JPS60159675A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS60159675A
JPS60159675A JP1581284A JP1581284A JPS60159675A JP S60159675 A JPS60159675 A JP S60159675A JP 1581284 A JP1581284 A JP 1581284A JP 1581284 A JP1581284 A JP 1581284A JP S60159675 A JPS60159675 A JP S60159675A
Authority
JP
Japan
Prior art keywords
fiber
scintillators
scintillator
refractive index
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1581284A
Other languages
Japanese (ja)
Other versions
JPH0558147B2 (en
Inventor
Seiichi Yamamoto
誠一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP1581284A priority Critical patent/JPS60159675A/en
Publication of JPS60159675A publication Critical patent/JPS60159675A/en
Publication of JPH0558147B2 publication Critical patent/JPH0558147B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/201Measuring radiation intensity with scintillation detectors using scintillating fibres

Abstract

PURPOSE:To improve space resolving power and linearity by arranging plural pieces of optical fiber-like scintillators each formed by coating the circumference of a transparent scintillator with a clad layer having a high refractive index in parallel and detecting the light emitted from each end. CONSTITUTION:A transparent plastic scintillator is used as a core material 31 and the circumference there of is coated with a clad layer 32 consisting of a material having the refractive index higher than the refractive index of the core material 31 into a fiber shape, by which an optical fiber-like scintillator 1 is formed. The plural fiber-like scintillators 1-16 formed in such a way are arranged in parallel. Each of the scintillators 1-16 emits light from both ends and therefore if the ends of the respective fiber-like scintillators are conducted to eight pieces of photor multipliers A-H, the fiber-like scintillators which emit light can be identified. The one-dimensional light emitting place with respect to the arraying direction of the fiber-like scintillators, i.e., the incident position of charge particles is thus known.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、オートラジオグラフィックカメラ等に用い
られる放射線検出器に関し、特に電荷を持つ粒子の位置
検出に好適な放射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a radiation detector used in an autoradiographic camera or the like, and particularly to a radiation detector suitable for detecting the position of charged particles.

(ロ)従来技術 従来、荷電粒子の位置検出にはスパークチェンバ等が用
いられていたが、高い空間分解能が得られず、また高い
41数率での数え落しも多いという問題があった。
(B) Prior Art Conventionally, spark chambers and the like have been used to detect the positions of charged particles, but there have been problems in that high spatial resolution cannot be obtained and there are many cases of missing counts at a high 41 number rate.

(ハ)目的 この発明は、空間分解能が高く、検出位置の直線性に優
れ、高い計数率でも数え落しの少ない放射線検出器を提
供することを目的とする。
(C) Objective The object of the present invention is to provide a radiation detector that has high spatial resolution, excellent linearity of detection positions, and has fewer missed counts even at a high counting rate.

(ニ)構成 この発明による放−射線検出器では、透明なシンチレー
タを芯材とし、その周囲を芯材よりも屈折率の高い材料
でなるクラッド層で被覆してファイバ状とした光学ファ
イバ状シンチレータを用い、これを複数本平行に配列し
、各ファイバ状シンチレータの端部から出射した光を光
検出器で検出するようにしている。
(D) Structure The radiation detector according to the present invention uses an optical fiber-like scintillator that has a transparent scintillator as a core material and is coated with a cladding layer made of a material having a higher refractive index than the core material to form a fiber. A plurality of scintillators are arranged in parallel, and the light emitted from the end of each fiber-shaped scintillator is detected by a photodetector.

(ホ)実施例 第1図のおいて、透明なプラスチックシンチレータを芯
材31とし、その周囲を芯材31よりも屈折率の高い材
料でなるクラッド層32で被覆してファイバ状とするこ
とにより光学ファイバ状シンチレータ1が形成されてい
る。このクラッド層32はガラス、プラスチックあるい
は屈折率の条件を満たすものであれば芯材31と同じプ
ラスチックシンチレータを使用することもできる。この
ファイバ状シンチレータlでは、荷電粒子が軌跡33の
ようにこのファイバ状シンチレータlを突き抜けると、
芯材31の部分で軌跡33に沿って発光し、その光がク
ラッド層32との境界面で全反射しながら長手方向に伝
達されて両端より出射する。
(E) Embodiment In FIG. 1, a transparent plastic scintillator is used as the core material 31, and its periphery is covered with a cladding layer 32 made of a material with a higher refractive index than the core material 31 to form a fiber shape. An optical fiber scintillator 1 is formed. This cladding layer 32 may be made of glass, plastic, or the same plastic scintillator as the core material 31 as long as it satisfies the refractive index conditions. In this fiber-shaped scintillator l, when a charged particle passes through this fiber-shaped scintillator l as shown by the trajectory 33,
The core material 31 emits light along a locus 33, and the light is transmitted in the longitudinal direction while being totally reflected at the interface with the cladding layer 32, and is emitted from both ends.

