JPS60158742A - Optical data way - Google Patents

Optical data way

Info

Publication number
JPS60158742A
JPS60158742A JP59014687A JP1468784A JPS60158742A JP S60158742 A JPS60158742 A JP S60158742A JP 59014687 A JP59014687 A JP 59014687A JP 1468784 A JP1468784 A JP 1468784A JP S60158742 A JPS60158742 A JP S60158742A
Authority
JP
Japan
Prior art keywords
optical
loop
transmission line
station
optical coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59014687A
Other languages
Japanese (ja)
Other versions
JPH0314248B2 (en
Inventor
Kiyoharu Inao
稲生 清春
Seiichi Naito
内藤 誠一
Yoshihiro Sanbe
義広 三瓶
Yoshio Kurita
栗田 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP59014687A priority Critical patent/JPS60158742A/en
Publication of JPS60158742A publication Critical patent/JPS60158742A/en
Publication of JPH0314248B2 publication Critical patent/JPH0314248B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4637Interconnected ring systems

Abstract

PURPOSE:To set the coupling ratio of each optical connector at 1 in a transmission mode and at <=1 in a reception mode respectively and to improve the reliability of an optical data highway, by using optical connectors having variable coupling ratios to control two loop type transmission lines and then controlling the coupling ratio of each connector by means of a control means. CONSTITUTION:Optical connectors A41-A4N, A51-A5N and A61 and A62 which have variable coupling ratios are connected to loop type optical transmission line L4 and L5 respectively. The coupling ratios of connectors A41- A4N and A51-A5N are varied by the control signals given from stations ST41-ST4N and ST51-ST5N. An optical transmission line L6 is connected to connectors A61 and A62 to form the 3rd loop type transmission line. These connectors A61 AND A62 are switched and controlled by control means CT81 and CT82. The meand CT81 and CT82 are controlled by a loop control means CT80. Then the coupling ratios of all optical connectors are set at 1 in a transmission mode and then at <=1 in a reception mode respectively. This can improve the reliability of an optical data highway.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、光ファイバーを介して複数のステーションな
どの間の通信を行なうループ形光データウェイの改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a loop optical dataway for communicating between multiple stations or the like via optical fibers.

(従来技術) 第1図は光スィッチを用いた従来のループ形光データウ
ェイを示すブロック構成図で蕊る。ステーション5T1
1.5T12.・・・、5TINは光結合器A11.A
I 2.・・・、AINを介してループ形光伝送線路L
1と接続している。光結合器A11、AI 2.・・・
、AINの各光スィッチは各ステーションの動作が正常
の時は実線のように接続し、各ステーションにおいて光
電・電光変換などを用いて再生中継が行われ、基本的に
は1対1の伝送が行われる。すなわち、ステーション5
T11、ST12.・・・、5T1Nの送出信号T11
゜T12.・・・、TINはそれぞれST12.・・・
、5TIN、ST11の受信信号R12,・・・、RI
N。
(Prior Art) FIG. 1 is a block diagram showing a conventional loop-type optical dataway using optical switches. Station 5T1
1.5T12. ..., 5TIN is the optical coupler A11. A
I 2. ..., loop type optical transmission line L via AIN
Connected to 1. Optical coupler A11, AI 2. ...
, AIN's optical switches are connected as shown by solid lines when each station is operating normally, and regenerative relay is performed at each station using photoelectric/electronic conversion, basically one-to-one transmission. It will be done. That is, station 5
T11, ST12. ..., 5T1N transmission signal T11
゜T12. ..., TIN is ST12. ...
, 5TIN, received signal R12 of ST11,..., RI
N.

R11となり受信再生された後ST12.・・・、5T
IN、ST11の送出信号T12.・・・、TIN。
R11 and after receiving and reproducing, ST12. ..., 5T
IN, ST11 transmission signal T12. ..., TIN.

T11となり以下同様に繰返し再生中継される。T11, and the reproduction relay is repeated in the same manner.

ステーションの動作が異常(例えば電源I!Ii)の時
には点線のように切り換わり、該当ステーションをバイ
パスする。第2図はステーションSTI 2のみが異常
でバイパスされている場合を示している。
When the operation of a station is abnormal (for example, power source I!Ii), the station is switched as shown by the dotted line, and the corresponding station is bypassed. FIG. 2 shows a case where only station STI 2 is abnormal and is bypassed.

