JPS60160648A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60160648A
JPS60160648A JP59015615A JP1561584A JPS60160648A JP S60160648 A JPS60160648 A JP S60160648A JP 59015615 A JP59015615 A JP 59015615A JP 1561584 A JP1561584 A JP 1561584A JP S60160648 A JPS60160648 A JP S60160648A
Authority
JP
Japan
Prior art keywords
region
wiring
conductivity type
type semiconductor
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59015615A
Other languages
Japanese (ja)
Inventor
Takeyuki Sudo
須藤 雄之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59015615A priority Critical patent/JPS60160648A/en
Publication of JPS60160648A publication Critical patent/JPS60160648A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To alleviate limitation of the wiring routes among circuit units by forming the electrodes of a transistor with a conductor arranged by patterning in a wiring region filled with an insulator, providing one or more wirings among plural transistors and providing the other electrodes for connection on the surface of the wiring region. CONSTITUTION:On a P type silicon substrate 1, transistors Q1, Q2 consisting of an N type silicon collector 3a, a P type silicon base 4a and an N type silicon emitter 5a surrounded by a P type silicon isolation 2 holding in-between a wiring region 8 filled with an insulator are formed symmetrically. Each terminal of the collector 3a, the base 4a and the emitter 5a is exposed from the side of the wiring region 8. Within the wiring region 8, each electrode of the transistors Q1, Q2 is led out, wiring is also done between the transistors Q1, Q2 and the other electrodes for connection are led out from the surface of the wiring region 8. For the electrodes and the wiring of these connections in the wiring region 8, a patterned conductor, e.g., polycrystalline silicon is used.

Description

【発明の詳細な説明】 fal 発明の技術分野 本発明は、半導体装置に係り、特に、バイポーラICの
構造とその製造方法に関す。
DETAILED DESCRIPTION OF THE INVENTION fal Technical Field of the Invention The present invention relates to a semiconductor device, and in particular to a bipolar IC structure and a manufacturing method thereof.

(b) 技術の背景 バイポーラ集積回路装置(バイポーラIC)は、バイポ
ーラトランジスタが電界効果トランジスタに比較して動
作が高速である特徴を利用して、例えばTT L (T
ransistor Transistor Logi
c )を構成し論理回路などに多用されている。
(b) Background of the Technology Bipolar integrated circuit devices (bipolar ICs) take advantage of the fact that bipolar transistors operate at higher speeds than field effect transistors.
Transistor Logi
c) and is widely used in logic circuits.

[C) 従来技術と問題点 第1図はTTLの基本回路の一例を示す図、第2図は第
1図図示の回路を形成する従来のrc槽構造一実施例の
平面図+alと断面図(blで、■は基体、2はアイソ
レーション、3はコレクタ、4はベース、5はエミッタ
、6は絶縁層、7は埋込み層、11〜15は電極兼配線
、01.02はトランジスタ、R1、R2、R3は抵抗
、INは入力、OUTは出力、Gは接地、Vccは電源
ラインをそれぞれ示す。
[C) Prior art and problems Figure 1 shows an example of a basic TTL circuit, and Figure 2 shows a plan view + al and cross-sectional view of an example of a conventional RC tank structure that forms the circuit shown in Figure 1. (In bl, ■ is the base, 2 is the isolation, 3 is the collector, 4 is the base, 5 is the emitter, 6 is the insulating layer, 7 is the buried layer, 11 to 15 are electrodes/wirings, 01.02 is the transistor, R1 , R2, and R3 are resistors, IN is an input, OUT is an output, G is a ground, and Vcc is a power supply line.

第1図図示の回路は入力を一個にした場合のTTLの基
本回路で、バイポーラトランジスタ(以下トランジスタ
と略称する)口1のエミッタが入力INとなり、Qlの
コレクタがトランジスタ02のベースに接続され、Q2
のエミッタが接地Gに接続され、更に、旧のベース、0
2のベース、コレクタのそれぞれが抵抗R1、R2、R
3を介して電源ラインVccに接続されて、Q2のコレ
クタが出力01JTになっている。
The circuit shown in Fig. 1 is a basic TTL circuit when there is only one input, and the emitter of the bipolar transistor (hereinafter referred to as transistor) mouth 1 becomes the input IN, the collector of Ql is connected to the base of transistor 02, Q2
The emitter of is connected to ground G, and also the old base, 0
The base and collector of 2 are resistors R1, R2, and R, respectively.
Q2 is connected to the power supply line Vcc through Q2, and the collector of Q2 becomes the output 01JT.

