JPS6016112A - Insulating spacer of gas insulated sealed electric device - Google Patents

Insulating spacer of gas insulated sealed electric device

Info

Publication number
JPS6016112A
JPS6016112A JP12433183A JP12433183A JPS6016112A JP S6016112 A JPS6016112 A JP S6016112A JP 12433183 A JP12433183 A JP 12433183A JP 12433183 A JP12433183 A JP 12433183A JP S6016112 A JPS6016112 A JP S6016112A
Authority
JP
Japan
Prior art keywords
insulating spacer
gas
insulating
spacer
high potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12433183A
Other languages
Japanese (ja)
Inventor
本杉 照男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12433183A priority Critical patent/JPS6016112A/en
Publication of JPS6016112A publication Critical patent/JPS6016112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Installation Of Bus-Bars (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高電位導体や開閉器、し中断器等を収納した
ガス絶縁密閉電器に用いられる絶縁スペーサの構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an insulating spacer used in a gas-insulated sealed electrical appliance housing a high-potential conductor, a switch, an interrupter, and the like.

〔従来技術とその問題点〕[Prior art and its problems]

この種の機器において六弗化硫黄(8Fa )ガスの絶
縁破壊電圧は、主に充電部または絶縁物表面の最大電界
強度および表面粗さならびに8F6ガス圧に関係して決
まるので、充電部分や絶縁スペーサの形状を極力電界集
中の少ない形状にし、かつ8F6ガス圧や物の表面粗さ
を所定値に保つことによシ密閉電器の小形化と絶縁信頼
性の向上とがはかられている。ところが、ガス絶縁密閉
電器の密閉タンク内に導電性の栓座や小片等の異物がた
またま侵入した場合、これらの異物は密閉タンク内の電
界による静電力を受け、静電力が異物の重力や絶縁ガス
の粘性抵抗を超えたときにガス中に浮上し、密閉タンク
内の電界の分布に対応して複雑な跳躍運動をしなからタ
ンン内主に軸方向に移動する。ことに導電性異物が細長
い形状であった場合には、異物が起き上がっただけでも
絶縁ガス中の電界が大幅に乱れ前述の好ましい電気的形
状がくずれてしまい耐電圧特性が低下するという問題が
あシ、そのψ善がめられていた。
In this type of equipment, the dielectric breakdown voltage of sulfur hexafluoride (8Fa) gas is determined mainly by the maximum electric field strength and surface roughness of the live part or the surface of the insulating material, as well as the 8F6 gas pressure. By shaping the spacer to minimize electric field concentration and maintaining the 8F6 gas pressure and the surface roughness of the object at predetermined values, it is possible to downsize the sealed electrical appliance and improve insulation reliability. However, if a foreign object such as a conductive stopper or small piece happens to enter the sealed tank of a gas-insulated sealed electrical appliance, these foreign objects will be subject to electrostatic force due to the electric field inside the sealed tank, and the electrostatic force will be applied to the foreign object's gravity and the insulation. When it exceeds the viscous resistance of the gas, it floats up into the gas and moves within the tank mainly in the axial direction, performing a complicated jumping motion in response to the distribution of the electric field inside the sealed tank. In particular, if the conductive foreign matter has an elongated shape, even if the foreign matter rises up, the electric field in the insulating gas will be greatly disturbed, causing the above-mentioned preferred electrical shape to collapse, resulting in a decrease in the withstand voltage characteristics. shi, its ψ goodness was admired.

