JPS6015986A - Light amplifier - Google Patents

Light amplifier

Info

Publication number
JPS6015986A
JPS6015986A JP12315083A JP12315083A JPS6015986A JP S6015986 A JPS6015986 A JP S6015986A JP 12315083 A JP12315083 A JP 12315083A JP 12315083 A JP12315083 A JP 12315083A JP S6015986 A JPS6015986 A JP S6015986A
Authority
JP
Japan
Prior art keywords
light
layer
active layer
optical waveguide
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12315083A
Other languages
Japanese (ja)
Inventor
Tadashi Saito
正 斉藤
Osamu Mikami
修 三上
Takaaki Mukai
向井 孝彰
Yoshihisa Yamamoto
喜久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12315083A priority Critical patent/JPS6015986A/en
Publication of JPS6015986A publication Critical patent/JPS6015986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive control of noise and to stabilize the gain of light amplification by absorbing the undesired light properly by using a reflection preventing film for light-input combination of the light amplifier and using a diffraction grating for light-output combination. CONSTITUTION:Between the positive electrode 408 and the negative electrode 409, a bias current flows in a normal direction. At this time, if the signal light 450 having an equal wavelength to the band gap of the active layer 402 is projected, the signal light 450 is amplified by the induced emission effect during wave-guiding of the active layer 402 in a light-amplifying region 420. The amplified light is then transmitted to a connection waveguide path region 430 and the light-amplifying region 420 and the connection waveguide path region 430 are combined without reflection. As the modulation period diffraction grating 405 having the period strucure in which the period becomes slightly shorter from the entering side toward the emitting side is arranged on a boundary plane between the layers 404 and 406 as a light frequency filter, the signal light makes a focus in the outside and is taken out as the output light 460.

Description

【発明の詳細な説明】 (技術外!I!P) 本発明は、回折格子を用いて光の出力結合を行うように
した進行波型の光増幅器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Non-technical! I!P) The present invention relates to a traveling wave optical amplifier that performs output coupling of light using a diffraction grating.

(従来技術) 光増幅器は、弱1つだ光信号を電気信号に変換すること
なく、その寸ま増幅して強い光信号を得る装置である。
(Prior Art) An optical amplifier is a device that amplifies a weak optical signal to obtain a strong optical signal without converting it into an electrical signal.

この種光増幅器として、例えば、半導体レーザ増幅器が
あるが、この増幅器では、半導体レーザと同じように、
誘導放出効果による利得a構を利用しているため、半導
体レーザと同様の素子椙造を持っている。
An example of this type of optical amplifier is a semiconductor laser amplifier, which, like a semiconductor laser,
Since it utilizes a gain a structure based on the stimulated emission effect, it has a device structure similar to that of a semiconductor laser.

この種従来の進行波型光増幅器は、通常、第1図に示す
シ11<、n型InP 基板/Q/上に、活性層として
のGa In AsP結晶層/(1)、2およびクラッ
ド層としてのp型InP結晶層103をこの順序で形成
し、基板10/に負電極10uを被着し、p型InP結
晶層103に正電極103を被着してなる半導体レーザ
の両端面に、誘電体よシなる反射防止膜10乙および1
07を形成して、入出力端面での反射率を小さくし、信
号光の単一通過による誘導放出効果で利得を得る構造の
ものが考えられてきた。
This kind of conventional traveling wave optical amplifier usually includes a GaInAsP crystal layer (1), 2 as an active layer and a cladding layer on an n-type InP substrate /Q/ as shown in FIG. A p-type InP crystal layer 103 is formed in this order, a negative electrode 10u is attached to the substrate 10/, and a positive electrode 103 is attached to the p-type InP crystal layer 103. Antireflective coatings similar to dielectrics 10B and 1
07, the reflectance at the input/output end face is reduced, and a structure in which gain is obtained by the stimulated emission effect caused by single passage of signal light has been considered.

このような進行波型光増幅器は、共振型のようなファプ
リー・ベロー共振器を持たないため、利得の周波数帯域
幅が広がり、安定な利得が得られるのみならず、利得の
飽和特性も改善されるという長所を持っている。
Since such traveling wave optical amplifiers do not have a Fapley-Bello resonator like the resonant type, the gain frequency bandwidth is widened, and not only stable gain can be obtained, but also the gain saturation characteristics are improved. It has the advantage of being

しかしながら、第1図に示したような構造の進行波型光
増幅器では、端面反射率を0.1%以下にするだめの反
射防止膜10乙の形成条件が難しく、また、利得の帯域
幅が広くなる分だけ、雑音が多くなるので、これを除去
するための光周波数フィルタを別個に用意する必要があ
るという欠点があった。
However, in the traveling wave optical amplifier having the structure shown in FIG. The larger the width, the more noise there is, so there is a drawback that it is necessary to separately prepare an optical frequency filter to remove this noise.