この方式では送受信間の減衰は問題とならないが、信号
が再生を繰り返すため遅延が大きくなり、通信エラーが
累積して誤り率が大きくなるという欠点を有している。
Although attenuation between transmission and reception is not a problem in this system, it has the disadvantage that the delay increases because the signal is repeatedly reproduced, and communication errors accumulate, increasing the error rate.

(発明の目的) 本発明は上記の問題点を解決するためになされたもので
、高信頼性で伝送遅延が少なく誤り率が低いとともに送
受信間の減衰量が小さいループ形の光データウェイを実
現することを目的としている。
(Objective of the Invention) The present invention has been made to solve the above problems, and realizes a loop-type optical dataway with high reliability, low transmission delay, low error rate, and low attenuation between transmitting and receiving. It is intended to.

(発明の概要) 本発明の第1の発明に係わる光データウェイはループ形
の光伝送線路と、この光伝送線路と接続する結合比可変
の光結合器と、この光結合器と接続するステーションと
を有し、前記ステーションからの制御信号で前記光結合
器の結合比を送信時には1とし受信時には1以下の所定
の値とするようにしたことを特徴としている。
(Summary of the Invention) The optical dataway according to the first aspect of the present invention includes a loop-shaped optical transmission line, an optical coupler with a variable coupling ratio connected to the optical transmission line, and a station connected to the optical coupler. The invention is characterized in that the control signal from the station sets the coupling ratio of the optical coupler to 1 during transmission and to a predetermined value of 1 or less during reception.

本発明の第2の発明に係わる光データウェイはループ形
の光伝送線路と、この光伝送線路と接続する結合比可変
の第1および第2の光結合器と、この第1の光結合器と
接続するステーションと、前記第2の光結合器と接続す
る第2の光伝送線路とを有し、前記ステーションからの
制御信号で前記第1の光結合器の結合比を送信時には1
とし受信時には1以下の所定の値とするようにしたこと
を特徴としている。
The optical dataway according to the second aspect of the present invention includes a loop-shaped optical transmission line, first and second optical couplers with variable coupling ratios connected to the optical transmission line, and the first optical coupler. and a second optical transmission line connected to the second optical coupler, and the coupling ratio of the first optical coupler is set to 1 when transmitting a control signal from the station.
It is characterized in that it is set to a predetermined value of 1 or less at the time of reception.

(実施例) 以下本発明を図面を用いて詳しく説明する。(Example) The present invention will be explained in detail below using the drawings.

第3図は本発明に係わる光データウェイの〜実施例を示
すブロック構成図である。L3はループ形の光伝送線路
、A31.A32.・・・、A3Nはこの光伝送線路L
3と接続する結合比可変の光結合器、5T31,5T3
2.・・・、5T3Nはこの光結合器A31.A32.
・・・、A3Nとそれぞれ接続するステーションである
FIG. 3 is a block diagram showing an embodiment of an optical dataway according to the present invention. L3 is a loop-shaped optical transmission line, A31. A32. ..., A3N is this optical transmission line L
Optical coupler with variable coupling ratio connected to 3, 5T31, 5T3
2. ..., 5T3N is this optical coupler A31. A32.
. . , are stations connected to A3N, respectively.

各ステーション5T31’、5T32.・・・、5T3
Nは送受信状態、受信信号レベル、自ステーションの状
態などに応じて各制御信号C31,C32、・・・、C
3Nにより光結合器A31.A32゜・・・、A3Nの
結合比を動的かつ連続的に変化させる。第4図はステー
ション5T31のみを送信状態とし、その他のステーシ
ョンを受信状態とした場合を示している。
Each station 5T31', 5T32. ..., 5T3
N is each control signal C31, C32, . . .
3N, the optical coupler A31. A32°..., the bonding ratio of A3N is dynamically and continuously changed. FIG. 4 shows a case where only station 5T31 is in the transmitting state and the other stations are in the receiving state.

第5図は結合比をα1としたときの前記光結合器の入出
力関係を示す説明図である。入力光信号11.12と出
力光信号01.02とのあいだには次の関係式がある。
FIG. 5 is an explanatory diagram showing the input/output relationship of the optical coupler when the coupling ratio is α1. The following relational expression exists between the input optical signal 11.12 and the output optical signal 01.02.