第1図は従来のガス絶縁密閉電器の概念図である。図に
おいて、1は絶縁ガスを包蔵した金属製の筒状の密閉タ
ンクで、筒状の高電位導体2を収納している。、3は合
成樹脂製の絶縁スペーサで、コーン状に形成された樹脂
部3aと、前記高電位導体の連結部2aと密着した保合
部3bと、分割された密閉タンク1の接続部に設けられ
た1対のフランジ18およびlb間の凹所内に挾持され
た周縁部3c とからなシ、高電位導体2を密閉タンク
1のガス空間4aおよび4bの中心位置に絶縁支持する
よう形成されている。また高電位導体2は筒状に形成さ
れ、その外径と密閉タンク1の内径の比を所定の値に選
ぶことによシ高電位導体20表面の電界集中を抑えると
ともに、コーン状の樹脂部3aの傾斜をゆるくすること
によって絶縁スペーサ3の沿面長を延ネ:シ樹脂部3a
の沿面方向の電界を緩和するよう形成されている。とこ
ろが予期しない異物が侵入して密閉タンク内のガス空間
4をこの異物が跳躍移動すると、ガス空間の耐電圧が低
下して高電位導体2と密閉タンク1との間が閃絡したシ
、この異物が絶縁スペーサ30表面に付着した場合には
絶縁スペーサの表面がフラッジオーバするなどの欠点が
あった。
FIG. 1 is a conceptual diagram of a conventional gas-insulated sealed electrical appliance. In the figure, reference numeral 1 denotes a metal cylindrical sealed tank containing an insulating gas, which houses a cylindrical high potential conductor 2. , 3 is an insulating spacer made of synthetic resin, and is provided at a resin part 3a formed in a cone shape, a retaining part 3b in close contact with the connecting part 2a of the high potential conductor, and a connecting part of the divided sealed tank 1. The peripheral edge 3c is sandwiched in the recess between the pair of flanges 18 and lb, and is formed to insulate and support the high potential conductor 2 at the center of the gas spaces 4a and 4b of the sealed tank 1. There is. Further, the high potential conductor 2 is formed in a cylindrical shape, and by selecting a predetermined ratio of the outer diameter of the high potential conductor 2 to the inner diameter of the sealed tank 1, electric field concentration on the surface of the high potential conductor 20 can be suppressed. The creepage length of the insulating spacer 3 is extended by making the slope of the resin part 3a gentler.
It is formed to alleviate the electric field in the creeping direction. However, when an unexpected foreign object enters and jumps through the gas space 4 in the sealed tank, the withstand voltage of the gas space decreases and a flash short occurs between the high potential conductor 2 and the sealed tank 1. When foreign matter adheres to the surface of the insulating spacer 30, there is a drawback that the surface of the insulating spacer flops over.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の状況に鑑みてなされたもので、異物の
影響による絶縁低下の少ない絶縁スペーサを提供するこ
とによシ、ガス゛絶縁密閉電器の絶縁の信頼性を高める
ことを目的とする。
The present invention has been made in view of the above-mentioned situation, and an object of the present invention is to improve the reliability of insulation of gas-insulated sealed electrical appliances by providing an insulating spacer with less insulation deterioration due to the influence of foreign substances.

〔発明の要点〕[Key points of the invention]

本発明によれば、上述の目的は、所定の傾斜をもってコ
ーン状に形成された絶縁スペーサによって区分されたガ
ス空間のうち、コーンの内側に接するガス空間において
は、密閉タンクの底部に介在する異物が絶縁スペーサと
密閉タンクとの保合部近傍に形成される低電界部分に引
き寄せられる特徴があることに着目し、絶縁スペーサの
樹脂層を二つに分岐し、それぞれが所定の傾斜をもって
タンク壁に向って拡がるコーン状に形成し、この絶縁ス
ペーサの両側に接するガス空間に異部が侵入した場合、
この異物を絶縁スペーサと密閉タンクとの保合部近傍の
密閉タンク内周面に形成されゐ低電界部分に引き寄せ、
異物の電界浮上を抑制するよう構成することによシ達成
された。
According to the present invention, the above-mentioned object is to prevent foreign substances from intervening at the bottom of the closed tank in the gas space that is in contact with the inside of the cone among the gas spaces divided by the insulating spacers formed in the shape of a cone with a predetermined slope. We focused on the fact that the resin layer of the insulating spacer is attracted to the low electric field area formed near the joint between the insulating spacer and the hermetically sealed tank. If a foreign part invades the gas space that is in contact with both sides of this insulating spacer,
This foreign material is drawn to the low electric field area formed on the inner peripheral surface of the sealed tank near the joint between the insulating spacer and the sealed tank.
This was achieved by configuring the structure to suppress electric field levitation of foreign matter.