(目 的) そこで、本発明の第1の目的は、(氏反射条件の範囲が
広いにも拘らず、雑音が少ない進イテ波型の光増幅器を
提供することにある。
(Objective) Therefore, the first object of the present invention is to provide an advanced wave type optical amplifier with low noise despite a wide range of reflection conditions.

本発明の第λの目的は、不所望の光を適切に吸収させて
雑音の抑制を図った光増111冨−を提供することにあ
る。
A λ-th object of the present invention is to provide a light amplifier 111 that appropriately absorbs undesired light and suppresses noise.

本発明の第3の目的は、光増幅の“]イル)を安定イヒ
させるように適切に(、“/I成した光増”f’Ii1
’4Mを提供することにある。
The third object of the present invention is to appropriately stabilize the optical amplification (f'Ii1) of the optical amplification.
Our mission is to provide the '4M's.

(発明の+Ft成) かかる目的を達成するために、不発り]ケよ、光増幅器
の光入力結合に反射防止膜を1月い、′″101B10
1Bノコ結合を用いる。
(+Ft composition of the invention) In order to achieve this purpose, an anti-reflection film was applied to the optical input coupling of the optical amplifier.
Use a 1B saw connection.

すなわち、」二重水した第1の目的を達成1−るだめに
、本発明は、ダブルへテロ接合よりなる11η性層の光
入射端面に反射防止膜を伺着し、mJも己ン占慴ミ層に
そのバンドギャップとf’s、 +’!等しいγ夜長の
信号つしを光入射端面より入射させ、前記1占性1弓(
てj(Z流を注入して、誘導1攻出効果により負0己1
言号″yeを増幅するようになし、前記活性層の出射端
には、当該活き層に連続して、等偏屈折率の等しい光導
波層を設け、該光導波層の一側面には正反射を生じない
周期をもつ回折格子を設け、前記光導波層から増幅出力
光を取り出すようにする。
That is, in order to achieve the first objective of "double water", the present invention attaches an anti-reflection film to the light incident end face of the 11η layer consisting of a double heterojunction, and the mJ is also controlled independently. The bandgap and f's, +'! A signal beam of equal γ length is input from the light incident end surface, and the monopolistic one bow (
Tej (Inject Z flow, lead 1 attack effect, negative 0 self 1
An optical waveguide layer having an equal polarized refractive index is provided at the output end of the active layer so as to amplify the word "ye," and an optical waveguide layer having an equal polarized refractive index is provided at the output end of the active layer. A diffraction grating having a period that does not cause reflection is provided to extract amplified output light from the optical waveguide layer.

上述した第2の目的を達成するために、本発明は、ダブ
ルへテロ接合よりなる活性層の光入射端面に反射防止膜
を付着し、前記活性層にそのバンドギャップとほぼ等し
い波長の信号光を光入射端面よシ入射させ、前記活性層
に電流を注入して、誘導放出効果によシ前記信号光を増
幅するようになし、前記活性層の出射端には、当該活性
層に連ワ1;シて、等偏屈折率の等しい光導波層を設け
、該光導波層の一側面には正反射を生じない周期をもつ
回折格子を設け、前記光導波層から増幅出力光を取シ出
すようにし、前記光導波層をはさんで、前記活性層と対
向して光吸収層を配置する。
In order to achieve the above-mentioned second object, the present invention attaches an anti-reflection film to the light incident end face of an active layer consisting of a double heterojunction, and applies signal light having a wavelength approximately equal to the bandgap of the active layer to the active layer. A current is injected into the active layer to amplify the signal light by a stimulated emission effect, and a current is connected to the active layer at the output end of the active layer. 1; An optical waveguide layer with equal polarized refractive index is provided, a diffraction grating with a period that does not cause regular reflection is provided on one side of the optical waveguide layer, and the amplified output light is extracted from the optical waveguide layer. A light absorbing layer is disposed facing the active layer with the optical waveguide layer in between.

上述した第3の目的を達成する〕ζめに、本発明は、ダ
ブルへテロ接合よりなる活性層の光入射端面に反射防止
膜を付着し、前記活性層にそのバンドギャップとほぼ等
しい波長の信号光を光入射端面より入射させ、前記活性
層に電流を注入して、誘導放出効果により前記信号光を
増幅するようになし、前記活性層の出射端には、当該活
性層に連続して、等側屈折率の等しい光導波層を設け、
該光導波層の一側面には正反射を生じない周期をもつ回
折格子を設け、前記光導波層から増幅出力光を取り出す
ようVこし、前記光導波層をはさんで、前記活性層と対
向して光吸収層を配置し、前記光吸収層に逆バイアスを
印加する電極を配置して光増幅の利イ)Iの変j+のを
検出し、その変動に応じて前記活性層へ注入される電流
の量を制御するようにする。
[Achieving the above-mentioned third object] In order to achieve the above-mentioned third object, the present invention attaches an anti-reflection film to the light incident end face of an active layer consisting of a double heterojunction, and coats the active layer with a wavelength approximately equal to the bandgap thereof. Signal light is made incident from the light incident end surface, a current is injected into the active layer, and the signal light is amplified by the stimulated emission effect. , providing optical waveguide layers with equal refractive index on the isolateral side,
A diffraction grating having a period that does not cause specular reflection is provided on one side of the optical waveguide layer, and a V-shaped grating is provided on one side of the optical waveguide layer so as to extract the amplified output light from the optical waveguide layer. A light amplification effect is obtained by arranging a light absorption layer, and arranging an electrode for applying a reverse bias to the light absorption layer.(a) Detecting a change in I, j+ is injected into the active layer according to the change. The amount of current drawn is controlled.

