in FIGS. 1 to 5, and redundant explanation thereof will be omitted.
先ず本発明における液晶シャッタ駆動方式の駆動波形を
第13図および第14図に示す。第13図は第5図に示
した書込み選択電極及び記録信号電極に加えられる信号
波形図であり、同図において(a)は書込み選択電極3
3に、(b)は書込み選択電極34にそれぞれ加えられ
る信号波形である。また(C)〜(f)は記録信号電極
に加えられる4種類の信号波形である。以後(a)の信
号波形をCOMIA。First, driving waveforms of the liquid crystal shutter driving method according to the present invention are shown in FIGS. 13 and 14. FIG. 13 is a signal waveform diagram applied to the write selection electrode and the recording signal electrode shown in FIG.
3 and (b) are signal waveforms applied to the write selection electrodes 34, respectively. Further, (C) to (f) are four types of signal waveforms applied to the recording signal electrode. From now on, the signal waveform of (a) is COMIA.
(blをC0M2A、(e)を5CIA、(diをS
G 2 A。(bl is C0M2A, (e) is 5CIA, (di is S
G2A.
+a)を5G3A、(f)を5G4Aと呼ぶ。また第1
4図(a) 〜(d)は上気のCOMIAと5GIA−
3G4Aの信号によってそれぞれ作られそ7種類のマイ
クロシャッタ駆動波形を示している。すなわち第13図
は従来例を示す第6図に相当し、第14図は第7図に相
当する。+a) is called 5G3A, and (f) is called 5G4A. Also the first
Figures 4 (a) to (d) are COMIA and 5GIA- in the upper air.
Seven types of micro shutter drive waveforms are shown, each generated by the 3G4A signal. That is, FIG. 13 corresponds to FIG. 6 showing the conventional example, and FIG. 14 corresponds to FIG. 7.
第13図に示す様に本発明の駆動波形はTwfとTws
の2T、JJを1周期としている。又1本発明の特徴は
、第13図(f)に代表される様に液晶シャッタを開く
時に信号電極に加える波形はT、、Jの間グランドある
いは電源レベルに固定されている。As shown in FIG. 13, the drive waveforms of the present invention are Twf and Tws.
2T and JJ are taken as one cycle. Another feature of the present invention is that the waveform applied to the signal electrode when opening the liquid crystal shutter is fixed at the ground or power supply level between T and J, as typified by FIG. 13(f).
しかしながら、これを長期間、グランドあるいは電源レ
ベルに固定する事はせず、必ず所定周期毎。However, this should not be fixed at ground or power supply level for a long period of time, but only at regular intervals.
例えばITwごとにこれをくり返す様にしている。For example, this is repeated for each ITw.
つまり長期的には交流としている。これは、二周波駆動
用液晶はfL、によって液晶を電界方向に配向させるが
あまりfLを低くするとつまり極端な例では直流を印加
すると液晶そのものが破壊してしまうからである。In other words, in the long term, it is considered as exchange. This is because the liquid crystal for dual-frequency driving uses fL to align the liquid crystal in the direction of the electric field, but if fL is too low, that is, in an extreme case, if direct current is applied, the liquid crystal itself will be destroyed.
次に第13図(a)(COMIA>に注目し、T。Next, paying attention to FIG. 13(a) (COMIA>, T.
fとTwSを比較すると、TuIsはTuJfをそっく
り位相を反転したものである。その他の信号(b)〜(
f)もTwfとTwsでは、そ゛・つくり位相を反転し
た関係になっている。Comparing f and TwS, TuIs is exactly TuJf with its phase reversed. Other signals (b) ~ (
f) also has a relationship in which the construction phase is reversed between Twf and Tws.
第14図は上記の様にCOMIAと5GIA〜5G4A
の信号によって作られる4種類のマイクロシャフタ駆動
波形である。ここで同図ではTwfとTulsのペアで
示しているが、これは(a)のTuJfO後には必ず(
a)の’ru+sの波形が液晶に印加されるというので
はなく、ある書込み期間Twに於いて、(a)のTwf
に於ける波形が印加されたとすると次のTwに於いては
、(a)〜Td)の’l’wsに於ける波形のどれか1
つが印加されるのである。しかし、Twfに於ける波形
が続けて印加される事はない。Figure 14 shows COMIA and 5GIA to 5G4A as shown above.