この回路を形成する従来のICの構造の一実施例は第2
図図示の如くである。
An example of a conventional IC structure forming this circuit is shown in the second example.
As shown in the figure.

p形シリコンの基体1上にp形シリコンのアイソレーシ
ョン2で囲まれて、n形シリコンのコレクタ3、p形シ
リコンのベース4、n形シリコンのエミッタ5で構成さ
れるトランジスタQ1.02が対称に形成されている。
A transistor Q1.02 is symmetrically arranged on a p-type silicon substrate 1, surrounded by a p-type silicon isolation 2, and consisting of an n-type silicon collector 3, a p-type silicon base 4, and an n-type silicon emitter 5. is formed.

なお7はコレクタ3の導出抵抗を低減するための埋込み
層である。
Note that 7 is a buried layer for reducing the lead-out resistance of the collector 3.

また、トランジスタQ1、Q2上の絶縁層6の上には、
絶縁層6のコンタクトホールを通してコレクタ3、ベー
ス4、エミッタ5を導出し配線する例えばアルミニウム
の電極兼配線が形成されているが、該電極兼配線には、
図Ta)図示のように、トランジスタQ1のエミッタ5
を入力INに接続する11.01のベース4を絶縁層6
の下に形成された抵抗R1に接続する12、Qlのコレ
クタ3をR1と同様に形成された抵抗R2と02のベー
ス4とに接続する13、Q2のエミッタ5を接地Gに接
続する14、Q2のコレクタ3をR1と同様に形成され
た抵抗R3と出力OUTとに接続する15がある。更に
、絶縁層6上には抵抗R1、R2、R3に接続する例え
ばアルミニウムの電源ラインVccが形成されている。
Moreover, on the insulating layer 6 on the transistors Q1 and Q2,
For example, an aluminum electrode/wiring is formed to guide and wire the collector 3, base 4, and emitter 5 through the contact hole of the insulating layer 6.
Figure Ta) Emitter 5 of transistor Q1 as shown
Connect the base 4 of 11.01 to the input IN with the insulating layer 6
12, connecting the collector 3 of Ql to the resistor R1 formed under R1 and the base 4 of 02, 13 connecting the emitter 5 of Q2 to the ground G, There is 15 that connects the collector 3 of Q2 to a resistor R3 formed similarly to R1 and to the output OUT. Further, on the insulating layer 6, a power supply line Vcc made of, for example, aluminum is formed, which is connected to the resistors R1, R2, and R3.

そして、このような回路をユニットにして論理回路を形
成するバイポーラICにおいては、複数の該回路ユニッ
トを有し相互間の接続を行うなどの必要があるため、絶
縁層6上の配線は上述した電極兼配線11〜15および
電源ラインVccの他にも多数必要になる。然も、該回
路ユニット数が増加すると前記他の配線も増加する傾向
にある。
In a bipolar IC that uses such circuits as units to form a logic circuit, it is necessary to have a plurality of circuit units and to connect them to each other, so the wiring on the insulating layer 6 is as described above. In addition to the electrodes/wirings 11 to 15 and the power supply line Vcc, a large number of others are also required. However, as the number of circuit units increases, the number of other wirings also tends to increase.

従って、従来のバイポーラIC構造においては、例えば
第2図fat図示のような回路ユニット内の配線(図で
は13)の存在のため、前記他の配線が通路を制約され
て複雑になり、該回路ユニットの数を増やす高集積化が
抑制される欠点を有する。
Therefore, in the conventional bipolar IC structure, due to the existence of wiring (13 in the figure) in the circuit unit as shown in FIG. It has the disadvantage that high integration, which increases the number of units, is suppressed.

