JPS60158687A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS60158687A
JPS60158687A JP1361884A JP1361884A JPS60158687A JP S60158687 A JPS60158687 A JP S60158687A JP 1361884 A JP1361884 A JP 1361884A JP 1361884 A JP1361884 A JP 1361884A JP S60158687 A JPS60158687 A JP S60158687A
Authority
JP
Japan
Prior art keywords
layer
inp
ingaasp
semiconductor laser
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1361884A
Other languages
Japanese (ja)
Inventor
Masaaki Oshima
大島 正晃
Noriyuki Hirayama
平山 則行
Naoki Takenaka
直樹 竹中
Yukihiro Kino
木野 幸浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1361884A priority Critical patent/JPS60158687A/en
Publication of JPS60158687A publication Critical patent/JPS60158687A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Abstract

PURPOSE:To stabilize longitudinal-mode oscillation by cutting one part of an N-InGaAsP active layer by an InP layer. CONSTITUTION:A V groove is formed in the <01-1> direction of a (001)N-InP substrate 1, and an N-InGaAsP layer 2, a P-InP layer 3, an N-InP layer 4 and an N-InGaAsP layer 5 are grown. The layer 5 is removed selectively through stripped ethcing in the <011> direction, and only the InP layer 4 is removed selectively through etching. A first clad layer 7, an N-InGaAsP layer 8, a second clad layer 9 and a P-InGaAsP layer 10 are grown. Accordingly, the active layer 7 is formed in structure in which it is cut in the InP layer 4, and longitudinal- mode oscillation is obtained stably when an ohmic electrode is shaped and conducted in the forward direction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信の分野において使用される半導体レー
ザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser used in the field of optical communications.

従来例の構成とその問題点 半導体レーザは、光通信用光源としてすでに一部実用期
に入っている。特に波長1.3μm付近においては、シ
リカ系ファイバの損失が極めて小さく長距離通信が可能
になると共に、材料分散がほとんど零になることから伝
送帯域を極めて広くとることが可能となる。従来からの
半導体レーザ開発は、主に横モードの安定化に主眼がお
かれてきだ。これは、光ファイバとの効率よい結合を考
える時、半導体レーザに要求される最も大きな特性の一
つである。一方、縦モードの制御についてはこれ−1,
てDFB構造(J、J、Appl、Phys、20.P
、L4881981年)あるいは、DBR構造(昭和5
4年電子通信学会全国大会予稿集、11−1.838)
が研究されている。これは、半導体レーザとグレーティ
ングとを組合せ波長選択性をもたせたものであるが、グ
レーティング周期が数1000人オーダーと微細であり
、製造が極めて困難であるという欠点を有し未だ実用に
至っていないのが現状である。しかるに特にアナログ通
信の分野からの要求では低ノイズ化のだめには縦モード
の安定化は必須条件である。
Conventional configurations and their problems Semiconductor lasers are already partially in practical use as light sources for optical communications. In particular, at wavelengths around 1.3 μm, the loss of silica-based fibers is extremely small, making long-distance communication possible, and material dispersion is almost zero, making it possible to have an extremely wide transmission band. Conventional semiconductor laser development has focused primarily on stabilizing the transverse mode. This is one of the most important characteristics required of a semiconductor laser when considering efficient coupling with an optical fiber. On the other hand, regarding vertical mode control, this-1,
DFB structure (J, J, Appl, Phys, 20.P
, L4881981) or DBR structure (Showa 5
Proceedings of the 4th year National Conference of the Institute of Electronics and Communication Engineers, 11-1.838)
is being studied. This is a device that combines a semiconductor laser and a grating to provide wavelength selectivity, but the grating period is minute, on the order of several thousand people, and it is extremely difficult to manufacture, so it has not yet been put into practical use. is the current situation. However, especially in the field of analog communication, stabilization of the longitudinal mode is an essential condition for reducing noise.

発明の目的 本発明の目的は、従来のような微細なグレーティング構
造を必要とせずに縦モードの安定化を計った新規なる半
導体レーザを提供とすることを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a novel semiconductor laser in which longitudinal modes are stabilized without requiring a fine grating structure as in the prior art.

