JPS6015866B2 - vacuum dryer - Google Patents

vacuum dryer

Info

Publication number
JPS6015866B2
JPS6015866B2 JP2187180A JP2187180A JPS6015866B2 JP S6015866 B2 JPS6015866 B2 JP S6015866B2 JP 2187180 A JP2187180 A JP 2187180A JP 2187180 A JP2187180 A JP 2187180A JP S6015866 B2 JPS6015866 B2 JP S6015866B2
Authority
JP
Japan
Prior art keywords
trap
heat
soot
vacuum
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2187180A
Other languages
Japanese (ja)
Other versions
JPS5610682A (en
Inventor
正和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Vacuum Engineering Co Ltd
Original Assignee
Kyowa Vacuum Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Vacuum Engineering Co Ltd filed Critical Kyowa Vacuum Engineering Co Ltd
Priority to JP2187180A priority Critical patent/JPS6015866B2/en
Priority to US06/164,031 priority patent/US4353222A/en
Priority to DE19803025050 priority patent/DE3025050A1/en
Priority to IT68044/80A priority patent/IT1128848B/en
Priority to GB8022021A priority patent/GB2061474B/en
Priority to FR8015004A priority patent/FR2461213B1/en
Publication of JPS5610682A publication Critical patent/JPS5610682A/en
Priority to US06/403,163 priority patent/US4407140A/en
Publication of JPS6015866B2 publication Critical patent/JPS6015866B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、被乾燥物を真空室内に装入し、冷凍装置によ
り冷却して、その状態から、前記真空室またはそれに蓮
適する別の真空室に設けた蒸気凝結器により、被乾燥物
から発生する蒸気を凝結補集せしめて、真空室内の真空
圧力を所望の値に維持せしめることによって、被乾燥物
を乾燥させる真空乾燥装置における前記蒸気凝結器につ
いての改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that a material to be dried is charged into a vacuum chamber, cooled by a refrigeration device, and from that state, a vapor condenser is provided in the vacuum chamber or another vacuum chamber suitable for the drying process. This invention relates to improvements to the steam condenser in a vacuum drying apparatus for drying objects to be dried by condensing and collecting steam generated from the objects to be dried and maintaining the vacuum pressure in the vacuum chamber at a desired value. It is.

本発明における目的は、上述の真空乾燥装置に、それの
真空室内に設ける棚の冷却のためにその棚に流す熱媒液
体と冷凍装置の袷媒蒸発器との熱交換を行なわせるよう
に装備せしめる熱交換器を、それの装備のために占有空
間が実質的に省略した状態として、該真空乾燥装置に装
備せしめるようにすることにある。
An object of the present invention is to equip the above-mentioned vacuum drying apparatus to perform heat exchange between a heating medium liquid flowing to a shelf provided in the vacuum chamber of the vacuum drying apparatus and a medium evaporator of the refrigeration apparatus for cooling the shelf. The purpose of the present invention is to equip the vacuum drying apparatus with a heat exchanger that occupies substantially no space for the equipment.

そして、この目的を達成するための本発明による真空乾
燥装置は、従釆の真空乾燥装置にあっては真空室(トラ
ップ室)内に鯨設される蒸気補集のための蒸気凝結器が
、冷煤蒸発器(乾式あるいは滴液式)そのものに蒸気を
凝結させる「袷煤直袷型」か、または真空室外部に設け
た熱交換器で冷媒蒸発器により冷却された熱煤液を、真
空室内の熱媒液管や熱媒循環プレートに循環させて、該
熱媒液や熱媒循環プレートの外周に蒸気を凝結させる「
間接熱媒型」か、の何れかであるのに対し、本発明にあ
っては、真空室(トラツプ室)内に配設される蒸気凝結
器が、袷媒と熱媒液との熱交換を行なう熱交換器本体で
構成してあって、これにより、冷媒と熱媒液との熱交換
を行なうために真空室の外部に設けられる熱交換器の占
有空間をそっくり省略し得るようにしてある点を特長と
しているものである。
In order to achieve this object, the vacuum drying apparatus according to the present invention has a steam condenser for collecting steam, which is installed in the vacuum chamber (trap chamber) in the vacuum drying apparatus of the subordinate type. The "direct soot type" condenses vapor in the cold soot evaporator (dry type or droplet type), or the hot soot liquid cooled by the refrigerant evaporator is evacuated using a heat exchanger installed outside the vacuum chamber. It circulates through the indoor heating medium liquid pipes and heating medium circulation plate, and condenses steam on the outer periphery of the heating medium liquid and the heating medium circulation plate.
In contrast, in the present invention, the steam condenser installed in the vacuum chamber (trap chamber) performs heat exchange between the liner medium and the heat medium liquid. The vacuum chamber is configured with a heat exchanger main body that performs heat exchange between the refrigerant and the heat medium liquid, thereby making it possible to completely omit the space occupied by the heat exchanger provided outside the vacuum chamber to perform heat exchange between the refrigerant and the heat medium liquid. It is characterized by certain points.

以下、図面に従い在来の方式と対比しつつ、本発明の若
干の実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings and in comparison with conventional systems.