(実施j9+、i ) 以下に図面をす明して本発明の詳細な説明する。(Implementation j9+, i) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の光増幅器の基本構造を示す。FIG. 1 shows the basic structure of the optical amplifier of the present invention.

ここで、半導体基板、200は、格子整合された多層エ
ピタキシャル成長層からなり、光増幅領域20/におい
ては、活性層、202をダブルへテロ接合で形成する。
Here, the semiconductor substrate 200 is composed of a lattice-matched multilayer epitaxial growth layer, and in the optical amplification region 20/, the active layer 202 is formed as a double heterojunction.

この活性層202のバンドキャップ波長は入射信号光の
波長λ。と一致するものとする。活性層20.2の光入
射端面には反射防止膜203を伺着する。201Iは活
性層202上のクラッド層である。
The bandgap wavelength of this active layer 202 is the wavelength λ of the incident signal light. shall match. An antireflection film 203 is attached to the light incident end face of the active layer 20.2. 201I is a cladding layer on the active layer 202.

活性層−〇2に隣接して、光導波路20jを低損失で接
続する。この光導波路、203の等側屈折率をneff
 とする。光導波路203を構成している半導体層の一
側面には、回折格子201.を形成する。この回折格子
20乙の周期Nは、 neff ま ただし、lは自然数を除く正数 なる関係で与えられる。この回折格子伺き光導波路の部
分を接続導波路領域207とする。、201は光導波路
20り上のクラッド層である。
An optical waveguide 20j is connected with low loss adjacent to the active layer-〇2. The isolateral refractive index of this optical waveguide 203 is neff
shall be. On one side of the semiconductor layer constituting the optical waveguide 203, a diffraction grating 201. form. The period N of this diffraction grating 20 is given by neff, where l is a positive number excluding natural numbers. This portion of the optical waveguide extending through the diffraction grating is defined as a connection waveguide region 207. , 201 is a cladding layer on the optical waveguide 20.

ここで、正電極209と負電極2IOとから、光増幅領
域λ02に電流を注入し、適当な順バイアス条件の下で
、反射防止膜203を通して波長λ。の信号光2//を
入射すると、その信号光21/は誘導放出効果により増
幅される。ここで、接続導波路領域207と光増幅領域
、20/の屈折率および膜厚を適切に選定することによ
り、等側屈折率neffをほぼ等しくなし7、以て信号
光2//が活性層202から光導波路−!05に無反射
で結合されるようにする。
Here, a current is injected into the optical amplification region λ02 from the positive electrode 209 and the negative electrode 2IO, and the wavelength λ is applied through the antireflection film 203 under appropriate forward bias conditions. When the signal light 2// is incident, the signal light 21/ is amplified by the stimulated emission effect. Here, by appropriately selecting the refractive indexes and film thicknesses of the connection waveguide region 207 and the optical amplification region 20/, the isolateral refractive index neff can be made approximately equal 7, so that the signal light 2// can be transmitted to the active layer. From 202 to the optical waveguide-! 05 without reflection.

光導波路2O5に結合された光は、回折格子−20tに
よって回折され、外へ取り出されて出力光、!/、2と
なる。
The light coupled to the optical waveguide 2O5 is diffracted by the diffraction grating -20t and extracted to the outside as output light, ! /, becomes 2.

ここで、本発明で用いている回折格子20乙による回折
について11S3図を用いて説明する。以下では、特に
、/<#<2の場合について説明するが、2〈lの場合
においても回折格子、20乙による回折は同様である。
Here, diffraction by the diffraction grating 20B used in the present invention will be explained using FIG. 11S3. In the following, the case of /<#<2 will be explained in particular, but the diffraction by the diffraction grating 20B is the same even in the case of 2<l.

等側屈折率n。0.の光導波媒体300中において、周
期んの回1ノ丁格子30/が形成さねているとする。
Isolateral refractive index n. 0. It is assumed that a one-notch grating 30/ with a period of n is formed in the optical waveguide medium 300.

