JPS60160396A - Controller of current type inverter - Google Patents

Controller of current type inverter

Info

Publication number
JPS60160396A
JPS60160396A JP59012000A JP1200084A JPS60160396A JP S60160396 A JPS60160396 A JP S60160396A JP 59012000 A JP59012000 A JP 59012000A JP 1200084 A JP1200084 A JP 1200084A JP S60160396 A JPS60160396 A JP S60160396A
Authority
JP
Japan
Prior art keywords
current
voltage
induction motor
divider
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59012000A
Other languages
Japanese (ja)
Other versions
JPH0417035B2 (en
Inventor
Kunio Koga
国夫 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP59012000A priority Critical patent/JPS60160396A/en
Publication of JPS60160396A publication Critical patent/JPS60160396A/en
Publication of JPH0417035B2 publication Critical patent/JPH0417035B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Elimination Of Static Electricity (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To improve the stability at regenerative rotation time, to increase the stabilizing range and to improve the dynamic characteristic by differentiating the value divided by a frequency command value at the multiplied value of the voltage of an intermediate circuit by an input current. CONSTITUTION:An inverter is controlled by a multiplier 22 for multiplying the voltage VDC of a DC intermediate circuit of a current type inverter by an input current, a divider 23 for dividing the output of the multiplier 22 by the frequency command value from a voltage instruction unit 21, by differentiating the output of the divider 23 by a differentiator 24, subtracting by a subtractor 30 the differentiated value by the frequency command value through an oscillator 18 and a frequency divider 17. Thus, the stability is improved for any of the motor driven and regenerative states. Since the current is not directly differentiated by the conventional current differentiating stabilization system, the differentiating gain of the differentiator can be readily set.

Description

【発明の詳細な説明】 く技術分野〉 本発明は誘導電動機を駆動する電流形インバータの制御
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a control device for a current source inverter that drives an induction motor.

〈従来技術〉 第1図は8相の誘導電動機を駆動する電流形インバータ
(簡単化のためl相分のみ)およびその制御装置の従来
例の構成を示す図である。コンバータ用サイリスタ2.
8により交流より変換された直流電流は直流リアクトル
4を通じてインバータ用サイリスタ5,6、ダイオード
7.8、転流コンデンサ9.lOにより交流電流に変換
され、誘導電動機11に供給される。誘導電動機11の
電圧はダイオード18で直流に変換された後フィルタ2
9で平滑され電圧帰還信号となる。この電圧帰還信号と
電圧指令器21の指令値との差が電圧制御器20で増幅
され電流指令となる。そして、この電流指令に基づいて
、変流器1、ダイオード12、電流制御器19、移相器
14、パルストランス15、コンバータ用サイリスク2
.8により公知の電流マイナループ制御が行なわれる。
<Prior Art> FIG. 1 is a diagram showing the configuration of a conventional example of a current source inverter (for simplification, only one phase) for driving an eight-phase induction motor and its control device. Thyristor for converter 2.
The DC current converted from AC by 8 passes through the DC reactor 4 to the inverter thyristors 5 and 6, the diode 7.8, and the commutating capacitor 9. It is converted into an alternating current by lO and supplied to the induction motor 11. The voltage of the induction motor 11 is converted to DC by a diode 18 and then passed through a filter 2.
9, it is smoothed and becomes a voltage feedback signal. The difference between this voltage feedback signal and the command value of the voltage command device 21 is amplified by the voltage controller 20 and becomes a current command. Based on this current command, current transformer 1, diode 12, current controller 19, phase shifter 14, pulse transformer 15, converter sirisk 2
.. 8 performs known current minor loop control.