Td+ 発明の目的 本発明の目的は上記従来の欠点に鑑み、複数のトランジ
スタで回路ユニットを構成し、複数の該回路ユニットを
有するバイポーラICにおいて、該回路ユニット間の配
線通路の制約を緩和することが可能な半導体装置の構造
およびその製造方法を提供するにある。
Td+ OBJECTS OF THE INVENTION In view of the above-mentioned conventional drawbacks, an object of the present invention is to alleviate the restrictions on wiring paths between circuit units in a bipolar IC that includes a plurality of circuit units, each consisting of a plurality of transistors. An object of the present invention is to provide a structure of a semiconductor device and a method for manufacturing the same.

(e) 発明の構成 上記目的は、半導体基体の表面層に、配線領域とこれに
横並びして接する複数のトランジスタとを有し、該配線
領域と該トランジスタとの接合面に該トランジスタのコ
レクタ、ベース、エミッタの各領域が露出し、絶縁物で
充填された該配線領域の中にパターンニングした導体を
配置して、該導体により、該トランジスタの電極を形成
し且つ前記複数のトランジスタ間の一個以上の配線を行
うと共に他の接続用電極を表面に導出することを特徴と
する半導体装置により、また、横並びして接した第一の
一導電型半導体領域と絶縁体領域とを形成し、不純物拡
散により、第一の一導電型半導体領域内にあり該絶縁体
領域に接した反対導電型半導体領域の形成、該反対導電
型半導体領域内にあり該絶縁体領域に接した第二の一導
電型半導体領域の形成を行って、トランジスタのコレク
タ、ベース、エミッタを形成し、しかる後、選択エツチ
ングにより該絶縁体領域を除去し、該除去した領域にお
いて、絶縁層とパターンニングした導体層とを交互に積
層して、前記第一の一導電型半導体領域、前記反対導電
型半導体領域、前記第二の−導電型半導体領域それぞれ
の電極および配線を形成する工程を含むことを特徴とす
る半導体装置の製造方法によって達成される。
(e) Structure of the Invention The above object is to have a wiring region and a plurality of transistors in contact with the wiring region in a side-by-side manner in a surface layer of a semiconductor substrate, and a collector of the transistor at a junction surface between the wiring region and the transistor; A patterned conductor is disposed in the wiring region in which the base and emitter regions are exposed and filled with an insulating material, and the conductor forms an electrode of the transistor, and a conductor between the plurality of transistors. A semiconductor device characterized in that the above-mentioned wiring is performed and other connection electrodes are led out to the surface, and a first one-conductivity type semiconductor region and an insulator region are formed side by side and in contact with each other, and an impurity By diffusion, formation of a first semiconductor region of one conductivity type and in contact with the insulator region, and formation of a second semiconductor region of one conductivity type in the opposite conductivity type semiconductor region and in contact with the insulator region. A type semiconductor region is formed to form the collector, base, and emitter of the transistor, and then the insulator region is removed by selective etching, and an insulating layer and a patterned conductor layer are formed in the removed region. A semiconductor device comprising the step of alternately laminating electrodes and interconnections for each of the first one-conductivity type semiconductor region, the opposite conductivity type semiconductor region, and the second -conductivity type semiconductor region. This is achieved by the manufacturing method.

(f) 発明の実施例 以下本発明の実施例を図により説明する。全図を通じ同
一符号は同一対象物を示す。
(f) Embodiments of the Invention Examples of the present invention will be described below with reference to the drawings. The same reference numerals indicate the same objects throughout the figures.

第3図は第1図図示の回路を形成する本発明によるIC
構造の一実施例の平面図f8)と断面図(b)、第4図
はその製造工程を示した図rat〜fhlで、3aはコ
レクタ、3bはn形シリコン領域、3Cはn形シリコン
層、4aはベース、4bはp形シリコン領域、5aはエ
ミッタ、8は配線領域、98〜9dは絶縁層、lla〜
15aは電極兼配線、llb〜15bは配線、21は絶
縁体領域をそれぞれ示す。
FIG. 3 shows an IC according to the invention forming the circuit shown in FIG.
A plan view f8) and a cross-sectional view (b) of one embodiment of the structure, and FIG. , 4a is a base, 4b is a p-type silicon region, 5a is an emitter, 8 is a wiring region, 98 to 9d are insulating layers, lla to
15a is an electrode/wiring, llb to 15b are wirings, and 21 is an insulator region.