第4図において前記結合比α1を送信時に1とし受信時
には1以下の所定の値αとなるように制御すれば、最大
の減衰が生じるステーション5T31.5T3N@の送
受信の場合、伝送ゲインGは次式で表わされる。
In FIG. 4, if the coupling ratio α1 is controlled to be 1 at the time of transmission and a predetermined value α of 1 or less at the time of reception, in the case of transmission and reception at station 5T31.5T3N@ where the maximum attenuation occurs, the transmission gain G is as follows. It is expressed by the formula.

G−α(1−α戸−2 これはα−1/(N−1)の時に最大となり、これを代
入すると最大伝送ゲインGtは次式で表わ中e/ (N
−1) (N>1) ・・・・・・(1) すなわち減衰はNに比例する。(実際には伝送線路の減
衰がこれに加わる。) 従来のマルチドロップ形光データウェイにおける最大伝
送ゲインは通常Nに比例しているが、第3図の実施例に
おける最大伝送ゲインGtは(1)式よりN−1に比例
している。したがって前記実施例は従来のマルチドロッ
プ形光データウェイにくらべ、減衰量が小さい。逆に減
衰量を同一とすれば、従来のマルチドロップ形光データ
ウェイにくらべ、ステーションの数を増すことができる
G-α(1-α-2) This becomes maximum when α-1/(N-1), and by substituting this, the maximum transmission gain Gt is expressed by the following formula:
-1) (N>1) (1) That is, the attenuation is proportional to N. (Actually, the attenuation of the transmission line is added to this.) The maximum transmission gain in a conventional multi-drop optical dataway is normally proportional to N, but the maximum transmission gain Gt in the embodiment shown in FIG. ), it is proportional to N-1. Therefore, the attenuation amount of the embodiment is smaller than that of the conventional multi-drop optical dataway. Conversely, if the amount of attenuation is kept the same, the number of stations can be increased compared to the conventional multi-drop optical dataway.

また従来のループ形光データウェイにくらべ、再生中継
を介在させないので、信号受信の際遅延が少なく誤り率
も増加しない。
Furthermore, compared to conventional loop-type optical dataways, there is no intervening regenerative relay, so there is less delay during signal reception and no increase in error rate.

また送信した信号が自ステーションに戻るため、伝送路
長や減衰量が測定でき、伝送路の異常も察知できる。
Furthermore, since the transmitted signal returns to its own station, the length and attenuation of the transmission path can be measured, and abnormalities in the transmission path can also be detected.

また従来のループ伝送に関する種々の技術(ループバッ
ク等)をそのまま利用できると(Aう利点もある。
There is also an advantage that various techniques related to conventional loop transmission (loopback, etc.) can be used as they are.

第6図は第5図の光結合器の一実施例を示す構成説明図
である。この光結合器の構成Gよ特願昭58−1466
52号「高速光スイッチ」に示したものとほぼ同じで、
PL之Tの電気光学効果を利用したものである。図にお
いて、71.72はそれぞれ入力光信号11.12を導
く光ファイA−173,74はこの光ファイバー71.
72に結合する光フアイバーコネクターである。二重の
実線で囲んだ部分CPは光結合部であって、この中は例
えば40〜50℃の温度に維持されるようになっている
。光結合部CPにおいて、75.76はそれぞれ前記光
フアイバーコネクター7J、74を通って入ってくる入
力光を集光させるレンズ、77はビームスプリッタ77
1と全反射プリズム772とを組合せて構成した偏光分
離器で、ここにレンズ75.’76を通って入力光が入
射する。
FIG. 6 is a configuration explanatory diagram showing one embodiment of the optical coupler of FIG. 5. Configuration G of this optical coupler, patent application No. 58-1466
It is almost the same as the one shown in No. 52 "High-speed optical switch",
This utilizes the electro-optic effect of PL-T. In the figure, optical fibers A-173 and 74 respectively 71 and 72 respectively guide input optical signals 11 and 12.
72. A portion CP surrounded by a double solid line is an optical coupling portion, and the temperature inside this portion is maintained at, for example, 40 to 50°C. In the optical coupling part CP, 75 and 76 are lenses that condense the input light that enters through the optical fiber connectors 7J and 74, respectively, and 77 is a beam splitter 77.
1 and a total reflection prism 772, in which a lens 75. Input light enters through '76.