波長λ。の光が回折格子30/に平行に入射するとし、
その回折光303の回折角をθとする。θはλ。
Wavelength λ. Suppose that the light is incident on the diffraction grating 30/ in parallel,
The diffraction angle of the diffracted light 303 is assumed to be θ. θ is λ.

で与えられる。ここで、mは整数である。一方、1t1
1折格子30/の周期を とする。(2)式を(1)式に代入して、sinθ=2
・−−t (31 ! を得る。(6)式を満足するθの値をめると、m=oの
時二〇−−ワo0(4) m−/の時:θ−5in ’ C’ −/ ) (5)
となる。ここで、/</<jの条件を考慮すると)解は
(4)式および(5)式のみであるうすなわち、第3図
に示すように、回折格子30/に平行に入射した入射光
30.2に対して得られるのは回折光303および30
3′のみであり、入射光30.2と逆方向に進む反射光
は存在しないことがわかる。
is given by Here, m is an integer. On the other hand, 1t1
Let the period of the single-fold lattice 30/ be. Substituting equation (2) into equation (1), sinθ=2
・--t (31!) is obtained.If we calculate the value of θ that satisfies the formula (6), when m=o, 20--wao0(4) When m-/: θ-5in' C '-/ ) (5)
becomes. Here, if we take into account the condition /</ What is obtained for 30.2 is diffracted light 303 and 30
It can be seen that there is no reflected light traveling in the opposite direction to the incident light 30.2.

回折格子を光帰還の手段として用いたDBRンーザやD
FBレーザでは、回折格子の周期がl−/ 。
DBR Nuser and D
In an FB laser, the period of the diffraction grating is l-/.

!、3.・・・で与えられている。回折格子の次数を、
例えば、7次と一次の間に相当する周期に定めると、上
述したように入射方向への反射波f:無<すことができ
る訳である。
! , 3. It is given by... The order of the diffraction grating is
For example, if the period is set to correspond to between the seventh order and the first order, the reflected wave f in the incident direction can be eliminated as described above.

第1図は、本発明光増幅器の具体的な実施例を示し、こ
こで、Jio/はクラッド層としてのZnをドープした
p型InP結晶層(厚さ約−μm + 927017c
m−5) 、lIO,2は活性層としてのドープなしの
n型GaInAsP結晶層(Eg: 0.ざeV 、厚
さo、7μm )、1lO3はSをドープしたn型In
P基板(n=/018cm−5)である。なお、クラッ
ド層lIO/はn型InP結晶層であってもよい。活性
層’10.2の出射端には、この活性層po、zに連続
しており、しかも等価屈折率の等しい光導波層l/、O
IIとして、ドープなしのn型GaInAsP結晶ハj
(Egさ八0 eV 、厚さ0.2μm)を設け、この
光導波層tlOIIの一側面には正反射を生じないよう
に入射側から出射側に向けて周期が減少していく変調周
期をもつ変調周期回折格子1Iosをレーザ光の干渉な
どにより形成する。グO乙はクラッド層としてのドープ
なしのn型InP結晶層(厚さ約2μm)でちる。活性
層lIO,2の光入射端面には反射防止膜ψ07を付着
する。さらに、pogは正電極、およびpoqは負電極
である。
FIG. 1 shows a specific embodiment of the optical amplifier of the present invention, where Jio/ is a Zn-doped p-type InP crystal layer (thickness approximately -μm + 927017c) as a cladding layer.
m-5), lIO,2 is an undoped n-type GaInAsP crystal layer (Eg: 0.5 eV, thickness o, 7 μm) as an active layer, and lIO,2 is an S-doped n-type In
It is a P substrate (n=/018 cm-5). Note that the cladding layer lIO/ may be an n-type InP crystal layer. At the output end of the active layer '10.2, there are optical waveguide layers l/, O which are continuous with the active layer po, z and have the same equivalent refractive index.
As II, an undoped n-type GaInAsP crystal haj
(Eg 80 eV, thickness 0.2 μm), and one side of this optical waveguide layer tlOII has a modulation period whose period decreases from the input side to the output side so as not to cause specular reflection. A modulated periodic diffraction grating 1Ios is formed by laser beam interference or the like. The substrate is made of an undoped n-type InP crystal layer (about 2 μm thick) as a cladding layer. An antireflection film ψ07 is attached to the light incident end face of the active layer lIO,2. Furthermore, pog is a positive electrode and poq is a negative electrode.