第1図図示の回路を形成する場合の本発明によるICの
構造の一実施例は第3図図示の如くである。
An embodiment of the structure of an IC according to the present invention when forming the circuit shown in FIG. 1 is as shown in FIG. 3.

p形シリコンの基体l上に、絶縁体で充填された配線領
域8を挟みp形シリコンのアイソレーション2で囲まれ
て、n形シリコンのコレクタ3a、p形シリコンのベー
スdas n形シリコンのエミッタ5aで構成されるト
ランジスタQ1.02が対称に形成されており、コレク
タ3a、ベース4a、エミツタ5aのそれぞれの端部は
配線領域8の側面に露出している。
A collector 3a of n-type silicon, a base das of p-type silicon, and an emitter of n-type silicon are formed on a base l of p-type silicon, sandwiching a wiring region 8 filled with an insulator and surrounded by isolation 2 of p-type silicon. A transistor Q1.02 composed of transistors 5a and 5a is formed symmetrically, and the ends of the collector 3a, base 4a, and emitter 5a are exposed on the side surface of the wiring region 8.

配線領域8内では、トランジスタQ1、Q2の各電極が
導出され、然もトランジスタQ1、Q2間の配線も行わ
れ、その他の接続用電極が配線領域8の表面に導出され
ている。配線領域8内のこれらの接続を行う電極兼配線
には、パターンニングされた導体例えば多結晶シリコン
を用いている。即ち、前記電極兼配線には、トランジス
タ01のエミッタ5aを入力INに接続するため端部を
表面に導出した11a 、 Qlのベース4aを抵抗R
1に接続するため端部を表面に導出した12a 、 Q
lのコレクタ3aを配線領域8内でQ2のベース4aに
接続し更に抵抗R2に接続するため端部を表面に導出し
た13a 、 Q2のエミッタ5aを接地Gに接続する
ため端部を表面に導出した14a 、 Q2のコレクタ
3aを抵抗R3と出力0υTとに接続するため端部を表
面に導出した15aがある。
Within the wiring region 8, each electrode of the transistors Q1 and Q2 is led out, wiring is also performed between the transistors Q1 and Q2, and other connection electrodes are led out to the surface of the wiring region 8. A patterned conductor, for example, polycrystalline silicon, is used for the electrodes/wirings for making these connections in the wiring region 8. That is, the electrode/wiring includes a wire 11a whose end is led out to the surface in order to connect the emitter 5a of the transistor 01 to the input IN, and a base 4a of the transistor 01 connected to the resistor R.
12a whose end is led out to the surface to connect to 1, Q
The collector 3a of L is connected to the base 4a of Q2 in the wiring area 8, and the end is led out to the surface in order to further connect it to the resistor R2.The end is led out to the surface in order to connect the emitter 5a of Q2 to the ground G. There are 14a and 15a whose ends are led out to the surface in order to connect the collector 3a of Q2 to the resistor R3 and the output 0υT.

そして、トランジスタQl、 Q2、配線領域8上の絶
縁層6の上には、絶縁層6のコンタクトホールを通して
上記電極兼配線を導出し、所定の個所に接続する例えば
アルミニウムの配線が形成されているが、該配線には、
図<a1図示のように、電極兼配線11aを導出し入力
INに接続する11b、電極兼配線12aを導出し絶縁
層6の1に形成された抵抗R1に接続する12b 、電
極兼配線13aを導出しR1と同様に形成された抵抗R
2に接続する13b、電極兼配線14aを導出し接地G
に接続する14b、電極兼配線15aを導出しR1と同
様に形成された抵抗R3と出力0tlTとに接続する1
5bがある。更に、絶縁層6上には第2図+a1図示と
同様に、抵抗R1、R2、R3に接続する例えばアルミ
ニウムの電源ラインVccが形成されて所望の回路が形
成されている。
Then, on the insulating layer 6 on the transistors Ql, Q2 and the wiring region 8, a wiring made of, for example, aluminum is formed, which leads out the electrode/wiring through a contact hole in the insulating layer 6 and connects it to a predetermined location. However, in the wiring,
As shown in FIG. A resistor R formed in the same way as the derivation R1
13b connected to 2, lead out the electrode/wiring 14a and ground G
14b, which is connected to 14b, and 1 which leads out the electrode/wiring 15a and connects it to the resistor R3 formed in the same way as R1 and the output 0tlT.
There is 5b. Further, as shown in FIG. 2+a1, a power supply line Vcc made of, for example, aluminum and connected to the resistors R1, R2, and R3 is formed on the insulating layer 6 to form a desired circuit.