前記直流指令が、この電流マイナループの電流指令とな
るので直流中間回路の電流である直流リアクトル4の電
流IDCは電流指令に比例する。一方、電圧指令器21
の周波数指令値に比例した周波数の交流信号が発振器1
8により発生し、分周器17とパルストランス16を通
じてインバータ用サイリスク5,6の点弧信号となる。
Since the DC command is the current command of this current minor loop, the current IDC of the DC reactor 4, which is the current of the DC intermediate circuit, is proportional to the current command. On the other hand, the voltage command device 21
An AC signal with a frequency proportional to the frequency command value of oscillator 1
8, and becomes the ignition signal for the inverter sirisks 5 and 6 through the frequency divider 17 and pulse transformer 16.

この制御は公知の誘導電動機のV//一定制御と言われ
るものである。
This control is known as V//constant control of an induction motor.

しかし、この従来の電流形インバータでは、転流コンデ
ンサ9,10の影響等のために誘導電動機11の電圧、
回転等が不安定になることが知られている。この現象は
、誘導電動機11の周波数が高い場合に発生し易い。こ
のために、従来は、スイッチ25またけスイッチ26の
いずれかをオンにした状態で安定化が図られていた。ス
イッチ26をオンにした場合が「電流微分」と言われる
安定化方式である。変流器1の電流検出値は直流リアク
トル4を流れる電流Iocと誘導電動機11の電流と比
例関係にあるので、変流器lの電流を微分器24で微分
して微分値を減算器80で電圧指令器21の周波数指令
値から減算している。これは、誘導電動機11の電流が
増加すると微分器24の出力(微分値)が正に々す、電
圧指令器21の周波数指令値が一定ならば発掘器18の
入力が減じて誘導電動機11に印加される交流電流の周
波数を下げることにより安定化が行なわれる。スイッチ
26をオフ、スイッチ25をオンにした場合が「電圧微
分」と言われる安定化方式である。
However, in this conventional current source inverter, the voltage of the induction motor 11 is
It is known that rotation etc. become unstable. This phenomenon tends to occur when the frequency of the induction motor 11 is high. For this reason, stabilization has conventionally been achieved by turning on one of the switches 25 and 26. The case where the switch 26 is turned on is a stabilization method called "current differentiation." Since the detected current value of the current transformer 1 is in a proportional relationship with the current Ioc flowing through the DC reactor 4 and the current of the induction motor 11, the current of the current transformer 1 is differentiated by the differentiator 24, and the differential value is calculated by the subtracter 80. It is subtracted from the frequency command value of the voltage command device 21. This means that when the current of the induction motor 11 increases, the output (differential value) of the differentiator 24 becomes positive.If the frequency command value of the voltage command device 21 is constant, the input of the excavator 18 decreases, and the output (differential value) of the differentiator 24 becomes positive. Stabilization is achieved by lowering the frequency of the applied alternating current. The case where the switch 26 is turned off and the switch 25 is turned on is a stabilization method called "voltage differentiation."

誘導電動機]1の電圧が変化した場合には、それを極性
反転器28で極性反転し、微分器24で微分したものが
減算器80で電圧指令器21の周波数指令値から減算さ
れる。したがって、この場合は極性反転器28の作用に
より誘導電動機11の電圧が増加した場合に発振器18
0入力が上がって誘導電動機11の周波数が上昇し、安
定化が行なわれる。
When the voltage of the induction motor] 1 changes, its polarity is inverted by the polarity inverter 28, differentiated by the differentiator 24, and the result is subtracted from the frequency command value of the voltage command device 21 by the subtractor 80. Therefore, in this case, when the voltage of the induction motor 11 increases due to the action of the polarity inverter 28, the oscillator 18
The 0 input increases, the frequency of the induction motor 11 increases, and stabilization is performed.

これら二つの従来の安定化方式はある程度の安定化効果
を有するが、誘導電動機11の「回生」運転時には逆に
不安定化するという作用があった。
Although these two conventional stabilization methods have a stabilizing effect to some extent, they have the effect of destabilizing the induction motor 11 during "regenerative" operation.

これは、変流器11ダイオード12あるいはダイオード
18による電流と電圧の検出方法が電流。
This is a method of detecting current and voltage using a current transformer 11 diode 12 or diode 18.