第3図は従来構造における密閉タンクの底部の(5) 電界分布を示すもので、40は高電位導体2と接地され
た密閉タンク1との間に印加された電圧の絶縁空間内に
おける分布を示す等電位線で、線と―との間隔が小さい
程電界が強いことを表わすものである。絶縁ガスと誘電
率が異なるコーン状の絶縁スペーサ3が介在することに
よって、絶縁スペーサ3の近傍では等電位線が複雑に屈
折し、絶縁スペーサ3によって区分されたガス絶縁空間
匂と4b との電界分布が非対称になる。す表わちコー
ン状のスペーサ3の内側の面に接するガス空間4bでは
、スペーサ3に近づく程密閉タンク近傍の等電位線が上
方に持ち上げられ、スペーサの周縁部3C近傍のB部に
低電界部分が形成され本。
Figure 3 shows the (5) electric field distribution at the bottom of the sealed tank in the conventional structure, and 40 shows the distribution in the insulation space of the voltage applied between the high potential conductor 2 and the grounded sealed tank 1. In the equipotential lines shown, the smaller the distance between the lines and the -, the stronger the electric field. Due to the presence of the cone-shaped insulating spacer 3, which has a dielectric constant different from that of the insulating gas, equipotential lines are complicatedly bent in the vicinity of the insulating spacer 3, and the electric field between the gas insulating space separated by the insulating spacer 3 and 4b is The distribution becomes asymmetric. In other words, in the gas space 4b in contact with the inner surface of the cone-shaped spacer 3, the equipotential line near the sealed tank is lifted upward as it approaches the spacer 3, and a low electric field is created in part B near the peripheral edge 3C of the spacer. The parts are formed into a book.

一方コーン状のスベー?3の外側の面に接したガス空間
4aでは、スペーサの周縁部3cに近づく前にA部にお
いて電界が最大になる部分が存在する。一般に静電力に
よって運動する異物は電界強度の傾きの大きい方向に跳
躍し、電界強度の弱い場所に落下して運動を停止する。
On the other hand, a cone-shaped sube? In the gas space 4a in contact with the outer surface of the spacer 3, there is a portion where the electric field becomes maximum at a portion A before approaching the peripheral edge 3c of the spacer. Generally, a foreign object that moves due to electrostatic force jumps in the direction where the gradient of the electric field strength is large, falls to a place where the electric field strength is weak, and stops moving.

したがって運転中または課電中にガス空間4aおよび4
bに侵入(6) した異物が静電力またはガス流によって移動して絶縁ス
ペーサ3に近寄って来た場合、4b側の異物はスペーサ
3に接近する前に低電界部Bに弓1き寄せられて静電力
による運動を停止するが、4a側の異物は高電界部A位
置において強い静電力を受けて跳ね上がシ、その上方の
絶縁スペーサの沿面に付着して絶縁スペーサの72ツシ
オーバに結びつく危険性が高いことが発明者尋の実験的
検証によシ実証された。本発明はこのような従来絶縁ス
ペーサの欠点とされていた電界分布の非対称性を逆に利
用して絶縁スペーサを前述のように構成することによっ
て達成されたものである。
Therefore, during operation or energization, the gas spaces 4a and 4
Intrusion into b (6) When foreign matter moves by electrostatic force or gas flow and approaches insulating spacer 3, the foreign matter on side 4b is drawn to low electric field part B by bow 1 before approaching spacer 3. However, the foreign matter on the side 4a receives a strong electrostatic force at the high electric field part A position and jumps up, attaches to the creeping surface of the insulating spacer above it, and is connected to the 72 sliver of the insulating spacer. The inventor's experimental verification has demonstrated that the risk is high. The present invention has been achieved by configuring an insulating spacer as described above by taking advantage of the asymmetry of electric field distribution, which has been a drawback of conventional insulating spacers.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を添付図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第3図は本発明の実施例を示す構造図である。FIG. 3 is a structural diagram showing an embodiment of the present invention.