従っt、第2図図示の場合と第3図図示の場合では第1
図図示の同一回路を形成しているが、第3図図示の場合
はトランジスタQ1、Q2間の配線が絶縁[6の下に設
けられているため、それぞれの図ta)図示の配線状態
を比較して明らかなように、該回路を回路ユニットにし
て複数の該回路ユニットを有するICを第3図図示の構
造で形成すれば、従来のIC構造で問題にした他の配線
の通路の制約が緩和され、然も、第3図図示のトランジ
スタはコンタクトホールの大きさにとられれる必要がな
く小型にすることが可能であること、−列に並べるコン
タクトホールの数が減少することなどにより、該回路ユ
ニットを形成するために必要な領域の大きさが小さくな
り、例えば該回路ユニットの数を増やす高集積化が容易
になる。
Therefore, in the case shown in Figure 2 and the case shown in Figure 3, the first
The same circuit shown in the figure is formed, but in the case shown in Figure 3, the wiring between transistors Q1 and Q2 is provided under the insulation [6], so compare the wiring states shown in each figure. As is clear from the above, if the circuit is made into a circuit unit and an IC having a plurality of circuit units is formed with the structure shown in FIG. However, the transistor shown in FIG. 3 does not need to be limited to the size of the contact hole and can be made smaller, and the number of contact holes arranged in a row is reduced. The size of the area required to form the circuit unit becomes smaller, making it easier to achieve higher integration by increasing the number of circuit units, for example.

更に、第3図図示のトランジスタは、従来のトランジス
タに比較して構造の差異から小型に且つコレクタ直列抵
抗を小さくすることが可能になって、種々の特性、例え
ば、増幅率、トランジション周波数、ノイズマージン、
温度特性などが向上し、ICの高性能化が可能になる。
Furthermore, the transistor shown in FIG. 3 is smaller in size and has a lower collector series resistance than conventional transistors due to the difference in structure, and has improved various characteristics such as amplification factor, transition frequency, and noise. margin,
Temperature characteristics and other properties are improved, making it possible to improve the performance of ICs.

第3図図示のIC構造は第4図に示した工程により製造
が可能である。
The IC structure shown in FIG. 3 can be manufactured by the steps shown in FIG.

最初に図ia)図示のように、p形シリコンの基体1上
にn形シリコンjii3cをエピタキシャル成長し、p
形シリコンのアイソレーション2を通常の方法で形成す
る。次ぎに図(b1図示のように、配線領域8になる領
域に例えば二酸化シリコンの絶縁体領域21を通常の方
法で形成する。これにより基体1とアイソレーション2
と絶縁体領域21とに囲まれ絶縁体領域21を挟んだ二
個のn形シリコン領域3bも形成される。続いて絶縁体
領域8に接して3b内に例えば硼素を拡散して図(C1
図示のp形シリコン領域4bを、更に絶縁体領域8に接
して4h内に例えば燐を拡散して図+d1図示のエミッ
タ5aを形成する。
First, as shown in Figure ia), n-type silicon jii3c is epitaxially grown on a p-type silicon substrate 1, and p
A shaped silicon isolation 2 is formed in a conventional manner. Next, as shown in FIG.
Two n-type silicon regions 3b surrounded by and insulating region 21 and sandwiching insulating region 21 are also formed. Next, for example, boron is diffused into the insulator region 3b in contact with the insulator region 8 as shown in the figure (C1
For example, phosphorus is diffused into the illustrated p-type silicon region 4b in contact with the insulator region 8 to form an emitter 5a illustrated in FIG. +d1.