このように形成された多数(この実施例では16木)の
ファイバ状シンチレータ1−16を第2図に示すように
平行に配列すると、1次元位置検出器を構成することが
できる。ファイバ状シンチレータ1〜16の各々は両端
より光を出射するので、たとえば第2図に示すような組
み合せで各ファイバ状シンチレータの端部を8個の光電
子増倍管A−Hに導けば、どのファイバ状シンチレータ
で発光したかが分る。すなわち、たとえば光電子増倍管
Aと光電子増倍管Eとにより同時に発光が検出されたと
すると、ファイバ状シンチレータlで発光が生じたこと
が分る。そのため、光電子増倍管A−Dの群および光電
子増倍管E−Hの群の各群から1個ずつ山力を取り出し
て組み合せた場合の16通りの組み合せの同時検出をで
きるだけの164v4の同時計数回路を設ければ、ファ
イ/<状シンチレータの配列方向に関する1次元の発光
場所すなわち荷電粒子の入射位置を知ることができる。
A one-dimensional position detector can be constructed by arranging a large number of fiber-shaped scintillators 1-16 (16 in this embodiment) in parallel as shown in FIG. 2. Each of the fiber-shaped scintillators 1 to 16 emits light from both ends, so if the ends of each fiber-shaped scintillator are guided to eight photomultiplier tubes A to H in the combination shown in FIG. It can be seen whether the fiber-shaped scintillator emitted light. That is, for example, if light emission is detected simultaneously by photomultiplier tube A and photomultiplier tube E, it can be seen that light emission has occurred in fiber-shaped scintillator l. Therefore, the simultaneous detection of 164v4 is sufficient to enable simultaneous detection of 16 combinations when one Yamariki is taken out from each group of photomultiplier tubes A-D and photomultiplier tubes E-H and combined. By providing a counting circuit, it is possible to know the one-dimensional light emitting location, that is, the incident position of the charged particles in the arrangement direction of the phi/<-shaped scintillators.

さらにこのような1次元位置検出器を検出方向が重なら
ないようにして2組用いれば2次元位置検出器が構成で
きる。すなわち、第3図に示すように、10本のファイ
バ状シンチレータ1−10を平行に並べて第1層を形成
し、これを、他のlO木のファイバ状シンチレータ11
〜20を平行に並べて形成した第2層の上に、両者の方
向が略直角になるようにして重ねる。すると、荷電粒子
は軌跡33のようにこれらの2つの層を突き抜けるため
、」二記と同様に各層での1次元の位置検出が行なえ、
両者によって2次元の位置が検出できる。なお、この場
合3層以上に重ねることなどもできる。また、2層でな
る2次元位置検出器を、間に空間を置いて2組重ねるよ
うに配置すれば、これらを貫く荷電粒子の飛行軌跡(位
置および方向)を知ることができる。 − ここで、荷電粒子とは、電子、陽電子、γ線、陽子線等
であり、これらが検出できる。また中性r−線は、これ
ら位置検出器の入射側表面に中性子から荷電粒子に変換
するコンバータを設けることによって検出できる。
Furthermore, a two-dimensional position detector can be constructed by using two sets of such one-dimensional position detectors so that their detection directions do not overlap. That is, as shown in FIG. 3, 10 fiber-shaped scintillators 1-10 are arranged in parallel to form a first layer, and this is layered with other lO-tree fiber-shaped scintillators 1-10.
-20 are stacked on top of the second layer formed by arranging them in parallel so that the directions of the two are substantially perpendicular. Then, the charged particles penetrate these two layers as shown in trajectory 33, so one-dimensional position detection in each layer can be performed as in Section 2.
A two-dimensional position can be detected by both. In this case, it is also possible to stack three or more layers. Further, by arranging two sets of two-layer two-dimensional position detectors so as to overlap each other with a space in between, it is possible to know the flight trajectory (position and direction) of charged particles passing through them. - Here, charged particles include electrons, positrons, gamma rays, proton beams, etc., and these can be detected. Moreover, neutral r-rays can be detected by providing a converter for converting neutrons into charged particles on the incident side surface of these position detectors.