図において絶縁スペーサ10は、高電位導体2の連結部
2aを覆うよう形成された係合部11と、係合部11か
ら軸方向に分岐し密閉容器1に対して傾斜角θ1で軸方
向に対称に拡がるコーン状の分岐部12および13と、
分岐した絶縁層の周縁部14および15とが、例えば充
填材を含むエポキシ樹脂等の注型樹脂により一体化成型
されている。コーン状の分岐部の周縁部14および15
は、接続管16に内設され、この接続管16の両側が分
割された密閉タンク1のフランジ1a、1b と気密に
連結され、周縁部14 、15の軸方向の端面は例えば
バッキングを介してフランジ1a e ’b と接触し
、絶縁スペーサ10の軸方向の位置が規制され、かつ高
電位導体2を密閉タンク内の所定位置に支持するよう構
成されている。17は絶縁スベーt 10に設けられた
通気孔で、絶縁スペーサ10によって区分されたガス空
間4c と一方のガス空間4e とを連通させるために
饅けられており、その位置は異物が浮遊する可能性の少
ない密閉タンクの上部に近接し、かつ絶縁スペーサの絶
縁性能に影譬を及ぼさないよう配設されるー、なお通気
孔を設ける代りに密閉タンクの外側に連通配管を設けて
もよい。
In the figure, the insulating spacer 10 includes an engaging part 11 formed to cover the connecting part 2a of the high potential conductor 2, and an engaging part 11 that branches in the axial direction from the engaging part 11 and extends in the axial direction at an inclination angle θ1 with respect to the closed container 1. cone-shaped branches 12 and 13 that spread symmetrically;
The peripheral edges 14 and 15 of the branched insulating layer are integrally molded using a casting resin such as an epoxy resin containing a filler, for example. Peripheral edges 14 and 15 of the cone-shaped branch
are installed inside the connecting pipe 16, and both sides of the connecting pipe 16 are airtightly connected to the flanges 1a and 1b of the divided sealed tank 1, and the axial end faces of the peripheral parts 14 and 15 are connected, for example, through a backing. The insulating spacer 10 is configured to be in contact with the flange 1a e 'b, to restrict the axial position of the insulating spacer 10, and to support the high potential conductor 2 at a predetermined position within the sealed tank. Reference numeral 17 denotes a ventilation hole provided in the insulating base 10, which is provided to communicate the gas space 4c divided by the insulating spacer 10 with one gas space 4e, and its position is such that foreign matter may float therein. The insulating spacer is placed close to the top of the hermetic tank, which has little heat, and does not affect the insulation performance of the insulating spacer.Instead of providing a ventilation hole, a communicating pipe may be provided on the outside of the hermetic tank.

本発明は第2図について説明したように、コーン状スペ
ーサ3によって区分されたガス空間のうちコーンの内側
に接したカス空間4b側にB部のような低電界部分が形
成され、異物がこの低電部分に引き寄せられる特徴があ
ることに着目して、スペーサの樹脂層を軸方向に2分割
して、軸方向に対称なコーン状の分岐部12 、13を
形成し、分岐部32 、13のコーンの内側に接したガ
ス空間4d。
As explained with reference to FIG. 2, in the present invention, a low electric field portion such as part B is formed on the side of the gas space 4b that is in contact with the inside of the cone in the gas space divided by the cone-shaped spacer 3, and foreign matter is Focusing on the characteristic of being attracted to low-current parts, the resin layer of the spacer is divided into two parts in the axial direction to form cone-shaped branch parts 12 and 13 that are symmetrical in the axial direction. Gas space 4d in contact with the inside of the cone.

4eに第3図のB部と同様な低電界部分を形成したもの
である。したがって密閉タンク1のカス空間’d t 
’eに侵入した異物をB部に引き寄せて無害化すること
ができ、異物による耐電圧の低下を防止できる。また第
2図のような電界分布を生ずる要因としては、スペーサ
の絶縁層の誘電率を一定とした場合、コーン状の絶縁層
の傾斜θIと、絶縁層の厚さとが密接に関係しておシ、
θ】の値を加変から45度の間に設定した時よい結果が
得られている。
4e, a low electric field portion similar to the portion B in FIG. 3 is formed. Therefore, the waste space 'd t in the sealed tank 1
Foreign matter that has entered 'e can be drawn to part B and rendered harmless, and a drop in withstand voltage due to foreign matter can be prevented. Furthermore, the reason for the electric field distribution as shown in Figure 2 is that when the dielectric constant of the insulating layer of the spacer is constant, the inclination θI of the cone-shaped insulating layer and the thickness of the insulating layer are closely related. C,
Good results have been obtained when the value of θ] is set between 45 degrees and 45 degrees.