この工程により、n形シリコン領域3bの残った部分が
コレクタ3aになり、p形シリコン領域4bの残った部
分がベース4aになってトランジスタQ1、口2が形成
出来る。
Through this step, the remaining portion of the n-type silicon region 3b becomes the collector 3a, and the remaining portion of the p-type silicon region 4b becomes the base 4a, thereby forming the transistor Q1 and the opening 2.

この後、選択エツチングにより絶縁体領域21を図(e
)図示のように除去すれば、該除去した側面に、コレク
タ3a、ベース4a、エミッタ5aの端部が露出するの
で、該除去した領域即ち配線領域8に電極兼配線11a
 =15aを形成し残部を絶縁物で充填する。
After this, the insulator region 21 is etched by selective etching.
) When removed as shown in the figure, the ends of the collector 3a, base 4a, and emitter 5a are exposed on the removed side surface, so the electrode/wiring 11a is placed in the removed area, that is, the wiring area 8.
= 15a and the remaining part is filled with an insulator.

即ち、最初にコレクタ3aの露出端部の下辺より若干上
の高さまで配線領域8を埋めるように例えば燐珪酸ガラ
スを通常の方法で成長させ図(「)図示の絶縁層9aを
形成する。なお9aの形成は、絶縁体領域21のエツチ
ングに際してその底部を残す方法によってもよい。次ぎ
にコレクタ3aの露出端部の上辺より下の高さの範囲で
絶縁層9a上に例えば多結晶シリコン層を通常の方法で
成長させ、これをパターンニングして、図(f)図示の
この層で必要な電極兼配線13a 、15aの部分を形
成する。続いて、例えば燐珪酸ガラスをベース4aの露
出端部の下辺より若干上の高さまで成長させ、先に形成
した電極兼配線13a 、 15aの部分の上方導出部
にコンタクトホールを明けて、図(f1図示の絶縁層9
bを形成する。以下同様に、例えば多結晶シリコン層の
成長、パターンニングにより、電極兼配線12aの部分
、下層からの導出部を含む13aの部分、15aの下層
からの導出部を形成するという王台にして、図Tg1図
示のように、絶縁jW9c、9dを加えながら電極兼配
線11a〜15aを形成し配線領域8を完成させる。
That is, first, for example, phosphosilicate glass is grown by a conventional method so as to fill the wiring region 8 to a height slightly above the lower side of the exposed end of the collector 3a, thereby forming the insulating layer 9a shown in FIG. The layer 9a may be formed by leaving the bottom portion of the insulator region 21 during etching.Next, a polycrystalline silicon layer, for example, is formed on the insulator layer 9a at a height below the upper side of the exposed end of the collector 3a. This layer is grown in a conventional manner and patterned to form the necessary electrode/wirings 13a and 15a in this layer as shown in FIG. The insulating layer 9 shown in FIG.
form b. Thereafter, in the same way, for example, by growing and patterning a polycrystalline silicon layer, a portion of the electrode/wiring 12a, a portion of 13a including a lead-out portion from the lower layer, and a lead-out portion from the lower layer of 15a are formed. As shown in FIG. Tg1, electrode/wirings 11a to 15a are formed while adding insulators jW9c and 9d to complete the wiring region 8.

この後は従来と同様な工程になり図(h1図示のように
、絶縁層6の形成、配線11b〜15bおよび電源ライ
ンVcc(図示省略)の形成を行って第3図図示の構造
を完成する。
After this, the process is similar to the conventional one, and as shown in Figure (h1), the insulating layer 6 is formed, the wirings 11b to 15b and the power supply line Vcc (not shown) are formed, and the structure shown in Figure 3 is completed. .

このようなIC構造およびその製造方法は、ユニットを
形成する回路が第1図図示の場合に限定されるものでは
ないことは、上述の説明から容易に類推出来る。
It can be easily inferred from the above description that such an IC structure and its manufacturing method are not limited to the case where the circuit forming the unit is shown in FIG.