ファイバ状シンチレータは太さlOILmから1mm程
度まで種々のものを作ることが可能であり、細いファイ
バ状シンチレータを数多く配列すれば高分解能な位置検
出を行なうことができる。
Fiber-shaped scintillators can be manufactured in various thicknesses from lOILm to about 1 mm, and high-resolution position detection can be performed by arranging a large number of thin fiber-shaped scintillators.

また、検出位置の直線性はファイバ状シンチレータを並
べる精度(ピッチの正確さ)で決定され、精度高く配列
することにより非常に優れた直線性を容易に達成できる
Furthermore, the linearity of the detection position is determined by the accuracy of arranging the fiber-shaped scintillators (accuracy of pitch), and by arranging them with high precision, extremely excellent linearity can be easily achieved.

なお、上記ではファイバ状シンチレータの端部から出射
される光を光電子増倍管で検出しているが、これに限ら
ず他の光検出器を使用してもよい。さらにファイバ状シ
ンチレータの本数についても限定されるものでなく、ま
た第2図のように組み合せる場合のコードもこの図に示
したものに限られないことも勿論である。
Note that although the light emitted from the end of the fiber-shaped scintillator is detected by a photomultiplier tube in the above example, the present invention is not limited to this, and other photodetectors may be used. Furthermore, the number of fiber-shaped scintillators is not limited, and it goes without saying that the cords used when combined as shown in FIG. 2 are not limited to those shown in this figure.

(へ)効果 この発明の放射線検出器によれば、空間分解能はファイ
バ状シンチレータの太さで決定されるので高くでき、ま
た、ファイバ状シンチレータを精度良く平行に配列する
ことにより検出位置の直線性を高めることが容易にでき
、しかもファイバ状シンチレータの端部より出射する光
の処理回路の構成次第で高い計数率特性が得られる。
(f) Effects According to the radiation detector of the present invention, the spatial resolution can be increased because it is determined by the thickness of the fiber-shaped scintillator, and the linearity of the detection position can be improved by arranging the fiber-shaped scintillators in parallel with high precision. can be easily increased, and high count rate characteristics can be obtained depending on the configuration of the processing circuit for the light emitted from the end of the fiber-shaped scintillator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例にかかる1木のファイバ状
シンチレータを示す模式図、第2図はファイバ状シンチ
レータを1方向に並べた1次元検出器の例を示す模式図
、第3図はファイバ状シンチレータを2方向に並べた2
次元検出器の例を示す模式図である。 1〜20・・・ファイバ状シンチレータ31・・・プラ
スチックシンチレータの芯材32・・・クラッド層 33・・・荷電粒子の軌跡 A〜II・・・光電子増倍管 答1図 算3」
FIG. 1 is a schematic diagram showing a single fiber scintillator according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing an example of a one-dimensional detector in which fiber scintillators are arranged in one direction, and FIG. is 2 in which fiber-shaped scintillators are arranged in two directions.
FIG. 2 is a schematic diagram showing an example of a dimensional detector. 1 to 20...Fiber scintillator 31...Core material of plastic scintillator 32...Clad layer 33...Trajectories of charged particles A to II...Photomultiplier tube answer 1 diagram calculation 3"

Claims (1)