These are four types of microshafter drive waveforms created by the signals. Here, the figure shows a pair of Twf and Tuls, which is always (a) after TuJfO.
It is not that the 'ru+s waveform in a) is applied to the liquid crystal, but in a certain writing period Tw, the Twf in (a) is applied to the liquid crystal.
If the waveform at 'l'ws of (a) to Td) is applied at the next Tw, any one of the waveforms at 'l'ws of (a) to Td) will be applied.
is applied. However, the waveform at Twf is not applied continuously.
ここで、従来の駆動波形を示す第7図と2本発明に於け
る駆動波形を示す第14図を比較すると。Here, a comparison will be made between FIG. 7 showing the conventional drive waveform and FIG. 14 showing the drive waveform according to the present invention.
両図に於いて閉の信号である第7図(alと(b)およ
び第14図Ta)と(b)のfHの印加される期間は等
しい。In both figures, the periods during which fH in FIG. 7 (al and (b) and FIG. 14 Ta) and (b), which are closed signals, are applied are equal.
異なるのはfH+fLの印加される期間とTuJの最後
におけるf、の印加される期間である。第7図と第14
図を比較してわかる様に第14図の方が単純な波形をし
ている。言い換えると第14図におけるYの期間および
Zの期間がより実効値的に低周波に近い形、直流に近い
形になっている。The difference is the period during which fH+fL is applied and the period during which f is applied at the end of TuJ. Figures 7 and 14
As can be seen by comparing the figures, FIG. 14 has a simpler waveform. In other words, the Y period and the Z period in FIG. 14 have a shape closer to a low frequency in terms of effective value, and a shape closer to a direct current.
前述した様にfHの長時間の印加ば、液晶の履歴効果に
より、高速のシャッタ動作には有害である。As mentioned above, if fH is applied for a long time, it is harmful to high-speed shutter operation due to the hysteresis effect of the liquid crystal.
これを排除する為、従来はTuJの終わりにfL倍信号
入れていた。In order to eliminate this, conventionally an fL times signal was inserted at the end of TuJ.
本発明における駆動方式は、履歴効果を排除する効果を
最大限に引き出す様な駆動方法であると言える。しかも
、シャッタを閉じる時に加えるfHの期間は変わらない
ので、シャッタの閉動作が悪くなるという事もない。The driving method according to the present invention can be said to be a driving method that maximizes the effect of eliminating history effects. Moreover, since the period of fH applied when closing the shutter does not change, the closing operation of the shutter does not deteriorate.
この様にして液晶シャンクを駆動した場合の温度特性を
第15図に示す。同図中、Aは閉連続後の開の応答、B
は開連続後の閉の応答、Cは連続量の応答、Dは連続量
の応答であり、その温度に対する特性変化を示している
。これは従来の温度特性を示す第12図に対応している
。従来例を示す第12図と比べると、開、閉のレベルは
同等であるが、温度範囲が特に低温側において拡大され
ている事がわかる。すなわちシャッタの良好な応答特性
を示す温度範囲が広がり、その温度特性が著しく改善さ
れている。FIG. 15 shows the temperature characteristics when the liquid crystal shank is driven in this manner. In the figure, A is the open response after continuous closing, and B
is the response of closing after continuous opening, C is the response of continuous quantity, and D is the response of continuous quantity, which shows the characteristic change with respect to temperature. This corresponds to FIG. 12, which shows the conventional temperature characteristics. When compared with FIG. 12 showing the conventional example, it can be seen that although the open and close levels are the same, the temperature range is expanded, especially on the low temperature side. In other words, the temperature range in which the shutter exhibits good response characteristics has been expanded, and its temperature characteristics have been significantly improved.