電圧の大きさのみを検出していることによる。すなわち
、誘導電動機11が「電動」と「回生」という二つの異
なった運転状態になっても、ダイオード12.18によ
り電流、電圧の絶対値を検出 8− しているために、この両状態を弁別できないからである
。また、「電流微分」では励磁電流を含めた1次電流の
変化で動作するので誘導電動機11の動作点により微分
値が大きく異なり、乱調している状態で微分ゲインを調
整すると乱調しない領域で却って乱調を発生する場合が
あった。すなわち、「電流微分」では安定化領域が狭い
という欠点があった。
This is because only the magnitude of the voltage is detected. In other words, even if the induction motor 11 is in two different operating states, "electric" and "regenerative," the diode 12.18 detects the absolute values of current and voltage, so both states can be This is because it cannot be distinguished. In addition, since "current differentiation" operates based on changes in the primary current including the excitation current, the differential value varies greatly depending on the operating point of the induction motor 11. If you adjust the differential gain in a state where the induction motor 11 is in disorder, adjusting the differential gain will result in a change in the non-disturbance region. There were cases where disturbances occurred. In other words, "current differentiation" has the disadvantage that the stabilization region is narrow.

〈発明の目的〉 したがって、本発明の目的は、「回生」運転時において
も安定性が向上し、安定化領域の拡大および動特性の改
善を図った、電流形インバータの制御装置を提供するこ
とにある。
<Objective of the Invention> Therefore, an object of the present invention is to provide a control device for a current source inverter that improves stability even during "regenerative" operation, expands the stabilization range, and improves dynamic characteristics. It is in.

〈発明の構成〉 このために、本発明は、インバータの直流中間回路の電
圧を検出してこの電圧と直流中間回路の入力電流の積を
めた後、この積を周波数指令値で除算して誘導電動機の
トルクに比例した量をめ\この量の微分値を周波数指令
値から減算するようにしたものである。したがって、こ
の微分値 4− は、T電動の場合体、トルクが時間的に増加したとき誘
導電動機の周波数が下がり、トルクを下げようとするか
ら安定化し、「回生」の場合、トルクの絶対値が時間的
に増大しているときは周波数が上がるように作用するの
でトルクの絶対値の増加を抑えて安定化する。
<Structure of the Invention> For this purpose, the present invention detects the voltage of the DC intermediate circuit of the inverter, multiplies this voltage and the input current of the DC intermediate circuit, and then divides this product by the frequency command value. This is an amount proportional to the torque of the induction motor, and the differential value of this amount is subtracted from the frequency command value. Therefore, in the case of T-electric motors, when the torque increases over time, the frequency of the induction motor decreases and attempts to lower the torque, so it stabilizes, and in the case of "regeneration", the absolute value of torque When the torque increases over time, the frequency increases, suppressing the increase in the absolute value of the torque and stabilizing it.

〈実施例〉 以下、本発明の実施例を図面を参照しながら説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.

第2図は電流形インバータおよび本発明の1実施例に係
るその制御装置のブロック図で、本実施例は第1図の従
来例においてスイッチ25゜26(スイッチ26は短絡
状態)、反転増幅器28を廃し、一方直流中間回路の電
圧VDCを検出して、この電圧VDCと変流器1、ダイ
オード12を通じて検出された直流中間回路を流れる電
流IDCを乗算する乗算器22と、この乗算器22の出
力、つまり電圧VDCと電流IDCの積VDC@IDC
を周波数指令値で除算する除算器2Bと、この除算器2
8の出力を微分器24に選択的に出力するスイッチ27
を設けたものである。
FIG. 2 is a block diagram of a current source inverter and its control device according to an embodiment of the present invention, and this embodiment is different from the conventional example of FIG. On the other hand, a multiplier 22 detects the voltage VDC of the DC intermediate circuit and multiplies this voltage VDC by the current IDC flowing through the DC intermediate circuit detected through the current transformer 1 and the diode 12; Output, that is, the product of voltage VDC and current IDC VDC@IDC
A divider 2B that divides by the frequency command value, and this divider 2
a switch 27 that selectively outputs the output of 8 to the differentiator 24;
It has been established.