【特許請求の範囲】[Claims] (1)透明なシンチレータを芯材とし、その周囲を芯材
よりも屈折率の高い材料でなるクラッド層で被覆してフ
ァイバ状とした光学ファイバ状シンチレータを複数本平
行に配列し、各ファイバ状シンチレータの端部から出射
した光を光検出器で検出するようにして構成される放射
線検出器。
(1) A plurality of optical fiber-like scintillators are arranged in parallel with a transparent scintillator as a core material, and the periphery thereof is covered with a cladding layer made of a material with a higher refractive index than the core material. A radiation detector configured so that a photodetector detects light emitted from the end of a scintillator.
JP1581284A 1984-01-31 1984-01-31 Radiation detector Granted JPS60159675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1581284A JPS60159675A (en) 1984-01-31 1984-01-31 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1581284A JPS60159675A (en) 1984-01-31 1984-01-31 Radiation detector

Publications (2)

Publication Number Publication Date
JPS60159675A true JPS60159675A (en) 1985-08-21
JPH0558147B2 JPH0558147B2 (en) 1993-08-25

Family

ID=11899252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1581284A Granted JPS60159675A (en) 1984-01-31 1984-01-31 Radiation detector

Country Status (1)

Country Link
JP (1) JPS60159675A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625330A1 (en) * 1987-12-24 1989-06-30 Centre Nat Rech Scient VERY HIGH RESOLUTION RADIOCHROMATOGRAM FOR IONIZING RADIATION
US4942302A (en) * 1988-02-09 1990-07-17 Fibertek, Inc. Large area solid state nucler detector with high spatial resolution
JPH0348188A (en) * 1989-04-10 1991-03-01 Hamamatsu Photonics Kk Autoradiography apparatus
JPH03108687A (en) * 1989-09-22 1991-05-08 Mitsubishi Atom Power Ind Inc Radiation detector of radiation measuring apparatus
JPH0424582A (en) * 1990-05-18 1992-01-28 Toshiba Corp Measuring apparatus of radiation
US5103098A (en) * 1989-11-09 1992-04-07 Board Of Regents, The University Of Texas System High resolution gamma ray detectors for positron emission tomography (pet) and single photon emission computed tomography (spect)
JPH04213091A (en) * 1990-12-10 1992-08-04 Konica Corp Detection of radiation amount
US5281821A (en) * 1989-11-09 1994-01-25 Board Of Regents, The University Of Texas System Position sensitive gamma ray detector
US5334839A (en) * 1991-10-29 1994-08-02 The Board Of Regents, The University Of Texas System. Position sensitive radiation detector
US5374824A (en) * 1994-01-05 1994-12-20 Board Of Regents, The University Of Texas System Method and apparatus for determining and utilizing cross-talk adjusted scintillating fibers
JP2007327967A (en) * 2007-07-30 2007-12-20 Toshiba Corp Radiation discrimination measuring device
WO2009008911A2 (en) * 2007-03-05 2009-01-15 Trustees Of Boston University High definition scintillation detector for medicine, homeland security, and non-destructive evaluation
US9040928B2 (en) 2006-12-29 2015-05-26 Bae Systems Plc Detection of ionising radiation
JP2016133333A (en) * 2015-01-16 2016-07-25 国立大学法人 千葉大学 Pet apparatus, and radiation detector for pet apparatuses
JP2021167846A (en) * 2012-02-14 2021-10-21 アメリカン サイエンス アンド エンジニアリング, インコーポレイテッドAmerican Science and Engineering, Inc. X-ray inspection using wavelength-shifting fiber-coupled scintillation detectors
US11193898B1 (en) 2020-06-01 2021-12-07 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an X-ray system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412882A (en) * 1977-06-30 1979-01-30 Aloka Co Ltd Strand and apparatus for detecting radiation
JPS58168982A (en) * 1982-03-30 1983-10-05 Shimadzu Corp Radiation detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412882A (en) * 1977-06-30 1979-01-30 Aloka Co Ltd Strand and apparatus for detecting radiation
JPS58168982A (en) * 1982-03-30 1983-10-05 Shimadzu Corp Radiation detector