78お゛よび79はそれぞれ77から出た2つの偏光波
が照射されるように設置されたPLZT、80はこのP
LZT78.79に制御信号を与えるためのドライブ端
子、81はビームスプリッタ811と全反射プリズム8
12とを組合せて構成した偏光合成器で、ここには、各
PLZT7Bおよび79を通った光が入射する。82.
83Gよレンズで、それぞれPLZT78および79に
焦点が合うように設置されている。84.85は光フア
イバ用コネクターで、レンズ82.83を通った偏光合
成器81からの出力光がここを通り、出力光信号01,
02として光ファイバ86.87に導かれる。
78 and 79 are PLZTs installed so that the two polarized waves emitted from 77 are irradiated, and 80 is this PLZT.
Drive terminal for giving control signals to LZT78.79, 81 is beam splitter 811 and total reflection prism 8
12, into which the light that has passed through each PLZT7B and 79 is incident. 82.
The 83G lens is installed so that it focuses on PLZT78 and 79, respectively. 84.85 is an optical fiber connector, through which the output light from the polarization combiner 81 passes through the lens 82.83, and output optical signals 01,
02 to the optical fiber 86.87.

このように構成した光結合器の動作を次に説明する。光
結合部CPにおいて、レンズ75を通って偏光分離器7
7に入射した光は、S波とP波に分離し、P波はPLz
T79に、S波4;IE P L Z、 T78にそれ
ぞれ入る。ここでPLZT78.79は制御電圧が印加
されなければ電気光学効果は生じない。したがって、こ
の状態では、PLZT79を通ったP波およびPLZT
78を通ったS波は、いずれもレンズ82、光フアイバ
用コネクター84を通って、光フアイバー86側に出力
される。PLZT78.79に制御電圧が印加されると
、電気光学効果が生じ、ここを通過するP波はS波に、
S波はP波に、それぞれ偏光面が900回転する。この
結果、PLZT78を通過しP波となった光およびP 
L Z T 79を通過しS波となった光は、いずれも
偏光合成器81に入射後、レンズ83、光フアイバ用コ
ネクター85を通って、光フアイバー87側に出力され
る。レンズ76を通って偏光分離器77に入射した光に
ついても同様テ、PLZT78.79km制御llN圧
が印加されなければ光フアイバー87側に出力され、制
御電圧が印加されれば光フアイバー86側に出力される
The operation of the optical coupler configured in this way will be explained next. At the optical coupling part CP, the polarized light separator 7 passes through the lens 75.
The light incident on 7 is separated into S waves and P waves, and the P waves are PLz
S wave 4 enters T79, IE P L Z, and T78, respectively. Here, in PLZT78.79, no electro-optic effect occurs unless a control voltage is applied. Therefore, in this state, the P wave passing through PLZT79 and the PLZT
The S waves that have passed through 78 pass through a lens 82 and an optical fiber connector 84, and are output to the optical fiber 86 side. When a control voltage is applied to PLZT78.79, an electro-optic effect occurs, and the P wave passing through it becomes an S wave,
The plane of polarization of the S wave and the P wave rotates 900 times each. As a result, the light that passed through PLZT78 and became P waves and P
The light that passes through the LZT 79 and becomes an S wave enters the polarization combiner 81, passes through the lens 83 and the optical fiber connector 85, and is output to the optical fiber 87 side. Similarly, the light that has passed through the lens 76 and entered the polarization separator 77 is outputted to the optical fiber 87 side if the PLZT78.79km control IIN pressure is not applied, and is outputted to the optical fiber 86 side if the control voltage is applied. be done.