発明の構成 本発明は、(001) I nP基板上の(011)方
向にV字状の溝をストライプ状に形成し、この上にn−
InGaAsP(Eg−0,95eV) 、p−InP
、n−InP及びn−InGaAgP (Eg−0,9
5eV)層を順次形成し、しかるのち、(011)方向
にさらに溝をストライプ状に形成し、このような直交す
る溝をもつウェーハ上にさらにn−InPクラッド層、
n−I n G a A g P活性層、p−InPク
ラッド層、p−InGaAsPキャップ層を形成したも
のである。
Structure of the Invention The present invention forms V-shaped grooves in stripes in the (011) direction on a (001) I nP substrate, and then forms n-
InGaAsP (Eg-0,95eV), p-InP
, n-InP and n-InGaAgP (Eg-0,9
5 eV) layers are sequentially formed, and then grooves are further formed in a stripe shape in the (011) direction, and on the wafer having such orthogonal grooves, an n-InP cladding layer,
An n-InGaAgP active layer, a p-InP cladding layer, and a p-InGaAsP cap layer are formed.

尚、p−InGaAsPキャップ層は本質的なものでは
なく、なくてもよい。このような手段によって作られた
発振波長1.3μmの半導体レーザは、n−InGaA
sP活性層の一部が、InP層によっておきかえられる
構造となり、発振光のInP層による反射、干渉効果に
より容易に縦モードの安定化を得ることが可能となる。
Note that the p-InGaAsP cap layer is not essential and may be omitted. A semiconductor laser with an oscillation wavelength of 1.3 μm produced by such a method is made of n-InGaA
The structure is such that a part of the sP active layer is replaced by an InP layer, and it becomes possible to easily stabilize the longitudinal mode due to the reflection of oscillated light by the InP layer and the interference effect.

実施例の説明 (001) n−I nP基板1上に第1図に示すよう
に、(011)方向にV溝を形成した。■溝の幅は約4
μm深さは約3.2μmである。このような基板上に液
相エビタギシャル法(以下LPE法と略す)によりn−
InGaAsP(Eg 〜0.9seV)2.p−In
P層3 、 n−4nP層4 、 n−InGaAsP
(Eg〜0.95eV)層6を順次成長させる。この成
長によりV溝中及び平坦部には、第2図のような成長が
行なわれる。このようなエピタキシャルウェーハに81
02膜をとりつけ、しかるのち、ボトエノチングの手段
により、(oll)方向に幅約1.5μmの窓を260
μm間隔であける。このストライプ状に結晶面が露出さ
れたウェーハを、まずH2SO4:H2O2:H2O(
3:1:1)の溶液によりエツチングすると、n−In
GaAsP N6”’p択的にとりのぞがれ、n−In
P層4が露出する。しかしながら第2図に示したように
、■溝上においては、n−InGaAsP層6の厚みが
平坦部に比して約2倍程厚く成長しているためこの部分
のみはn−InP層4が露出せず残っている。次に、H
O2によってエツチングを行うと、InP層4のみが選
択的にエッチされn−InGaAsP層2で停止する。
Description of Examples As shown in FIG. 1, a V-groove was formed on a (001) n-I nP substrate 1 in the (011) direction. ■The width of the groove is approximately 4
The μm depth is approximately 3.2 μm. On such a substrate, n-
InGaAsP (Eg ~0.9seV)2. p-In
P layer 3, n-4nP layer 4, n-InGaAsP
(Eg~0.95eV) Layer 6 is grown sequentially. As a result of this growth, growth occurs in the V-groove and on the flat portion as shown in FIG. 81 for such epitaxial wafers.
02 membrane is attached, and then a window with a width of about 1.5 μm is formed in the (oll) direction at 260 mm by means of bottom etching.
Open at intervals of μm. First, the wafer with exposed crystal planes in the form of stripes was prepared using H2SO4:H2O2:H2O (
When etched with a solution of 3:1:1), n-In
GaAsP N6'''p selectively removed, n-In
P layer 4 is exposed. However, as shown in FIG. 2, the n-InGaAsP layer 6 grows about twice as thick on the groove as compared to the flat part, so the n-InP layer 4 is exposed only in this part. It remains without. Next, H
When etching is performed using O2, only the InP layer 4 is selectively etched and the etching stops at the n-InGaAsP layer 2.

一方V溝上には、n−InGaAsP層6が残っている
のでその下のInP層はエッチされずに残る。
On the other hand, since the n-InGaAsP layer 6 remains on the V-groove, the InP layer below it remains without being etched.