除算器28の出力は微分器24で微分され、その微分値
を減算器80で周波数指令値から減算される。
The output of the divider 28 is differentiated by the differentiator 24, and the differential value is subtracted from the frequency command value by the subtracter 80.

インバータの周波数をfとすると、除算器28の出力E
は、 である。ここで、KI 、 Kv 、 Kf は定数で
ある。
If the frequency of the inverter is f, the output of the divider 28 is E
is . Here, KI, Kv, and Kf are constants.

一方、誘導電動機110入力パワーは、インバータ用サ
イリスタ5I6、ダイオード7.8、転流コンデンサ9
.IO等の損失を無視すると、直流中間回路の電流II
ncと直流中間回路の電圧VDCの積IDC・VDCに
等しい。また、この入力パワーは誘導電動機11の鉄損
や1次抵抗損を無視すると、誘導電動機11の2次入力
Pz=2π/*n、T(Tは誘導電動機11のトルク、
nは極対数)に等1〜い。したがって、次式 %式%(21 が成立する。式+1)と(2)からトルクTは次式で表
わされる。
On the other hand, the input power of the induction motor 110 is the inverter thyristor 5I6, the diode 7.8, and the commutating capacitor 9.
.. Ignoring losses such as IO, the DC intermediate circuit current II
It is equal to the product IDC·VDC of nc and the DC intermediate circuit voltage VDC. Moreover, this input power is the secondary input of the induction motor 11, Pz=2π/*n, T (T is the torque of the induction motor 11,
n is equal to the number of polar pairs). Therefore, the following formula % formula % (21) holds true. From formulas +1) and (2), the torque T is expressed by the following formula.

式(8)より除算器28の出力EはトルクTに比例した
量であり、微分器24.によるその微分値が電圧指令器
21の周波数指令値から減算される。したがって、微分
器24の出力は、「電動」の場合、誘導電動機11のト
ルクTが時間的に増加したとき誘導電機11の周波数が
下がす、トルクTを下げようとするから安定化し、逆に
トルクTが減少する場合には周波数を上げるように作用
する。また、F回生」の場合、トルクTの絶対値が時間
的に増大しているときは周波数が上がるように作用する
のでトルクTの絶対値の増加を抑えて安定化する。電流
IDCの極性は一定であるが電圧VDCの極性は「電動
」の場合、正、「回生」の場合、負となるので、除算器
28の出力は誘導電動機11の運転状態、すなわちトル
クTの極性に応じて極性が変化する。
From equation (8), the output E of the divider 28 is an amount proportional to the torque T, and the output E of the divider 28 is an amount proportional to the torque T. The differential value is subtracted from the frequency command value of the voltage command device 21. Therefore, in the case of "electric", the output of the differentiator 24 is such that when the torque T of the induction motor 11 increases over time, the frequency of the induction motor 11 decreases, the output of the differentiator 24 becomes stable because the torque T is tried to decrease, and vice versa. When the torque T decreases, it acts to increase the frequency. Furthermore, in the case of "F regeneration", when the absolute value of torque T increases over time, the frequency acts to increase, so the increase in the absolute value of torque T is suppressed and stabilized. The polarity of the current IDC is constant, but the polarity of the voltage VDC is positive when it is "electric" and negative when it is "regenerative", so the output of the divider 28 depends on the operating state of the induction motor 11, that is, the The polarity changes depending on the polarity.