さらに、InP基板4!0.?上において、GaInA
sP結晶@ ll0aをはさんで活性層1102と対向
して、吸収層としてのドープなしのn型GaInAsP
結晶層#/J (Eg== 0.1 eV 、厚さ0.
zμm)を配設し、この吸収層lI/、2上にクラッド
層としてZnをドープしたp型InP結晶層lIl/ 
(厚さ約274m 、 p = 10”a−3)を配置
する。クラッド層り//はn型InP結晶層であっても
よい。さらに、このInP結晶層り//上に正電極ll
/rを配置し、この正電極11111”と対向して基板
1103の表面にも負電極≠09を配設する。
Furthermore, InP substrate 4!0. ? In the above, GaInA
Opposing the active layer 1102 with the sP crystal @ll0a in between, undoped n-type GaInAsP is used as an absorption layer.
Crystal layer #/J (Eg==0.1 eV, thickness 0.
A p-type InP crystal layer lIl/, doped with Zn as a cladding layer, is disposed on this absorption layer lI/,2.
(approximately 274 m thick, p = 10"a-3). The cladding layer // may be an n-type InP crystal layer. Furthermore, a positive electrode is placed on this InP crystal layer //.
/r is arranged, and a negative electrode≠09 is also arranged on the surface of the substrate 1103 opposite to this positive electrode 11111''.

以上の構成において、基板IAOJ上の層lI0.2お
よび’10/により光増幅領域を一01層tiollお
よびtiosによシ接続導波路領域ll30 、および
層t112およびIll/により光吸収領域をそれぞれ
形成する。
In the above configuration, the layers lI0.2 and '10/ on the substrate IAOJ form an optical amplification region, the layers t112 and Ill/ form an optical absorption region, the waveguide region ll30 is connected to the layers tioll and tios, and the layers t112 and Ill/ form an optical absorption region, respectively. do.

つぎに、第グ図示の本発明光増幅器の動作を説明する。Next, the operation of the optical amplifier of the present invention shown in FIG.

まず、正電極ダ07と負電極ダQざとの間に順方向にバ
イアス電流を流しておく。ここで、第j図の左方から反
射防止膜ll07全通して、活性層lIO2のバンドギ
ャップとほぼ等しい波長の信号光tisoを入射させる
と、この信号光tIsoは光増幅領域1120中の活性
層≠02を導波するうちに誘導放出効果により増幅され
る。この増幅された光は、ついで、接続導波路領域11
30に伝わってゆくが、層170/ 、 1103およ
びI10乙の屈折率をJ、/7 、層1I02の屈折率
を3゜5/および層厚を0.1μm1層popの屈折率
を3.33および層厚を0.2μmとすると、光増幅領
域1I20および接続導波路領域<t30の等価屈折率
はどちらも約3゜λとなるだめ、これら両頭域は無反射
で結合される。
First, a bias current is caused to flow in the forward direction between the positive electrode 07 and the negative electrode Q. Here, when the signal light tIso having a wavelength approximately equal to the bandgap of the active layer IO2 is incident from the left side of FIG. ≠02 is amplified by the stimulated emission effect while being guided. This amplified light is then transferred to the connecting waveguide region 11.
30, the refractive index of layers 170/, 1103 and I10 is J, /7, the refractive index of layer 1I02 is 3°5/, and the layer thickness is 0.1 μm, and the refractive index of one layer POP is 3.33. If the layer thickness is 0.2 μm, the equivalent refractive index of the optical amplification region 1I20 and the connection waveguide region <t30 will both be approximately 3°λ, and these two head regions will be coupled without reflection.

次に、層tiotiとaOtの境界面には、入射側から
出射側に向かって周期が少しづつ短かくなった周期構造
よりなる変調周期回折格子ψOSを光周波数フィルタと
して配置しているので、これKより、信号光は外部に焦
点を結んで出力光ti6oとして取り出される。この回
折格子での光の挙動については、A、 KATZIR、
A、O,LIVANO3、J’、B、 5HELLAN
 。
Next, at the interface between the layers tioti and aOt, a modulated periodic diffraction grating ψOS, which has a periodic structure whose period gradually decreases from the input side to the output side, is placed as an optical frequency filter. From K, the signal light is focused externally and extracted as output light ti6o. Regarding the behavior of light in this diffraction grating, A. KATZIR,
A, O, LIVANO3, J', B, 5HELLAN
.

およびA、 YA’RIVによる工EEE Journ
al of QuantumElectronics 
、 Vol、リ−/3 、 j6’l 、 pp、 j
ワ乙−301/、(/?77) に示されている。
and A. EEE Journal by YA'RIV
al of Quantum Electronics
, Vol, Lee/3, j6'l, pp, j
It is shown in Waotsu-301/, (/?77).

このとき、回折光の回折角は波長によって異なるために
周波数分布は空間的分布に置きかわる。
At this time, since the diffraction angle of the diffracted light differs depending on the wavelength, the frequency distribution is replaced by a spatial distribution.

このため、光周波数フィルタとしての帯域幅は、出力光
の受光面積によって決めることができる。
Therefore, the bandwidth of the optical frequency filter can be determined by the light receiving area of the output light.