第3図に(011,)方向に形成された溝断面図を示す
。n−InGaABP層6は、S 102膜6との間の
オーバエッチを防止する意味でも必要である。
FIG. 3 shows a cross-sectional view of a groove formed in the (011,) direction. The n-InGaABP layer 6 is also necessary in order to prevent overetching with the S 102 film 6.

S 102膜6を除去後、このような溝中へ第4図に示
すように第2のLPE成長でn−1nP第1クラッド層
7 、n−InGaAsP(Eg−0,95eV)8.
p−I n P第2クラッド層g 、p−InGaAs
P層10を順次成長させる。尚p−InQaAsP層1
0はなくてもよい。
After removing the S102 film 6, an n-1nP first cladding layer 7, an n-InGaAsP (Eg-0, 95eV) 8.
p-InP second cladding layer g, p-InGaAs
The P layer 10 is grown in sequence. Furthermore, p-InQaAsP layer 1
0 is not necessary.

さてこのような成長によってV溝部は第5図に示すよう
になる。n−InGaAsP層2.p−InP層3.n
−InP層4は、上記したようにn−InGaAsP層
6によってエッチされずに残っているが、これにn−I
nP第1クラッド層7 、 n −InGaAsP層活
性層s、p−1nP第2クラッド層9 、p−InGa
AsPキャップ層10を成長させると、図のように、n
−InGaAsP活性層8は、n−InP4によってと
ぎれることになる。なお、面11及び12はヘキ開によ
って作られる共振器である。
By this growth, the V-groove portion becomes as shown in FIG. 5. n-InGaAsP layer 2. p-InP layer 3. n
-The InP layer 4 remains unetched by the n-InGaAsP layer 6 as described above, but the n-I
nP first cladding layer 7, n-InGaAsP layer active layer s, p-1nP second cladding layer 9, p-InGa
When the AsP cap layer 10 is grown, as shown in the figure, n
-InGaAsP active layer 8 is interrupted by n-InP4. Note that surfaces 11 and 12 are resonators made by cleavage.

このような構造の半導体レーザに、オーミック電極をと
りつけ順方向に通電すると、第4図かられかるように、
活性層8以外の部分は、n−InP4゜p’−InP3
と、ダイオードが逆方向に接続される形となり、電流は
流れない。したがって電流は、活性層に集中すると共に
活性層はその周囲を屈折率の小さなInPによってとり
囲まれるため光もとじ込められ低しきい値で発振する。
When an ohmic electrode is attached to a semiconductor laser having such a structure and current is applied in the forward direction, as shown in Fig. 4,
The parts other than the active layer 8 are n-InP4゜p'-InP3
In this case, the diode is connected in the opposite direction, and no current flows. Therefore, the current is concentrated in the active layer, and since the active layer is surrounded by InP having a small refractive index, light is also trapped and oscillation occurs at a low threshold.

一方、第5図かられかるように、発振後の光はn−In
P層8によって一部は反射、一部は透過し、その位相差
による干渉がおこり、ゲイン分布は、通常のレーザに比
して極めて選択性の強いものとなる。
On the other hand, as shown in Figure 5, the light after oscillation is n-In
Part of the light is reflected by the P layer 8, and part of it is transmitted, and interference occurs due to the phase difference, resulting in a gain distribution that is extremely selective compared to a normal laser.

第6図は、本発明による半導体レーザの25℃における
光−電流特性と、縦モードを示したものである。しきい
値電流は約40 m Aであり、2rn’W。
FIG. 6 shows the photo-current characteristics and longitudinal mode at 25° C. of the semiconductor laser according to the present invention. The threshold current is approximately 40 mA and 2rn'W.

6mW、10mW動作における各発振波長のずれはきわ
めて微少である表共に、通常のレーザに見られる側帯モ
ードは全く見られなかった。
The deviation of each oscillation wavelength during operation at 6 mW and 10 mW was extremely small, and no sideband modes seen in normal lasers were observed at all.