第8図は誘導電動機11の等価回路図で、R17− R2はそれぞれ1次および2次抵抗、Jl、/2はそれ
ぞれ1次および2次漏れインダクタンス、Mは相互イン
ダクタンス、eは速度に比例した電圧を発生する速度起
電力である。誘導電動機11のすべ如をeとすると、速
度起電力θは定常状態でニー、−R2で置換され、公知
の等価回路となる。
Figure 8 is an equivalent circuit diagram of the induction motor 11, where R17-R2 are the primary and secondary resistances, Jl and /2 are the primary and secondary leakage inductances, M is the mutual inductance, and e is proportional to the speed. It is a speed electromotive force that generates voltage. Assuming that the smoothness of the induction motor 11 is e, the speed electromotive force θ is replaced by knee, -R2 in a steady state, resulting in a known equivalent circuit.

電流形インバータでは定電流源駆動となり、電流It(
第8図)は一定である。今、誘導電動機11にインパク
ト負荷がかかり速度が急速に低下したものとすると、こ
の速度低下に応じて電圧eはΔeだけ変動し、この変動
Δeによシ、第8図に示すように過渡電流Δ1が発生す
る。この過渡電流Δ1は、誘導電動機1101次側は電
流源であるので、2次側のみに流れる。過渡雷1流Δ1
は相互インダクタンスMの電流である電流1mを変化さ
せるので、相互インダクタンスMの電圧も変動する。相
互インダクタンスMの電圧が誘導電動機11の1次電圧
にほぼ等しいので、誘導電動機11の電圧変動となる。
A current source inverter is driven by a constant current source, and the current It(
(Fig. 8) is constant. Now, if we assume that an impact load is applied to the induction motor 11 and the speed rapidly decreases, the voltage e will fluctuate by Δe in response to this speed decrease, and due to this fluctuation Δe, a transient current will be generated as shown in FIG. Δ1 occurs. Since the primary side of the induction motor 110 is a current source, this transient current Δ1 flows only to the secondary side. Transient lightning 1st flow Δ1
changes the current 1m which is the current of the mutual inductance M, so the voltage of the mutual inductance M also changes. Since the voltage of the mutual inductance M is approximately equal to the primary voltage of the induction motor 11, the voltage of the induction motor 11 fluctuates.

過渡電流Δ1の減衰時定数はT= (M+/ 2 ) 
/R2彦る2次時定数であり、−8一 般にその筐は大きいu−fだ、過度電流Δ1の変動に応
じて発生トルク″■゛も変動する。本発明は発生トルク
Tの変動に応じて誘導電動機11の周波数を制御するこ
とにより過渡電流A1を小さくして電流1mを一定に保
つようにしている。すなわち、速度が低下して電圧eが
Δθだけ減少する場合は電流12が増加してトルクTも
大きくなろうとするが、誘導電動機]1の周波数を下げ
電流12の変動を防止し、過渡電流Δ1を小さくして電
流1mを一定に保つことにより安定化される。
The decay time constant of transient current Δ1 is T= (M+/2)
/R2 is a quadratic time constant that changes -8 Generally, the housing is large u-f, and the generated torque ``■'' also changes according to the fluctuation of the transient current Δ1. By controlling the frequency of the induction motor 11, the transient current A1 is reduced and the current 1m is kept constant.In other words, when the speed decreases and the voltage e decreases by Δθ, the current 12 increases. As a result, the torque T also tends to increase, but it is stabilized by lowering the frequency of the induction motor 1 to prevent fluctuations in the current 12, and reducing the transient current Δ1 to keep the current 1 m constant.