実際には回折格子ケOSで回折される光は、回折格子t
AOSの形成されている面を対称面として、上下コ方向
へ回折されるので、効率の低下が考えられるが、InP
層4106の厚さdを、λ。
In reality, the light diffracted by the diffraction grating OS is
Since the plane on which the AOS is formed is used as the plane of symmetry, it is diffracted in the up and down directions, so there may be a decrease in efficiency, but InP
The thickness d of layer 4106 is λ.

n: InP層μ0乙の屈折率 に定めることにより、上方への回折光はInP層≠06
とその外部の空気層との界面で反射され、大部分を下方
へ取り出すことができろう 接続導波路領域1130において外部へ取り出されなか
った光信号は、接続導波路領域≠30と同じ等価屈折率
を持つ光吸収領域≠lIOに無反射で導波し、ここで吸
収される。
n: By setting the refractive index of the InP layer μ0, the upward diffracted light is InP layer≠06
The optical signal reflected at the interface between the connecting waveguide region 1130 and the outer air layer, and most of which can be extracted downward, is not extracted to the outside in the connecting waveguide region 1130. The light is guided without reflection to the light absorption region≠lIO, where it is absorbed.

なお、正電極t/ざと負電極グOワとの間に逆方向バイ
アスを印加しておくことによって、光吸収領域≠poに
う′C検出の45ij能を持たせ、それにより増幅利得
の変動を検出することができる。従って、このように検
出された変動を光増幅領域1I20へ負帰還することに
よって、利得を安定化させることもできる。
Note that by applying a reverse bias between the positive electrode T and the negative electrode G, the light absorption region≠PO has the ability to detect U'C, thereby reducing the fluctuation of the amplification gain. can be detected. Therefore, the gain can be stabilized by negatively feeding the fluctuations detected in this way to the optical amplification region 1I20.

々お、上例では吸収の少ない半導体層IIot<とじて
活性層1102よりバンドギャップの大きい組成を持つ
GaInAsP層を用いているが、活性層1I02と同
じバンドギャップを持つ組成の半導体層に電流注入を行
なうことによって吸収を少なくしてもよい。
In the above example, a GaInAsP layer with a composition larger in bandgap than the active layer 1102 is used since the semiconductor layer with low absorption IIot is used. Absorption may be reduced by doing this.

(効 果) 以上説明したように、本発明によれば、利得帯域幅が広
く、かつ回折格子による雑音除去用の光周波数フィルタ
を光導波部に一体に組込んで、低反射条件の範囲が広い
のにも拘らず、雑音が少ない高性能な進行波型光増幅器
を簡単な構成で得ることができる。
(Effects) As explained above, according to the present invention, an optical frequency filter with a wide gain bandwidth and for noise removal using a diffraction grating is integrated into the optical waveguide, thereby widening the range of low reflection conditions. Despite its wide area, a high-performance traveling wave optical amplifier with low noise can be obtained with a simple configuration.

寸だ、本発明によれば、光導波層における不所望の光を
かかる光導波層と一体に組込壕れだ光吸収層で吸収させ
ることができるので、雑音を一層除去して光増幅を行う
ことができる。
According to the present invention, unwanted light in the optical waveguide layer can be absorbed by the trenched light absorption layer integrated with the optical waveguide layer, which further eliminates noise and improves optical amplification. It can be carried out.

さらにまた、本発明によれば、光吸収層に逆バイアスを
印加して光増幅利得の変動を検出し、その検出出力によ
り光増幅部を帰還制御することで、光増幅の利得を安定
化させることもできる。
Furthermore, according to the present invention, a reverse bias is applied to the light absorption layer to detect fluctuations in the optical amplification gain, and the optical amplification section is feedback-controlled using the detected output, thereby stabilizing the gain of the optical amplification. You can also do that.