第3図の実施例の場合、コーン状の分岐部12゜13の
間のガス空間においては第2図の4a側の電界分布のよ
うな高電界部Aが存在することになる。
In the case of the embodiment shown in FIG. 3, in the gas space between the cone-shaped branch parts 12 and 13, there exists a high electric field area A like the electric field distribution on the side 4a of FIG. 2.

しかし絶縁スペーサ10と接続管16とを組立てる際(
9) 異物を寥全に除去しておけば、通気孔17以外には密閉
タンク1と連通ずる部分がなく、組立て後に異物が侵入
する可能性が少ないので、ガス空間4cを清浄な状態に
維持することができる。第3図の場合、絶縁スペーサの
周縁部14 、15と密閉タンク1とが係合する凹所に
接続管16を設け、その内径を密閉タンク1の内径よシ
大きく形成し、第2図のA部のような高電界部分が形成
されるのを防止するよう構成されておシ、このような構
造を併用すれにガス空間4cの絶縁の信頼性をよシよく
改善することができる。
However, when assembling the insulating spacer 10 and the connecting pipe 16 (
9) If foreign matter is completely removed, there will be no part other than the ventilation hole 17 that communicates with the sealed tank 1, and there will be little chance of foreign matter entering after assembly, so the gas space 4c will be maintained in a clean state. can do. In the case of FIG. 3, a connecting pipe 16 is provided in the recess where the peripheral edges 14 and 15 of the insulating spacer engage with the sealed tank 1, and its inner diameter is made larger than the inner diameter of the sealed tank 1. It is constructed to prevent the formation of a high electric field portion such as the part A, and by using such a structure in combination, the reliability of the insulation of the gas space 4c can be greatly improved.

またts3図の実施例では絶縁スペーサ10を一つの注
型金型を用いて同時に注型した時の例を説明したが、2
個のコーン状スペーサを別々に注型し、連結部2aの部
分で2個のコーン状スペーサを互いに連結するよう構成
してもよく、このように構成することにより注型金製の
構造を簡素化することができ、安価な絶縁スペーサを提
供するのに役立つ。
In addition, in the embodiment shown in Figure ts3, an example was explained in which the insulating spacers 10 were simultaneously cast using one casting mold, but two
The cone-shaped spacers may be cast separately and the two cone-shaped spacers may be connected to each other at the connecting portion 2a. By configuring in this way, the structure of the casting mold can be simplified. This helps provide an inexpensive insulating spacer.