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625330A1 (en) * 1987-12-24 1989-06-30 Centre Nat Rech Scient VERY HIGH RESOLUTION RADIOCHROMATOGRAM FOR IONIZING RADIATION
US4973845A (en) * 1987-12-24 1990-11-27 Centre National De La Recherche Scientifique (Cnrs) Very high resolution autofluoroscope for ionizing radiation
US4942302A (en) * 1988-02-09 1990-07-17 Fibertek, Inc. Large area solid state nucler detector with high spatial resolution
JPH0348188A (en) * 1989-04-10 1991-03-01 Hamamatsu Photonics Kk Autoradiography apparatus
JPH03108687A (en) * 1989-09-22 1991-05-08 Mitsubishi Atom Power Ind Inc Radiation detector of radiation measuring apparatus
US5103098A (en) * 1989-11-09 1992-04-07 Board Of Regents, The University Of Texas System High resolution gamma ray detectors for positron emission tomography (pet) and single photon emission computed tomography (spect)
US5281821A (en) * 1989-11-09 1994-01-25 Board Of Regents, The University Of Texas System Position sensitive gamma ray detector
JPH0424582A (en) * 1990-05-18 1992-01-28 Toshiba Corp Measuring apparatus of radiation
JPH04213091A (en) * 1990-12-10 1992-08-04 Konica Corp Detection of radiation amount
US5334839A (en) * 1991-10-29 1994-08-02 The Board Of Regents, The University Of Texas System. Position sensitive radiation detector
US5374824A (en) * 1994-01-05 1994-12-20 Board Of Regents, The University Of Texas System Method and apparatus for determining and utilizing cross-talk adjusted scintillating fibers
US9040928B2 (en) 2006-12-29 2015-05-26 Bae Systems Plc Detection of ionising radiation
US9239394B2 (en) 2006-12-29 2016-01-19 Bae Systems Plc Detection of ionising radiation
WO2009008911A2 (en) * 2007-03-05 2009-01-15 Trustees Of Boston University High definition scintillation detector for medicine, homeland security, and non-destructive evaluation
WO2009008911A3 (en) * 2007-03-05 2009-09-03 Trustees Of Boston University High definition scintillation detector for medicine, homeland security, and non-destructive evaluation
US8477906B2 (en) 2007-03-05 2013-07-02 Trustees Of Boston University High definition scintillation detector for medicine, homeland security and non-destructive evaluation
JP2007327967A (en) * 2007-07-30 2007-12-20 Toshiba Corp Radiation discrimination measuring device
JP2021167846A (en) * 2012-02-14 2021-10-21 アメリカン サイエンス アンド エンジニアリング, インコーポレイテッドAmerican Science and Engineering, Inc. X-ray inspection using wavelength-shifting fiber-coupled scintillation detectors
JP2016133333A (en) * 2015-01-16 2016-07-25 国立大学法人 千葉大学 Pet apparatus, and radiation detector for pet apparatuses
US11193898B1 (en) 2020-06-01 2021-12-07 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an X-ray system

Also Published As

Publication number Publication date
JPH0558147B2 (en) 1993-08-25

Similar Documents

Publication Publication Date Title
JPS60159675A (en) Radiation detector
US7087905B2 (en) Radiation three-dimensional position detector
US4831263A (en) Position-sensitive radiation detector
US7214943B2 (en) Radiation or neutron detector using fiber optics
US5783829A (en) Energy and position sensitive radiation detectors
US8993973B2 (en) Pixel-type two-dimensional image detector
JP5925452B2 (en) Positron emission tomography (PET) detector module, positron emission tomography (PET) scanner system, optical fiber plate and nuclear medicine imaging detector module
US20150028218A1 (en) Radiation detector
JP5011590B2 (en) Radiation position detector
JPS6295483A (en) Positron radiation tomographic radiation camera
JPH0575990B2 (en)
JPH0795437B2 (en) Photomultiplier tube
US5334839A (en) Position sensitive radiation detector
JP2003021682A (en) Radiation three-dimensional position detector
JPH09318757A (en) Radiation detector
WO1985004959A1 (en) Gamma photon detection apparatus and method
RU93548U1 (en) HODOSCOPE
JP2003240857A (en) Radiation detector
JPS6347686A (en) Radiation three-dimensional position detector
JPH0961533A (en) Scintillator and scintillation detector
JP2560355B2 (en) Positron ring type ECT device
JP2001013254A (en) Tabular neutron ray detector and neutron source- measuring device
JPS639881A (en) Radiation detector
JPH04274793A (en) Radiation detector
JP2004354343A (en) Radiation detector