従って、本発明による高性能な進行波型光増幅器を伝送
路中に挿入して光直接増幅伝送系を構成することによっ
て、再生中継距離を大幅に拡大することができる。
Therefore, by inserting the high-performance traveling wave optical amplifier according to the present invention into a transmission line to construct an optical direct amplification transmission system, the regenerative repeating distance can be greatly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は従来の反射防止膜を用いた進行波型光増幅器の
構造の一例を示す断面図、第2図は本発明光増幅器の基
本構造を示す断面図、第3図は本発明における回折格子
の説明図、第1図は本発明の具体的実施例の構造を示す
断面図である。 10/・・・n型InP基板、 102・・・活性層としてのGaInAsP結晶層、1
03・・・p型InP結晶層、 IO≠・・・負電極、 IO!・・・正′電極、 106 、107・・反射防止膜1 .200 ・・・水根1 .20/・・光増幅領域1 .202・・・活性層、 一!03・・・反射防止膜1 .20グ・クラッド層、 203・・・光導波路、 206・・・回折格子、 207・・・接続導波路領域、 201・・クラッドjの1 .20ワ・・・正電極、 210・・・負電極1 .2/l・・・入射信号光、 2/2・・出射光、 300・・・光導波媒体、 30/・・回折格子 302・・・入射光、 303 、303’・・・回折光、 110/・・・p型InP結晶層、 l/、0.2−GaInA5P活性層、グ03・・・n
型InP基板、 1I04/−n型GaInAsP =−光導波層、ti
os・・・変調周期回折格子、 l/−O乙−n型InP結晶層、 ’107・・・反射防止膜、 l10ざ・・・正電極、 l109・・・負電極、 III/・・p型InP結晶層、 1172− GaInAsP光吸収層、l111・・・
正電極、 グ20・・・光増幅領域、 ≠30・・・接続導波路領域、 ググO・・・光吸収領域1 弘SO・・・信号光、 グ乙O・・出力光。 特許出願人 日本電信電話公社
FIG. 7 is a cross-sectional view showing an example of the structure of a traveling wave optical amplifier using a conventional antireflection film, FIG. 2 is a cross-sectional view showing the basic structure of the optical amplifier of the present invention, and FIG. An explanatory diagram of the lattice, FIG. 1 is a sectional view showing the structure of a specific embodiment of the present invention. 10/... n-type InP substrate, 102... GaInAsP crystal layer as active layer, 1
03...p-type InP crystal layer, IO≠...negative electrode, IO! ...Positive electrode, 106, 107...Antireflection film 1. 200...Water root 1. 20/...Light amplification region 1. 202...active layer, one! 03...Anti-reflection film 1. 20g cladding layer, 203... optical waveguide, 206... diffraction grating, 207... connection waveguide region, 201... 1 of cladding j. 20W...Positive electrode, 210...Negative electrode 1. 2/l...Incoming signal light, 2/2...Outgoing light, 300...Optical waveguide medium, 30/...Diffraction grating 302...Incoming light, 303, 303'...Diffracted light, 110 /...p-type InP crystal layer, l/, 0.2-GaInA5P active layer, G03...n
type InP substrate, 1I04/-n-type GaInAsP =-optical waveguide layer, ti
os...Modulation periodic diffraction grating, l/-O-n-type InP crystal layer, '107...Antireflection film, l10za...Positive electrode, l109...Negative electrode, III/...p type InP crystal layer, 1172-GaInAsP light absorption layer, l111...
Positive electrode, Gu20... Optical amplification region, ≠30... Connection waveguide region, Gugu O... Light absorption region 1 HiroSO... Signal light, Guotsu O... Output light. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1)ダブルへテロ接合よりなる活性層の光入射端面に反
射防止膜を付着し、前記活性層にそのバンドギャップと
ほぼ等しい波長の信号光を光入射端面より入射させ、前
記活性層に電流を注入して、誘導放出効果により前記信
号光を増幅するようになし、前記活性層の出、対端には
、当該活性層に連続して、等側屈折率の等しい光導波層
を設け、該光導波層の一側面には正反射を生じない周期
をもつ回折格子を設け、前記光導波層から増幅出力光を
取り出すようにしたことを特徴とする光増幅器。 2)ダブルへテロ接合よりなる活性層の光入射端面に反
射防止膜を付着し、前記活性層にそのバンドギャップと
ほぼ等しい波長の信号光を光入射端面より入射させ、前
記活性層に電流を注入して、誘導放出効果により前記信
号光を増幅するようになし7、前記活性層の出射端には
、当該活性層に連続して、等側屈折率の等しい光導波層
を設け、該光導波層の一側面には正反射を生じない回期
をもつ回折格子を設け、前記光導波層から増幅出力光を
取り出すようにし、前記光導波層をはさんで、前記活性
層と対向して光吸収層を配置したことを特徴とする光増
幅器。 5)ダブルへテロ接合よりなる活性層の光入射端面に反
射防止膜を付着し、前記活性層にそのバンドギャップと
tlぼ等しい波層のfF3 ’W光を光入射端面より入
射させ、前記活性層に電流を注入して、誘導放出効果に
より前記信号光を増幅するようになし、前記活性層の出
射端には、当該活性層に連続して、等側屈折率の等しい
光導波層を設け、該先導波層の一側面には正反射を生じ
ない周期をもつ回折格子を設け、前記光導波層から増幅
出力光を取り出すようにし、前記光導波層をはさんで、
前記活性層と対向して光吸収層を配置し、前記光吸収層
に逆バイアスを印加する電極を配置して光増幅の利得の
変動を検出し、その変動に応じ゛C前記活性層へ注入さ
れる電流の量を制御するようにしたことを特徴とする光
増幅器。
[Scope of Claims] 1) An antireflection film is attached to a light incident end face of an active layer formed of a double heterojunction, and a signal light having a wavelength approximately equal to the bandgap of the active layer is made to enter the active layer from the light incident face, A current is injected into the active layer to amplify the signal light by a stimulated emission effect, and a light guide having an equal refractive index on the isolateral side is provided at an output and an opposite end of the active layer, continuous with the active layer. 1. An optical amplifier comprising: a wave layer; one side of the optical waveguide layer is provided with a diffraction grating having a period that does not cause regular reflection; and amplified output light is extracted from the optical waveguide layer. 2) An antireflection film is attached to the light-incidence end face of the active layer made of a double heterojunction, and a signal light having a wavelength approximately equal to the bandgap of the active layer is made to enter the active layer from the light-incidence end face, and a current is applied to the active layer. 7. At the output end of the active layer, an optical waveguide layer having an equal refractive index is provided in succession to the active layer, and the optical waveguide layer is A diffraction grating having a period that does not cause specular reflection is provided on one side of the wave layer to extract amplified output light from the optical waveguide layer, and a diffraction grating is provided on one side of the wave layer to face the active layer with the optical waveguide layer in between. An optical amplifier characterized by disposing a light absorption layer. 5) An antireflection film is attached to the light incident end face of the active layer consisting of a double heterojunction, and fF3'W light of a wave layer approximately equal to the bandgap tl of the active layer is made to enter the active layer from the light incident face. A current is injected into the layer so as to amplify the signal light by a stimulated emission effect, and an optical waveguide layer having an equal refractive index on the isolateral side is provided at the output end of the active layer in succession to the active layer. , a diffraction grating having a period that does not cause specular reflection is provided on one side of the leading waveguide layer so as to extract the amplified output light from the optical waveguide layer, and sandwiching the optical waveguide layer,
A light absorption layer is disposed opposite to the active layer, and an electrode for applying a reverse bias to the light absorption layer is disposed to detect fluctuations in the gain of optical amplification, and inject C into the active layer according to the fluctuations. An optical amplifier characterized in that the amount of current flowing through the amplifier is controlled.
JP12315083A 1983-07-08 1983-07-08 Light amplifier Pending JPS6015986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12315083A JPS6015986A (en) 1983-07-08 1983-07-08 Light amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12315083A JPS6015986A (en) 1983-07-08 1983-07-08 Light amplifier