第4図は本発明の異なる実施例を示す概念図で、(10
) (イ)は要部の縦断面図、(ロ)は(イ)のA−A断面
図である。図において、絶縁スペーサ20は密閉タンク
21の底部に向かって所定の傾斜01で軸方向に開いた
二つの脚部20a、20bを有する導体支持用の絶縁ス
ペーサとして形成されている。そして高電位導体22と
導電接続された接続金具22aを密着包囲するとともに
、脚部20a、20bは密閉タンク21に周方向に延び
るよう形成された凹所21a、21bと係合し、ボルト
24によって密閉タンクに固定されるとともに気密カバ
ー詔によシ気密が保持されている。また脚部20aおよ
び20bは、(ロ)のように所定の角度θ2で密閉タン
クの底部に向かって周方向に開く扇状に形成されている
。脚部20a、20bの傾斜角θ1を20度ないし45
度にした場合、密閉タンク21の底部における電界分布
は第2図の場合とほぼ同じになるので、絶縁スペーサの
両側のガス空間に侵入した異物はスペーサ両側の低電界
部に引き寄せられる。一般に密閉タンクに侵入した異物
は密閉タンク1の底部に集まるので、周方向に扇状に開
いた脚部20a、20bの周方向の角度θ2を少なくと
も霞度以上に設定しておけば、静電力やガス流によって
移動する異物がスペーサの脚部を乗υ越えて脚部20a
と20bとの間のガス空間に跳び込むことを十分防ぐこ
とができる。したがって高電位導体を所定位置に絶縁支
持することだけがめられる場合には、絶縁スペーサを第
4図のように形成することによシ安価な絶縁スペーサを
提供することができる。
FIG. 4 is a conceptual diagram showing different embodiments of the present invention.
) (A) is a longitudinal cross-sectional view of the main part, and (B) is a cross-sectional view taken along line A-A in (A). In the figure, the insulating spacer 20 is formed as an insulating spacer for supporting a conductor, and has two legs 20a and 20b that are opened in the axial direction at a predetermined inclination 01 toward the bottom of a sealed tank 21. The legs 20a and 20b closely surround the connecting fitting 22a which is conductively connected to the high potential conductor 22, and engage with the recesses 21a and 21b formed in the sealed tank 21 so as to extend in the circumferential direction. It is fixed to a closed tank and kept airtight by an airtight cover. Further, the legs 20a and 20b are formed in a fan shape that opens in the circumferential direction toward the bottom of the closed tank at a predetermined angle θ2, as shown in (b). The inclination angle θ1 of the legs 20a and 20b is 20 degrees to 45 degrees.
Since the electric field distribution at the bottom of the closed tank 21 is almost the same as that shown in FIG. 2, foreign matter that has entered the gas space on both sides of the insulating spacer is attracted to the low electric field portions on both sides of the spacer. Generally, foreign matter that enters a sealed tank collects at the bottom of the sealed tank 1, so if the circumferential angle θ2 of the fan-shaped legs 20a and 20b is set to at least the degree of haze, it is possible to reduce electrostatic force. Foreign matter moved by the gas flow crosses over the legs of the spacer and reaches the legs 20a.
This can sufficiently prevent the gas from jumping into the gas space between and 20b. Therefore, when it is desired only to insulate and support a high potential conductor in a predetermined position, an inexpensive insulating spacer can be provided by forming the insulating spacer as shown in FIG.