(a 発明の効果 以上に説明したように、本発明による構成によれば、複
数のトランジスタで回路ユニットを構成し、複数の該回
路ユニットを有するバイポーラICにおいて、該回路ユ
ニット間の配線通路の制約を緩和することが可能な、然
も、該回路ユニット領域の小型化、トランジスタの特性
向上も可能な半導体装置の構造およびその製造方法を提
供することが出来て、例えば前記回路ユニソ1−の数を
増やす高集積化を容易にし、また、ICの特性向上を可
能にさせる効果がある。
(a) Effects of the Invention As explained above, according to the configuration according to the present invention, in a bipolar IC in which a circuit unit is configured with a plurality of transistors and has a plurality of circuit units, restrictions are placed on wiring paths between the circuit units. It is possible to provide a structure of a semiconductor device and a method for manufacturing the same, which can reduce the number of circuit units 1-, and also reduce the size of the circuit unit area and improve the transistor characteristics. This has the effect of facilitating high integration and improving IC characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTTLの基本回路の一例を示す図、第2図は第
工図図示の回路を形成する従来のIC構造の一実施例の
平面図(alと断面図Tbl、第3図は第1図図示の回
路を形成する本発明によるIC構造の一実施例の平面図
(alと断面図(bl、第4図はその製造工程を示した
図(al〜(h)である。 図面において、1は基体、2はアイソレーション、3.
3aはコレクタ、3bはn形シリコン領域、3cはn形
シリコン層、4.4aはベース、4bはp形シリコン領
域、5.5aはエミッタ、6は絶縁層、7は埋込み層、
8は配線領域、98〜9dは絶縁層、11〜15、ll
a 〜15aは電極兼配線、11b−−15bは配線、
21は絶縁体領域、dl、C2はトランジスタ、R1、
R2、R3は抵抗、INは入力、OUTは出力、Gは接
地、Vccは電源ラインをそれぞれ示す。 第1rjJ 第2図 ¥j目
Fig. 1 is a diagram showing an example of a basic TTL circuit, Fig. 2 is a plan view (al and cross-sectional view Tbl) of an example of a conventional IC structure forming the circuit shown in Fig. FIG. 4 is a plan view (al) and a cross-sectional view (bl) of an embodiment of an IC structure according to the present invention forming the circuit shown in FIG. 4, and FIG. , 1 is the base, 2 is the isolation, 3.
3a is a collector, 3b is an n-type silicon region, 3c is an n-type silicon layer, 4.4a is a base, 4b is a p-type silicon region, 5.5a is an emitter, 6 is an insulating layer, 7 is a buried layer,
8 is a wiring area, 98-9d is an insulating layer, 11-15, ll
a to 15a are electrodes and wiring, 11b to 15b are wiring,
21 is an insulator region, dl, C2 is a transistor, R1,
R2 and R3 are resistors, IN is an input, OUT is an output, G is a ground, and Vcc is a power supply line. 1st rjJ Figure 2 ¥th

Claims (1)