以上の様にTuIfとTwsの2TuIの期間を大きな
1サイクルと考え、シャッタを開く時は信号電極に加え
る波形をグランドあるいは電源レベルに固定し、しかも
長期間でみれば交流である波形を作る事により、二周波
駆動用液晶を破壊する事なく、良好な駆動を行なう事が
出来る。As mentioned above, consider the 2TuI period of TuIf and Tws as one large cycle, and when opening the shutter, fix the waveform applied to the signal electrode to the ground or power supply level, and create a waveform that is alternating current in the long term. Therefore, good driving can be performed without damaging the liquid crystal for dual frequency driving.
以上詳細に説明したように本発明の記録装置は光記録部
における液晶光シャフタのコントラストを低下させるこ
とな(温度特性を改善し、液晶光シャッタの良好な応答
特性が得られるとともに良質の記録画像が得られる。As explained in detail above, the recording device of the present invention can improve the temperature characteristics of the liquid crystal light shutter without reducing the contrast of the liquid crystal light shutter in the optical recording section, obtain good response characteristics of the liquid crystal light shutter, and produce high-quality recorded images. is obtained.
第1図は記録装置の構成図、第2図は液晶光シャッタ部
の構成図、第3図は液晶パネルの構成図。
第4図は液晶光シャ7タの断面構成図、第5図は2時分
割駆動におけるマイクロシャンクの構成図。
第6図は書込み選択電極および記録信号電極に加えられ
る信号波形図、第7図は液晶に加わる駆動波形図、第8
図は液晶光シャッタの光透過特性図。
第9図乃至第11図はそれぞれ従来の駆動方式による4
7℃、43℃、55℃におけるマイクロシャッタの挙動
を示す光透過特性図、第12図は従来の温度特性図、第
13図は本発明における各電極に加えられる信号波形図
、第14図は液晶に加わる駆動波形図、第15図は本発
明に於ける温度特性図である。
1・・・感光体、 3・・・液晶光シャッタ部、 5・
・・現像部、 9・・・転写部、 11・・・定着部、
14・・・クリーニング部、 16・・・光源。
17・・・液晶光シャッタ 18・・・結像レンズ、
19・・・液晶パネル。
22・・・信号電極、 23・・・共通電極。
24.39.40・・・マイクロシャッタ。
33.34・・・書込み選択電極。
35.36.37.38・・・記録信号電極特許出願人
カシオ計算機株式会社
同 上 アイ・ディ株式会社
代理人弁理士 大 菅 義 之
第1図
第2図
第3図
第4図
第5図
第6図
第7°図
第8図
第9図
第10図
第11図
第12図FIG. 1 is a block diagram of a recording apparatus, FIG. 2 is a block diagram of a liquid crystal light shutter section, and FIG. 3 is a block diagram of a liquid crystal panel. FIG. 4 is a cross-sectional configuration diagram of a liquid crystal optical shutter, and FIG. 5 is a configuration diagram of a microshank in two-time division driving. Figure 6 is a signal waveform diagram applied to the write selection electrode and recording signal electrode, Figure 7 is a drive waveform diagram applied to the liquid crystal, and Figure 8 is a diagram of the drive waveform applied to the liquid crystal.
The figure shows the light transmission characteristics of the liquid crystal optical shutter. Figures 9 to 11 each show a four-wheel drive system using the conventional drive system.
A light transmission characteristic diagram showing the behavior of the micro shutter at 7°C, 43°C, and 55°C. Figure 12 is a conventional temperature characteristic diagram. Figure 13 is a signal waveform diagram applied to each electrode in the present invention. Figure 14 is a diagram of the signal waveform applied to each electrode in the present invention. FIG. 15, which is a diagram of driving waveforms applied to the liquid crystal, is a diagram of temperature characteristics in the present invention. 1... Photoreceptor, 3... Liquid crystal light shutter section, 5.