第4図はインパクト負荷時の誘導電動機11の過渡変動
の例を示す図である。#c4図rllは負荷トルクの変
動を示し、時間t=t o以降においてインパクト負荷
がかかつている。第4図(2+ 、 (81はそれぞれ
スイッチ27(第2図)をオフにした場合の速度とトル
ク(除算器z8の出力)を示し、第4図(4)、(5)
はそれぞれスイッチ27をオンにした場合の速度とトル
クの変動を示している。スイッチ27をオフにした場合
には速度、トルクとも減衰振動しているが、スイッチ2
7をオンにした場合には速度、!・ルクとも非振動的に
なり、動特性が改善され、安定性が増大することがわか
る。
FIG. 4 is a diagram showing an example of transient fluctuations of the induction motor 11 during an impact load. #c4 diagram rll shows fluctuations in load torque, and an impact load is applied after time t=t o. Figure 4 (2+, (81) respectively show the speed and torque (output of divider z8) when switch 27 (Figure 2) is turned off, Figure 4 (4), (5)
show the fluctuations in speed and torque when the switch 27 is turned on, respectively. When switch 27 is turned off, both speed and torque are damped vibrations, but switch 2
If you turn on 7, the speed,!・It can be seen that both torque and torque become non-oscillatory, improving dynamic characteristics and increasing stability.

第2図において1に流中開回路の電圧VDCの検出は、
直流リアクトル4の出力側にしたが、直流リアクトル壱
の入力側、すなわち変流器1の出力でもよい。また、第
2図はアナログ方式で説明したが、マイクロコンピュー
タを使用したデジタル方式でも同様に可能である。
In Fig. 2, the detection of the voltage VDC of the current open circuit at 1 is as follows:
Although it is set to the output side of the DC reactor 4, it may also be the input side of the DC reactor 1, that is, the output of the current transformer 1. Further, although FIG. 2 has been described using an analog method, a digital method using a microcomputer is also possible.

〈発明の効果〉 本発明によると、r電動」 r回生」のいずれの運転状
基においても安定性が向上し、従来の「電圧微分」や「
電流微分」の安定化方式のようにn生」状態で乱調を促
進することはない。さらに、本発明ではトルクには励磁
電流が含まれないのでリニア領域が広くとれる。したが
って、本来乱調していない領域でもスイッチ27(第2
図)をオンにして使用すると第4図のように動特性が向
上すると共に安定化領域が従来の方式に比べ拡大する。
<Effects of the Invention> According to the present invention, the stability is improved in both the operating conditions of r-electric and r-regenerative, and the stability is improved in both of the operating states of r-electric and r-regenerative.
Unlike the "current differential" stabilization method, this method does not promote disturbance in the "N raw" state. Furthermore, in the present invention, since the torque does not include excitation current, a wide linear region can be obtained. Therefore, even in an area where there is no disturbance, the switch 27 (second
When the system is turned on, the dynamic characteristics are improved as shown in Figure 4, and the stabilization area is expanded compared to the conventional system.

また、従来の「電流微分」の安定化方式のように電流を
直接、微分するのではないので、微分器における微分ゲ
インの設定が容易になる。
Further, unlike the conventional "current differentiation" stabilization method, the current is not directly differentiated, so setting the differential gain in the differentiator becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電流形インバータおよびその制御装置の従来例
の構成図、第2図は電流形インバータおよび本発明の1
実施例に係るその制御装置の構成示す図である。 11;誘導電動機、 21;電圧指令器。 22;乗 算 器、 23;除 算 器。 24;微 分 器、 80;減 算 器。 特許出願人 株式会社安川電機製作所 第3図 第4図 手 続 補 正 書(自発) 昭和59年2月21日 特許庁長官 殿 1、事件の表示 昭和59年特 許 願第12000号
2、発明の名称 電流形インバータの制御装置 3、補正をする者 事件との関係 特許出願人 (662)株式会社安川電機製作所 4、代理人 住所 東京都港区赤坂1丁目9番20号5、補正の対象 明細書の「発明の詳細な説明」の欄 6、補正の内容 明細書第3頁第13行目の「JogJを[■])cJに
補正する。
FIG. 1 is a configuration diagram of a conventional example of a current source inverter and its control device, and FIG. 2 is a diagram of a current source inverter and a conventional example of a control device thereof.
FIG. 2 is a diagram showing the configuration of the control device according to the embodiment. 11; induction motor; 21; voltage command unit. 22; Multiplier; 23; Divider. 24; differentiator, 80; subtractor. Patent Applicant Yaskawa Electric Manufacturing Co., Ltd. Figure 3 Figure 4 Procedures Amendment (spontaneous) February 21, 1980 Commissioner of the Japan Patent Office 1. Indication of case 1989 Patent Application No. 12000 2. Invention Name: Control device for current source inverter 3, Person making the amendment Relationship to the case: Patent applicant (662) Yaskawa Electric Manufacturing Co., Ltd. 4, Agent address: 1-9-20-5 Akasaka, Minato-ku, Tokyo, Subject of the amendment Column 6 of "Detailed Description of the Invention" of the specification, contents of the amendment, page 3, line 13 of the specification, "JogJ is amended to [■])cJ."