このように構成された装置によれば、制御1fff圧に
よって光入力信号11および12を光出力01または0
2へ切換えることができる。すなわち制御電圧がOVの
場合光入力11は光出力01となり、光入力I2は光出
力02となる。制御l電圧をOVから増加していくにし
たがって、光入力11は光出力02へ、光入力I2は光
出力01へ次第に移ってゆく。第7図はこの様子を示し
た特性曲線図で、制御電圧により、11から01への光
透過率α11(tなわち第5図の1−α1)および11
から02への光透過率α12(第5図の結合比α1)が
どのように変化プるかを実測したものである。このよう
に光透過率を制御電圧により任意にかつ連続的にコント
ロールすることができる。
According to the device configured in this way, the optical input signals 11 and 12 are changed to the optical output 01 or 0 by the control 1fff pressure.
It is possible to switch to 2. That is, when the control voltage is OV, the optical input 11 becomes the optical output 01, and the optical input I2 becomes the optical output 02. As the control l voltage is increased from OV, the optical input 11 gradually shifts to the optical output 02, and the optical input I2 gradually shifts to the optical output 01. FIG. 7 is a characteristic curve diagram showing this situation, in which the light transmittance α11 (t, that is, 1−α1 in FIG. 5) from 11 to 01 and 11
This is an actual measurement of how the light transmittance α12 (coupling ratio α1 in FIG. 5) changes from 0 to 02. In this way, the light transmittance can be arbitrarily and continuously controlled by the control voltage.

また電気光学系子を用いているので、結合比の切換も十
分高速で行われる。
Furthermore, since an electro-optical system is used, the coupling ratio can be switched at a sufficiently high speed.

なお上記の実施例では光結合器においてPLZTなどの
電気光学素子を用いたが、これに限らずYIGなどの磁
気光学素子を用いてもよい。
In the above embodiment, an electro-optical element such as PLZT is used in the optical coupler, but the present invention is not limited to this, and a magneto-optical element such as YIG may also be used.

第8図は本発明に係わる光データウェイの他の実施例を
示すブロック構成図で、2つのループ形光データウェイ
を第3のループ形光データウェイと前記光結合器を用い
て結合したものである。図において、5T41,5T4
2.・・・、5T4Nは光結合器A41.A42.・・
・、A4Nを介してループ形の光伝送線路L4と結合し
、5T51.5T52.・・・、5T5Nは光結合器A
51.A52゜・・・、A5Nを介してループ形の光伝
送線路L5と結合している。光伝送線路L4および光伝
送線路L5はそれぞれ光結合器A61.A62を介して
ループ形の光伝送線路L6と結合している。光結合器Δ
61.A62はそれぞれ制御手段CT81 。
FIG. 8 is a block diagram showing another embodiment of the optical dataway according to the present invention, in which two loop-type optical dataways are coupled to a third loop-type optical dataway using the optical coupler. It is. In the figure, 5T41, 5T4
2. ..., 5T4N is an optical coupler A41. A42.・・・
, 5T51.5T52 ., coupled to the loop-shaped optical transmission line L4 via A4N. ..., 5T5N is optical coupler A
51. A52° . . . are coupled to the loop-shaped optical transmission line L5 via A5N. The optical transmission line L4 and the optical transmission line L5 are each connected to an optical coupler A61. It is coupled to a loop-shaped optical transmission line L6 via A62. Optical coupler Δ
61. A62 is a control means CT81.

82によって切換を制御され、制御手段CT81 。The switching is controlled by control means CT81.

82はループ制御手段CT80によって制御される。82 is controlled by loop control means CT80.

第9図は本発明に係わる光データウェイの第3の実施例
を示すブロック構成図で管理ステーションから送出され
たアドレス信号を各ローカルステーションで解読し、指
定されたローカルステーションから温度、圧力などのプ
ロセス量をループに送出するようにしたものである。図
において、温度、圧力、流量などのプロセス量を検出す
るセンサTR1,TR2,・・・、TRNはそれぞれロ
ーカルステーション5T71,5T72.・・・、s、
r7Nに接続し、D−カルステーション5T71.5T
72.・・・、5T7Nはそれぞれ光結合@A71゜A
72.・・・、A7Nを介してループ形の光伝送線路L
7と結合する。ループ形の光伝送線路L7は光結合器A
70を介して管理ステーション5T70に接続する。゛ 第10図は第9図の装置の動作を説明するためのタイム
チャート例である。(Δ)のアドレス信号でローカルス
テーションS T 71が指定され、(B)のタイミン
グで温度データが送出される。
FIG. 9 is a block diagram showing a third embodiment of the optical dataway according to the present invention, in which address signals sent from the management station are decoded at each local station, and temperature, pressure, etc. The process amount is sent to a loop. In the figure, sensors TR1, TR2, . ..., s,
Connect to r7N, D-Calstation 5T71.5T
72. ..., 5T7N are each optically coupled @A71°A
72. ..., loop-shaped optical transmission line L via A7N
Combines with 7. The loop-shaped optical transmission line L7 is an optical coupler A.
70 to management station 5T70. 10 is an example of a time chart for explaining the operation of the apparatus shown in FIG. 9. The local station S T 71 is designated by the address signal (Δ), and temperature data is sent out at the timing (B).