...Development section, 9...Transfer section, 11...Fixing section,
14...Cleaning section, 16...Light source. 17...Liquid crystal light shutter 18...Imaging lens,
19...LCD panel. 22...Signal electrode, 23...Common electrode. 24.39.40...Micro shutter. 33.34...Write selection electrode. 35.36.37.38 Recording signal electrode patent applicant Casio Computer Co., Ltd. Same as above Yoshiyuki Osuga, patent attorney for ID Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7° Figure 8 Figure 9 Figure 10 Figure 11 Figure 12
Claims (1)
う光記録部を存し、該光記録部は光源。 ドツト配列された液晶シャッタ及び結像光学系からなる
記録装置において、前記液晶シャッタは液晶組成物の誘
電異方性の零となる交差周波数よりも高い周波数の交流
と直流の印加により駆動する構成にするとともに前記直
流の印加は所定周期ごとに極性を反転させることを特徴
とする記録装置。[Claims] The present invention includes an optical recording section that performs optical writing on a photoconductive recording medium in accordance with an image signal, and the optical recording section includes a light source. In a recording device comprising a dot-aligned liquid crystal shutter and an imaging optical system, the liquid crystal shutter is driven by application of alternating current and direct current at a frequency higher than a crossing frequency at which the dielectric anisotropy of the liquid crystal composition becomes zero. At the same time, the recording apparatus is characterized in that the polarity of the DC application is reversed at predetermined intervals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59017527A JPS60162229A (en) | 1984-02-02 | 1984-02-02 | Recording device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59017527A JPS60162229A (en) | 1984-02-02 | 1984-02-02 | Recording device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60162229A true JPS60162229A (en) | 1985-08-24 |
JPH045365B2 JPH045365B2 (en) | 1992-01-31 |
Family
ID=11946393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59017527A Granted JPS60162229A (en) | 1984-02-02 | 1984-02-02 | Recording device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60162229A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271231A (en) * | 1986-12-26 | 1988-11-09 | Casio Comput Co Ltd | Method for driving liquid crystal optical element |
EP0321797A2 (en) * | 1987-12-14 | 1989-06-28 | Nippon Telegraph And Telephone Corporation | Liquid crystal cell array and method for driving the same |
JP2011145684A (en) * | 2001-04-06 | 2011-07-28 | Oki Data Corp | Positioning device for optical head |
-
1984
- 1984-02-02 JP JP59017527A patent/JPS60162229A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271231A (en) * | 1986-12-26 | 1988-11-09 | Casio Comput Co Ltd | Method for driving liquid crystal optical element |
EP0321797A2 (en) * | 1987-12-14 | 1989-06-28 | Nippon Telegraph And Telephone Corporation | Liquid crystal cell array and method for driving the same |
JP2011145684A (en) * | 2001-04-06 | 2011-07-28 | Oki Data Corp | Positioning device for optical head |
Also Published As
Publication number | Publication date |
---|---|
JPH045365B2 (en) | 1992-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4386836A (en) | Electro-photographic printer | |
US4671616A (en) | Diagonally offset, dielectric anisotropy inversion, liquid crystal, microshutters | |
JPH02239283A (en) | Electrooptical modulating element, driving method and driving circuit for this element and electrooptical modulating device | |
US5095376A (en) | Apparatus and method for driving an optical printer having a liquid crystal optical switch | |
JPS60162229A (en) | Recording device | |
JPS6335002B2 (en) | ||
JP2584235B2 (en) | Image forming apparatus and driving method thereof | |
JPS6040612B2 (en) | lcd light bulb | |
JPS6040608B2 (en) | lcd light bulb | |
JPS6042459B2 (en) | printing device | |
JPS6040610B2 (en) | lcd light bulb | |
JP2552877B2 (en) | Optical scanning device | |
JPS6042457B2 (en) | printing device | |
JPS6040609B2 (en) | lcd light bulb | |
JPS5993424A (en) | Liquid crystal light valve | |
JPS6042456B2 (en) | lcd light bulb | |
JPH01188825A (en) | Method for driving optical shutter array | |
JPH0525422B2 (en) | ||
JPS62280825A (en) | Driving method for liquid crystal element | |
JPS6042458B2 (en) | printing device | |
JPS6347730A (en) | Liquid crystal shutter device | |
JPH03206423A (en) | Liquid crystal electro-optic device | |
JPS62260125A (en) | Method for driving optical modulating element | |
JPS6242126A (en) | Driving circuit for liquid crystal optical shutter | |
JPS5929226A (en) | Driving method of liquid crystal-optical shutter |