発明の効果 本発明の半導体レーザはグレーティング加工等の微細加
工なしで、極めて縦モードの単一性がよいものが得られ
る。
Effects of the Invention The semiconductor laser of the present invention has extremely good longitudinal mode unity without any fine processing such as grating processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例における半導体の基板の斜
視図、第2図は成長層を設けた半導体ウェーへの構成図
、第3図は第2図に示す半導体ウェーハをエツチングし
て得た溝の形状を示す図、第4図は溝中に第2の成長に
よって得られた(011)方向の断面図、第5図は(0
11)方向の断面図、あiヨ第6図は、本発明の一実施
例のレーザの特性図である。 1 ・・=−(001)n−InP基板、2 、5 、
8−=・−n−InGaAsP、3 、9−−−−−−
p−InP、 4 、7・=・−n−InP、10−−
p−InGaAsPキャップ層。 第1図 第2図 第3図 第4図 第5@
FIG. 1 is a perspective view of a semiconductor substrate according to an embodiment of the present invention, FIG. 2 is a structural diagram of a semiconductor wafer provided with a growth layer, and FIG. 3 is a diagram showing the semiconductor wafer shown in FIG. 2 etched. Figures showing the shape of the grooves obtained. Figure 4 is a cross-sectional view in the (011) direction obtained by the second growth in the groove, and Figure 5 is a cross-sectional view in the (011) direction.
FIG. 6 is a characteristic diagram of a laser according to an embodiment of the present invention. 1...=-(001)n-InP substrate, 2, 5,
8-=・-n-InGaAsP, 3, 9-------
p-InP, 4, 7・=・−n-InP, 10−−
p-InGaAsP cap layer. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 @

Claims (1)

【特許請求の範囲】[Claims] (001)面n−InP基板上の(011)方向に沿っ
て7字型状の溝をストライプ状に形成し、前記基板上に
、少なくとも電流ブロック層となりうる積層体を設け、
前記積層体の(011)方向に第2の溝を形成し、前記
溝中に、少なくともn−InPクラッド層、n−InG
aAsP活性層、p−I n Pクラッド層を成長させ
、前記n−InGaAsP活性層の一部がV字状溝部に
おいてInP層によってときれていることを特徴とする
半導体レーザ。
A 7-shaped groove is formed in a stripe shape along the (011) direction on a (001) plane n-InP substrate, and a laminate that can serve as at least a current blocking layer is provided on the substrate,
A second groove is formed in the (011) direction of the laminate, and at least an n-InP cladding layer and an n-InG
1. A semiconductor laser characterized in that an aAsP active layer and a p-InP cladding layer are grown, and a portion of the n-InGaAsP active layer is cut off by an InP layer in a V-shaped groove.
JP1361884A 1984-01-27 1984-01-27 Semiconductor laser Pending JPS60158687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1361884A JPS60158687A (en) 1984-01-27 1984-01-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1361884A JPS60158687A (en) 1984-01-27 1984-01-27 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60158687A true JPS60158687A (en) 1985-08-20

Family

ID=11838216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1361884A Pending JPS60158687A (en) 1984-01-27 1984-01-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60158687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183186A (en) * 1984-07-18 1986-04-26 Nippon Petrochem Co Ltd Novel tetrapyrrole medical composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183186A (en) * 1984-07-18 1986-04-26 Nippon Petrochem Co Ltd Novel tetrapyrrole medical composition

Similar Documents

Publication Publication Date Title
US9780530B2 (en) Semiconductor integrated optical device, manufacturing method thereof and optical module
JPH10308556A (en) Semiconductor optical element and its manufacture
JP2008113041A (en) Waveguide
JPH0582889A (en) Semiconductor laser and its manufacture
US4618959A (en) Double heterostructure semiconductor laser with periodic structure formed in guide layer
EP0197084B1 (en) Low noise injection laser structure
JP2002299758A (en) Complex coupled distributed feedback semiconductor laser element
JPH04105383A (en) Manufacture of optical semiconductor element
US4644552A (en) Semiconductor laser
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JPH09129971A (en) Semiconductor laser
JPS6328520B2 (en)
JPS60158687A (en) Semiconductor laser
WO2020250291A1 (en) Semiconductor photonic integrated element and semiconductor photonic integrated element manufacturing method
JPS6373683A (en) Distributed feedback semiconductor laser
JPS5858784A (en) Distribution feedback type semiconductor laser
JP2001135887A (en) Optical semiconductor device and optical transmission system
JPS61220389A (en) Integrated type semiconductor laser
JP2000183443A (en) Semiconductor laser device with spot size converter and its manufacture
JPS60160682A (en) Semiconductor laser
JPS60158686A (en) Semiconductor laser
JPS63305582A (en) Semiconductor laser
JPS60165782A (en) Semiconductor laser
JPH01253287A (en) Edge face light emitting diode