再び(C)のアドレス信号でローカルステーション5T
72が指定され、(D)のタイミングで圧力データが送
出される。
Local station 5T again with address signal (C)
72 is specified, and the pressure data is sent out at the timing (D).

(発明の効果) 以上述べたように本発明によれば高信頼性で伝送遅延が
少なく誤り率が低いとともに送受信間の減衰■が小さい
ループ形の光データウェイを実現することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize a loop-type optical dataway with high reliability, low transmission delay, low error rate, and low attenuation (2) between transmission and reception.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光スィッチを用いた従来のループ形光データウ
ェイを示すブロック構成図、第2図は第1図の装置の動
作例を示す動作説明図、第3図は本発明に係わるループ
形光データウェイの一実施例を示すブロック構成図、第
4図は第3図の装置の動作例を示す動作説明図、第5図
は第3図の光結合器の入出力関係を示す説明図、第6図
は第5図の光結合器の一実施例を示す構成説明図、第7
図は光結合器の入出力特性を示す特性曲線図、第8図は
本発明に係わるループ形光データウェイの他の実施例を
示すブロック構成図、第9図は本発明に係わるループ形
光データウェイの第3の実施例を示すブロック構成図、
第10図は第9図の装置の動作を説明するためのタイム
チャート例である。 L3.L4.L5.L6.L7−・・光伝送線路、A3
1.A32. ・・・、A3N、A41.A42゜・・
・、A4N、A51.A52. ・・・、A5N、A6
1 A62.A70.A71.A72. ・・・、A7
N・・・光結合器、5T31.5T32.・・・、5T
3N、5T41,5T42. ・・・、5T4N、5T
51.8T52. ・・・、5T5N、5T70.5T
71.5T72.−、s”r7N−zチーシミ>、C3
1、C32,・・・、C3N・・・制御信号、α1・・
・結合比 凧5図 諮6図 帛7図 制御11電圧
FIG. 1 is a block configuration diagram showing a conventional loop-type optical dataway using an optical switch, FIG. 2 is an operation explanatory diagram showing an example of the operation of the device in FIG. 1, and FIG. 3 is a loop-type optical dataway according to the present invention. FIG. 4 is an explanatory diagram showing an example of the operation of the device in FIG. 3; FIG. 5 is an explanatory diagram showing the input/output relationship of the optical coupler in FIG. 3. , FIG. 6 is a configuration explanatory diagram showing an embodiment of the optical coupler shown in FIG. 5, and FIG.
Figure 8 is a characteristic curve diagram showing the input/output characteristics of the optical coupler, Figure 8 is a block diagram showing another embodiment of the loop type optical dataway according to the present invention, and Figure 9 is a diagram showing the loop type optical data way according to the present invention. A block configuration diagram showing a third embodiment of the data way,
FIG. 10 is an example of a time chart for explaining the operation of the apparatus shown in FIG. 9. L3. L4. L5. L6. L7--Optical transmission line, A3
1. A32. ..., A3N, A41. A42°...
・, A4N, A51. A52. ..., A5N, A6
1 A62. A70. A71. A72. ..., A7
N...Optical coupler, 5T31.5T32. ..., 5T
3N, 5T41, 5T42. ..., 5T4N, 5T
51.8T52. ..., 5T5N, 5T70.5T
71.5T72. −, s”r7N-z chisimi>, C3
1, C32,..., C3N... control signal, α1...
・Coupling ratio kite 5 figure consultation 6 figure 7 figure control 11 voltage

Claims (2)