Claims (1)

【特許請求の範囲】 誘導電動機を駆動する電流形インバータの制御装置にお
いて、 前記電流形インバータの直流中間回路の電圧と入力電流
を乗算する乗算器、この乗算器の出方を周波数指令値で
除算する除算器と、この除算器の出力を微分する微分器
と、この微分器の出方である微分値を前記周波数指令値
から減算する減算器とを備えたことを特徴とする電流形
インバータの制御装置。
[Scope of claims] A control device for a current source inverter that drives an induction motor, comprising: a multiplier that multiplies the voltage of a DC intermediate circuit of the current source inverter and an input current; an output of this multiplier is divided by a frequency command value; A current source inverter comprising: a divider for differentiating the output of the divider; and a subtracter for subtracting the differential value obtained from the differentiator from the frequency command value. Control device.
JP59012000A 1984-01-27 1984-01-27 Controller of current type inverter Granted JPS60160396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012000A JPS60160396A (en) 1984-01-27 1984-01-27 Controller of current type inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012000A JPS60160396A (en) 1984-01-27 1984-01-27 Controller of current type inverter

Publications (2)

Publication Number Publication Date
JPS60160396A true JPS60160396A (en) 1985-08-21
JPH0417035B2 JPH0417035B2 (en) 1992-03-25

Family

ID=11793313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012000A Granted JPS60160396A (en) 1984-01-27 1984-01-27 Controller of current type inverter

Country Status (1)

Country Link
JP (1) JPS60160396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524248U (en) * 1991-07-26 1993-03-30 豊田工機株式会社 Machine tool cover device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524248U (en) * 1991-07-26 1993-03-30 豊田工機株式会社 Machine tool cover device

Also Published As

Publication number Publication date
JPH0417035B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
US4019105A (en) Controlled current induction motor drive
US7683568B2 (en) Motor drive using flux adjustment to control power factor
US4227138A (en) Reversible variable frequency oscillator for smooth reversing of AC motor drives
EP1729407A1 (en) Controller of permanent magnet synchronous motor
JP3765437B2 (en) Control system for synchronous motor for machine tool spindle drive
JPS60160396A (en) Controller of current type inverter
JP2510510B2 (en) Control device for PWM power converter
JP3494677B2 (en) Voltage type inverter device
JPH0585470B2 (en)
JPS6392289A (en) Controller for ac motor
US4651078A (en) Device for driving an induction motor
JPS59188301A (en) Controller of electric railcar
JPS63314193A (en) Method of controlling flux of motor
JP2023022557A (en) Drive control device and drive control method for ac motor
JPH0528957Y2 (en)
JP2527149B2 (en) Voltage source inverter control circuit
SU1129711A2 (en) Adjustable-frequency asynchronous electric drive
CN112564566A (en) Method for expanding high-speed operation range of IMC-SPMSM system
JPH06209579A (en) Power converter
JPS60197189A (en) Controller of ac motor
JPH0467408B2 (en)
JPS6392290A (en) Controller for ac for motor
JPH0235557B2 (en)
JPS5927198B2 (en) Static variable speed reversible AC motor drive device
JPH0496654A (en) Cycloconverter device