Publications (1)

Publication Number Publication Date
JPS6015986A true JPS6015986A (en) 1985-01-26

Family

ID=14853419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12315083A Pending JPS6015986A (en) 1983-07-08 1983-07-08 Light amplifier

Country Status (1)

Country Link
JP (1) JPS6015986A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186695A (en) * 1988-01-14 1989-07-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light amplifier
JPH02226233A (en) * 1989-02-28 1990-09-07 Canon Inc Semiconductor optical amplifier
JPH07218937A (en) * 1994-01-24 1995-08-18 Trw Inc Wavelength-selectable optical signal processor
US6141477A (en) * 1997-01-10 2000-10-31 Nec Corporation Semiconductor optical amplification element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186695A (en) * 1988-01-14 1989-07-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light amplifier
JPH02226233A (en) * 1989-02-28 1990-09-07 Canon Inc Semiconductor optical amplifier
JPH07218937A (en) * 1994-01-24 1995-08-18 Trw Inc Wavelength-selectable optical signal processor
US6141477A (en) * 1997-01-10 2000-10-31 Nec Corporation Semiconductor optical amplification element

Similar Documents

Publication Publication Date Title
JP2534445B2 (en) Waveguide type optical isolator
US8644714B2 (en) Multi-wavelength optical source generator
JPH04254380A (en) Monolithic integrated photoamplifier and photodetector
JPH0357288A (en) Device with semiconductor laser and using method of the same
US5196958A (en) Optical amplifier having gain at two separated wavelengths
US10020638B2 (en) Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
JP5484592B2 (en) High linear power laser system
US8547631B2 (en) Semiconductor optical amplifier
WO2007094063A1 (en) Semiconductor light amplifier
JP4789320B2 (en) Semiconductor optical amplifier
JP4706403B2 (en) Optical wavelength conversion element and optical wavelength converter
US6456429B1 (en) Double-pass optical amplifier
JPS6015986A (en) Light amplifier
US6646317B2 (en) High power photodiode
US20230187906A1 (en) Wavelength-variable laser
JP4485745B2 (en) Optical functional device and optical functional device
JP7294453B2 (en) directly modulated laser
JP2003255164A (en) Optical coupling element and optical device
Poguntke et al. Design of a multistripe array grating integrated cavity (MAGIC) laser
JP2008258531A (en) Laser amplification apparatus and laser equipment
US20040196540A1 (en) Semiconductor optical amplifiers
US20040190126A1 (en) Semiconductor optical integrated circuit
WO2010041454A1 (en) Optical joint
JP7442754B1 (en) optical semiconductor device
JPH04233761A (en) Monolithic integrated ridge waveguide semiconductor optical preamplifier