【特許請求の範囲】[Claims] (1)ループ形の光伝送線路と、この光伝送線路と接続
する結合比可変の光結合器と、この光結合器と接続する
ステーションとを有し、前記ステーションからの制御信
号で前記光結合器の結合比を送信時には1とし受信時に
−は1以下の所定の値とするようにしたことを特徴とす
るループ形の光データウェイ。
(1) It has a loop-shaped optical transmission line, an optical coupler with a variable coupling ratio connected to this optical transmission line, and a station connected to this optical coupler, and the optical coupling is performed by a control signal from the station. 1. A loop-type optical dataway characterized in that the coupling ratio of the device is 1 during transmission and - is a predetermined value of 1 or less during reception.
(2)ループ形の光伝送線路と、この光伝送線路と接続
する結合比可変の第1および第2の光結合器と、この第
1の光結合器と接続するステーションと、前記第2の光
結合器と接続する第2の光伝送線路とを有し、前記ステ
ーションからの制御信号で前記第1の光結合器の結合比
を送信時には1とし受信時には1以下の所定の値とする
ようにしたことを特徴とするループ形の光データウェイ
(2) a loop-shaped optical transmission line, first and second optical couplers with variable coupling ratios connected to the optical transmission line, a station connected to the first optical coupler, and a station connected to the first optical coupler; a second optical transmission line connected to the optical coupler, and a control signal from the station sets the coupling ratio of the first optical coupler to 1 during transmission and to a predetermined value of 1 or less during reception. A loop-shaped optical dataway.
JP59014687A 1984-01-30 1984-01-30 Optical data way Granted JPS60158742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59014687A JPS60158742A (en) 1984-01-30 1984-01-30 Optical data way

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014687A JPS60158742A (en) 1984-01-30 1984-01-30 Optical data way

Publications (2)

Publication Number Publication Date
JPS60158742A true JPS60158742A (en) 1985-08-20
JPH0314248B2 JPH0314248B2 (en) 1991-02-26

Family

ID=11868109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014687A Granted JPS60158742A (en) 1984-01-30 1984-01-30 Optical data way

Country Status (1)

Country Link
JP (1) JPS60158742A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240119A2 (en) * 1986-03-03 1987-10-07 Polaroid Corporation Optical communications system and method
US4730301A (en) * 1985-12-20 1988-03-08 Polaroid Corporation Wavelength multiplexed optical communications system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531404A (en) * 1976-06-28 1978-01-09 Nippon Telegr & Teleph Corp <Ntt> Constituting system for communicating network thru light fiber cable
JPS57132440A (en) * 1981-02-09 1982-08-16 Toshiba Corp Annular optical communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531404A (en) * 1976-06-28 1978-01-09 Nippon Telegr & Teleph Corp <Ntt> Constituting system for communicating network thru light fiber cable
JPS57132440A (en) * 1981-02-09 1982-08-16 Toshiba Corp Annular optical communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730301A (en) * 1985-12-20 1988-03-08 Polaroid Corporation Wavelength multiplexed optical communications system and method
EP0240119A2 (en) * 1986-03-03 1987-10-07 Polaroid Corporation Optical communications system and method

Also Published As

Publication number Publication date
JPH0314248B2 (en) 1991-02-26

Similar Documents

Publication Publication Date Title
US5321774A (en) Polarization independent transmissive/reflective optical switch
US4783851A (en) Optical communication system
CA2166742A1 (en) Focused acoustic wave fiber optic reflection modulator
EP0845175B1 (en) Compensation of dispersion
JP2002223190A (en) Signal reception method
US6546159B1 (en) Method and apparatus for compensating differential group delay
CN105891960A (en) Polarized wavelength-division multiplexing optical module and implementation method thereof
JP3262444B2 (en) Automatic equalizer
US5259048A (en) Optical equalizer
JP2787812B2 (en) Reflective transmitting and receiving device for bidirectional optical waveguide communication system
JPS60158742A (en) Optical data way
US7236661B2 (en) Tunable dispersion compensation apparatus
JPH0369927A (en) Polarization batch control method
US5293264A (en) Transmission system for the polarization-insensitive transmission of signals
JPS60158740A (en) Optical data way
US6580857B1 (en) Apparatus for reshaping optical pulses
US4902087A (en) Fiber optic bypass switch
JP2008510402A (en) Optical transmission system via polarization maintaining fiber
EP0619657B1 (en) Optical circuit for measuring the reflection sensitivity of an optical transmission system
JPH0314247B2 (en)
JPS61281631A (en) Optical data way
JPH0430634A (en) Signal communication system
JPS60158741A (en) Optical data way
JPH0456925A (en) Optical transmission path switching device
KR0183282B1 (en) Apparatus of changing optical header using non-linear optical fiber loop mirror