以上本発明の絶縁スペーサについて詳細に説明したが、
本発明の絶縁スペーサをガス絶縁密閉電器に取り付ける
場合、高電位導体が断路部や接地開閉器など、摺動部刀
為ら有害な異物を発生する可能性の高い部分を含む場合
、その両側に本発明の絶縁スペーサを配設すれは、発生
した異物を絶縁スペーサの形状によって形成される低電
界部分に引き寄せて無害化することができ、ガス絶縁の
信頼性を高めることができる。
The insulating spacer of the present invention has been explained in detail above, but
When attaching the insulating spacer of the present invention to a gas-insulated sealed electrical appliance, if the high-potential conductor includes a sliding part, such as a disconnecting part or a grounding switch, which is likely to generate harmful foreign substances, By arranging the insulating spacer of the present invention, generated foreign matter can be drawn to the low electric field portion formed by the shape of the insulating spacer and rendered harmless, thereby improving the reliability of gas insulation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、前述のように、絶縁スペーサの樹脂層
を軸方向に分岐して所定の傾斜で軸方向に対称に開いた
コーン状または扇状に成型し、密閉タンクに周方向に延
びるよう形成された二つの凹所で支持する構造とし、二
つの凹所に接続された密閉タンクの内周面部分では絶縁
スペーサに近づく程電界が弱まるよう構成した。その結
果密閉タンク内に侵入または生成され静電力によってタ
ンク内を移動する異物は絶縁スペーサの両側の低電界部
分に引き寄せられて密閉タンクの底部で運動を停止し無
害化される。したがって従来コーン状の絶縁スペーサの
近傍で異物が跳躍して絶縁物に付着し、絶縁スペーサの
耐電圧が低下するという問題点が排除され、異物の影響
を受けにくいガス絶縁密閉電器の絶縁スペーサを提供で
きた。また密閉タンクに収納された開閉器等金属異物を
生成しやすい部分の両側に本発明の絶縁スペーサを配設
すれば、生成された異物をスペーサ近傍の低電界部に引
き寄せて無害化できるので、ガス絶縁密閉電器の絶縁の
信頼性を向上できる。
According to the present invention, as described above, the resin layer of the insulating spacer is branched in the axial direction and formed into a cone shape or fan shape that opens symmetrically in the axial direction at a predetermined inclination, and extends circumferentially in the closed tank. The structure is such that the electric field is supported by the two formed recesses, and the electric field weakens as it approaches the insulating spacer on the inner peripheral surface of the sealed tank connected to the two recesses. As a result, foreign matter that enters or is generated within the sealed tank and moves within the tank due to electrostatic force is attracted to the low electric field portions on both sides of the insulating spacer, stops moving at the bottom of the sealed tank, and is rendered harmless. This eliminates the problem of conventional cone-shaped insulating spacers in which foreign objects jump around and adhere to the insulating material, reducing the withstand voltage of the insulating spacers. This eliminates the problem of reducing the withstand voltage of the insulating spacers, making it possible to use insulating spacers for gas-insulated sealed appliances that are less susceptible to foreign objects. I was able to provide it. Furthermore, by placing the insulating spacer of the present invention on both sides of parts that are likely to generate metal foreign matter, such as a switch housed in a sealed tank, the generated foreign matter can be drawn to the low electric field area near the spacer and rendered harmless. It can improve the insulation reliability of gas-insulated sealed electrical appliances.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図は従来のガス絶縁密閉電器の断面図、第(13) 2図は従来のコーン状スペーサの電界分布の特徴を示す
電界分布図、第3図は本発明の実施例を示す絶縁スペー
サの構造図、第4図は本発明の異なる実施例を示す構造
図である。 図において、t、21・・・密閉タンク、1a + ’
b・・・フランジ(凹所)、2.22・・・高電位導体
、3,10゜加・・・絶縁スペーサ、12 、13・・
・コーン状の分岐部、14 、15・・・周縁部、4a
−6・・・ガス空間、2a + 223・・・連結部(
保合部)、16・・・接続部、20a、20b・・・屑
状脚部、θ1・・・傾斜角、θ2・・・扇状部の周方向
の角度、A・・・高電界部、B・・・低電界部、である
。 (14) 第3図 第4図 (ロ)
@Figure 1 is a cross-sectional view of a conventional gas-insulated sealed electrical appliance, Figure 2 (13) is an electric field distribution diagram showing the electric field distribution characteristics of a conventional cone-shaped spacer, and Figure 3 is an insulating spacer showing an embodiment of the present invention. FIG. 4 is a structural diagram showing a different embodiment of the present invention. In the figure, t, 21... closed tank, 1a + '
b...Flange (recess), 2.22...High potential conductor, 3, 10 degrees...Insulating spacer, 12, 13...
・Cone-shaped branch part, 14, 15... peripheral part, 4a
-6...Gas space, 2a + 223...Connection part (
(retaining part), 16... Connection part, 20a, 20b... Scrap leg part, θ1... Inclination angle, θ2... Angle in the circumferential direction of the fan-shaped part, A... High electric field part, B...Low electric field part. (14) Figure 3 Figure 4 (b)

Claims (1)