【特許請求の範囲】 (υ 半導体基体の表面層に、配線領域とこれに横並び
して接する複数のバイポーラトランジスタとを有し、該
配線領域と該バイポーラトランジスタとの接合面に該バ
イポーラトランジスタのコレクタ、ペース、エミッタの
各領域が露出し、絶縁物で充填された該配線領域の中に
パターンニングした導体を配置して、該導体により、該
バイポーラトランジスタの電極を形成し且つ前記複数の
バイポーラトランジスタ間の一個以上の配線を行うと共
に他の接続用電極を表面に導出することを特徴とする半
導体装置。 (2)横並びして接した第一の一導電型半導体領域と絶
縁体領域とを形成し、不純物拡散により、第一の一導電
型半導体領域内にあり該絶縁体領域に接した反対導電型
半導体領域の形成、該反対導電型半導体領域内にあり該
絶縁体領域に接した第二〇−一導電型半導体領域形成を
行って、バイポーラトランジスタのコレクタ、ベース、
エミツタヲ形成し、しかる後、選択エツチングにより該
絶縁体領域を除去し、該除去した領域において、絶縁層
とバクーンニングした導体層とを交互に積層して、前記
第一の一導電型半導体領域、前記反対導電型半導体領域
、前記第二の一導電型半導体領域それぞれの電極および
配線を形成する工程を含むことを特徴とする半導体装置
の製造方法。
[Scope of Claims] (υ The surface layer of a semiconductor substrate has a wiring region and a plurality of bipolar transistors that are in contact with the wiring region side by side, and a collector of the bipolar transistor is provided at a junction surface between the wiring region and the bipolar transistor. , a patterned conductor is disposed in the wiring region filled with an insulator, and the conductor forms an electrode of the bipolar transistor, and the plurality of bipolar transistors are connected to the plurality of bipolar transistors. A semiconductor device characterized in that one or more wirings are carried out between the semiconductor devices and other connection electrodes are led out to the surface. (2) Forming a first one-conductivity type semiconductor region and an insulator region that are side by side and in contact with each other. Then, by impurity diffusion, an opposite conductivity type semiconductor region is formed in the first one conductivity type semiconductor region and is in contact with the insulator region, and a second conductivity type semiconductor region is in the opposite conductivity type semiconductor region and is in contact with the insulator region. 〇-By forming one-conductivity type semiconductor regions, the collector, base, and
After that, the insulating region is removed by selective etching, and insulating layers and conductive layers that have been vacuum-coated are alternately laminated in the removed region, and the first one-conductivity type semiconductor region is formed. A method of manufacturing a semiconductor device, comprising the step of forming electrodes and interconnections for each of the opposite conductivity type semiconductor region and the second one conductivity type semiconductor region.
JP59015615A 1984-01-31 1984-01-31 Semiconductor device and manufacture thereof Pending JPS60160648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015615A JPS60160648A (en) 1984-01-31 1984-01-31 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015615A JPS60160648A (en) 1984-01-31 1984-01-31 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60160648A true JPS60160648A (en) 1985-08-22

Family

ID=11893607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015615A Pending JPS60160648A (en) 1984-01-31 1984-01-31 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60160648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010066A (en) * 2004-05-25 2006-01-12 Nichido Kogyo Kk Binding band and binding band set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010066A (en) * 2004-05-25 2006-01-12 Nichido Kogyo Kk Binding band and binding band set
US7934296B2 (en) 2004-05-25 2011-05-03 Nichido Kogyo Kabushiki Kaisha Binding band and binding band set

Similar Documents

Publication Publication Date Title
US3411051A (en) Transistor with an isolated region having a p-n junction extending from the isolation wall to a surface
US7089525B2 (en) Semiconductor device and method for fabricating the same
EP0019355A1 (en) Transistor structure
US3566214A (en) Integrated circuit having a plurality of circuit element regions and conducting layers extending on both of the opposed common major surfaces of said circuit element regions
US4051506A (en) Complementary semiconductor device
US4835588A (en) Transistor
KR100396065B1 (en) Integrated ciruit structure and method for the manufacture thereof
JPS648468B2 (en)
US4231056A (en) Moat resistor ram cell
US4260436A (en) Fabrication of moat resistor ram cell utilizing polycrystalline deposition and etching
JPS60160648A (en) Semiconductor device and manufacture thereof
JPH01186650A (en) Master slice system integrated circuit
US5068702A (en) Programmable transistor
JPS6231832B2 (en)
JPH07297273A (en) Semiconductor integrated circuit device
JPS6366948A (en) Programmable bonding pad
JPS6262466B2 (en)
JP2000260772A (en) Semiconductor integrated circuit device
EP0240273A2 (en) Programmable transistors
JPH04343265A (en) Semiconductor device
JP3600069B2 (en) Semiconductor device
EP0278065A2 (en) Semiconductor integrated circuit latch-up preventing apparatus
JPH03169073A (en) Semiconductor integrated circuit device
JPH11512235A (en) Semiconductor device with special emitter connection
JPS6128218B2 (en)