【特許請求の範囲】 1)絶縁ガスを包蔵した筒状の密閉タンク内に収納され
た高電位導体をこの高電位導体と前記密閉タンクの内周
面に沿って周方向に延びるよう形成された凹所とに係合
して所定位置に絶縁支持する絶縁スペーサにおいて、前
記絶縁スペーサの樹脂層が二つに分岐されそれぞれ前記
密閉タンクに向かって所定の傾斜角で拡がるよう形成さ
れたことを特徴とするガス絶縁密閉電器の絶縁スペーサ
。 2、特許請求の範囲第1項記載のものにおいて、樹脂層
の各分岐部がそれぞれ軸方向に対称なコーン状であって
、前記高電位導体との保合部において一体化成型された
ことを特徴とするガス絶縁密閉電器の絶縁スペーサ。 3)特許請求の範囲第1項記載のものにおいて、絶縁ス
ペーサが二つのコーン状体として別体に成盤され、前記
高電位導体との保合部において前記二つのコーン状体の
頂部を互いに連結したことを特徴とするガス絶縁密閉電
器の絶縁スペーサ。 4)特許請求の範囲第1項記載のものにおいて、樹脂層
の分岐部の軸方向から見た形状が、前記高電位導体の中
心位置を焦点として前記密閉タンクの底部に向かって印
度以上の角度で開く扇状であることを特徴とするガス絶
縁密閉電器の絶縁スペーサ。 5)特許請求の範囲第1項ないし舘4項のいずれかに記
載のものにおいて、樹脂層の分岐部の軸方向の傾斜が、
筒状の密閉タンクの軸に対して20度から45度の範囲
にあることを特徴とするガス絶縁密閉電器の絶縁スペー
サ。
[Scope of Claims] 1) A high potential conductor housed in a cylindrical sealed tank containing an insulating gas is formed to extend circumferentially along the high potential conductor and the inner peripheral surface of the sealed tank. In the insulating spacer that engages with a recess and provides insulating support at a predetermined position, the resin layer of the insulating spacer is branched into two parts, each of which is formed to expand at a predetermined angle of inclination toward the sealed tank. Insulating spacer for gas insulated sealed electrical appliances. 2. In the product described in claim 1, each branch part of the resin layer has an axially symmetrical cone shape, and is integrally molded at the part where it is connected to the high potential conductor. Insulating spacer for gas insulated sealed electrical appliances. 3) In the device described in claim 1, the insulating spacer is formed separately as two cone-shaped bodies, and the tops of the two cone-shaped bodies are connected to each other at the connection part with the high potential conductor. An insulating spacer for gas-insulated sealed electrical appliances characterized by being connected. 4) In the product described in claim 1, the shape of the branched portion of the resin layer when viewed from the axial direction is at an angle of more than an inch toward the bottom of the sealed tank with the center position of the high potential conductor as the focal point. An insulating spacer for gas-insulated sealed electrical appliances characterized by a fan-shaped opening. 5) In the product according to any one of claims 1 to 4, the axial inclination of the branched portion of the resin layer is
An insulating spacer for gas insulated sealed electrical appliances, characterized in that the spacer is at an angle of 20 degrees to 45 degrees with respect to the axis of a cylindrical sealed tank.
JP12433183A 1983-07-08 1983-07-08 Insulating spacer of gas insulated sealed electric device Pending JPS6016112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12433183A JPS6016112A (en) 1983-07-08 1983-07-08 Insulating spacer of gas insulated sealed electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12433183A JPS6016112A (en) 1983-07-08 1983-07-08 Insulating spacer of gas insulated sealed electric device

Publications (1)

Publication Number Publication Date
JPS6016112A true JPS6016112A (en) 1985-01-26

Family

ID=14882687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12433183A Pending JPS6016112A (en) 1983-07-08 1983-07-08 Insulating spacer of gas insulated sealed electric device

Country Status (1)

Country Link
JP (1) JPS6016112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936244B2 (en) 2008-05-02 2011-05-03 Vishay Dale Electronics, Inc. Highly coupled inductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717215B2 (en) * 1975-02-10 1982-04-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717215B2 (en) * 1975-02-10 1982-04-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936244B2 (en) 2008-05-02 2011-05-03 Vishay Dale Electronics, Inc. Highly coupled inductor

Similar Documents

Publication Publication Date Title
KR880004534A (en) Through-type capacitors and magnetrons using them
JP5239913B2 (en) Tank type vacuum circuit breaker
US4296274A (en) High voltage bushing having weathershed and surrounding stress relief collar
US4393286A (en) Vacuum circuit breakers
JPS6016112A (en) Insulating spacer of gas insulated sealed electric device
KR880001309B1 (en) Bushing
US20170011874A1 (en) Particle resistant enclosure for dead tank circuit breaker
US7060902B2 (en) Bushing
JP3568093B2 (en) Polymer support insulator
US4136299A (en) Lightning arrester device
JP3466644B2 (en) Gas insulated busbar
JPS6131930B2 (en)
JPH0254005B2 (en)
JPH05234441A (en) Supporting insulator
JPS631399Y2 (en)
JPH0236196Y2 (en)
JPS63193412A (en) Completely insulating body coated with thermoplastic resin
KR101037244B1 (en) Gas insulated switchgear
JPH07230731A (en) Gas insulated switchgear and gas insulated bushing
JPS6031386Y2 (en) gas insulated termination box
JP2560370Y2 (en) Vacuum interrupter and switchgear
KR940000542Y1 (en) Connecting box of cable terminals
JPH0532919Y2 (en)
JPS61256511A (en) Gas insulation bushing
JPS5921498Y2 (en) Cylindrical high-voltage cutout with lightning arrester built into the hakama component