第1図、第2図、第3図は、いずれも医薬品その他の真
空凍結乾燥装置に用いられる蒸気凝結器(以下単にトラ
ップと記す)を装置全体の基本構成と共に表した概要説
明図で、第1図はもっとも多く用いられる通常型で、ト
ラツプ101が冷煤直袷型の袷煤乾式蒸発器になってい
る型のものであり、第2図は一部に用いられる型で、ト
ラツブ102が外部熱交換器7で袷煤により既に冷却さ
れた熱煤液を循環させる「間接熱媒型」になっている型
のものである。
Figures 1, 2, and 3 are schematic explanatory diagrams showing a vapor condenser (hereinafter simply referred to as a trap) used in vacuum freeze-drying equipment for pharmaceuticals and other products, together with the basic configuration of the entire equipment. Figure 1 shows the most commonly used normal type, in which the trap 101 is a cold soot dry type evaporator, and Figure 2 shows the type used in some cases, in which the trap 102 is a cold soot dry type evaporator. This type is an "indirect heating medium type" in which the hot soot liquid that has already been cooled by the soot in the external heat exchanger 7 is circulated.

そして第3図は本発明の実施例であり、トラツプ103
は、冷蝶、熱媒液が共に内部を循環し、冷媒と熱媒液と
の熱交換をけなう熱交換器としての機能と、蒸気を凝結
瓶集する蒸気凝結器としての機能との両者の機能を具備
している。第1図及び第2図ならびに第3図において、
真空室(乾燥室兼凍結室)1、真空室(トラツプ室)2
、これらを連結する主管3a、主弁3、真空排気系4等
真空系(真空室の輪郭および機器と配管)は総て「紬線
」で示されている。
FIG. 3 shows an embodiment of the present invention, in which the trap 103
The system functions as a heat exchanger in which both the cooling fluid and the heating fluid circulate inside, thereby reducing the heat exchange between the refrigerant and the heating fluid, and as a steam condenser that condenses and collects steam. It has both functions. In FIGS. 1, 2, and 3,
Vacuum chamber (drying chamber and freezing chamber) 1, vacuum chamber (trap chamber) 2
, the main pipe 3a connecting these, the main valve 3, the vacuum system such as the evacuation system 4 (outline of the vacuum chamber, equipment and piping) are all shown with "pongee lines".

冷凍装置(圧縮機、油分離機、凝結器、コ段圧縮の場合
の中間冷却器などの一切を含む、二元冷凍の場合もある
)1 1、副冷凍装置12、および熱交換器7、副熱交
換器8、本発明のトラップ103、袷媒蒸発器7a、そ
して冷煤系路7b、冷煤弁13、冷媒膨張弁14(三角
形にて託す)など袷猿冷煤循環系は総て「破線」で示さ
れている。
Refrigeration equipment (including all components such as a compressor, oil separator, condenser, and intercooler in the case of two-stage compression, and may be binary refrigeration) 1 1, a sub-refrigeration equipment 12, and a heat exchanger 7, The auxiliary heat exchanger 8, the trap 103 of the present invention, the evaporator 7a, the cold soot line 7b, the cold soot valve 13, the refrigerant expansion valve 14 (triangular), etc. are all included in the cold soot circulation system. Indicated by a "dashed line".

熱板(彼処理物体に乾燥に必要な潜熱を供給、第1図乃
至第3図の例では彼処理物体の予備凍結に必要な冷熱を
供給するプレートを兼ねている)5、熱媒液加熱器6、
前掲の熱交換器7と敵熱交換器8および本発明のトラッ
プ103、および熱板用熱媒体ポンプ9とトラツプ用熱
煤ポンプ10の熱煤液系機器と系路は総て「太線」で示
されている。
Heat plate (supplies the latent heat necessary for drying the object to be processed; in the examples shown in Figures 1 to 3, it also serves as a plate that supplies the cold heat necessary for preliminary freezing of the object to be processed) 5. Heat medium liquid heating Vessel 6,
The hot soot liquid system equipment and system paths of the heat exchanger 7, the enemy heat exchanger 8, the trap 103 of the present invention, the heat medium pump 9 for the hot plate, and the hot soot pump 10 for the trap are all indicated by "thick lines". It is shown.

また、15は熱煤液の循環系に設けた仕切弁であるが、
実際の各系の配管系路と各種弁および系路内の機器配列
の順の実際は必ずしも図の通りではなく、図は説明の便
宜のために単純化されたものである。
In addition, 15 is a gate valve installed in the hot soot liquid circulation system,
The actual order of piping lines, various valves, and equipment arrangement in each system is not necessarily as shown in the diagram, and the diagram is simplified for convenience of explanation.

第4図及び第5図は、第3図に示す本発明装置の真空室
(トラップ室)2と該真空室2に設けたトラップ103
の1つの例であり、第4図が縦断面(第5図のA−A′
断面)、第5図が横断面(第4図のC−C′断面)の概
略説明図である。
4 and 5 show the vacuum chamber (trap chamber) 2 of the apparatus of the present invention shown in FIG. 3 and the trap 103 provided in the vacuum chamber 2.
Figure 4 is an example of the vertical cross section (A-A' in Figure 5).
FIG. 5 is a schematic explanatory diagram of a cross section (C-C' section in FIG. 4).

第4図においてトラップ103内部の「細かい破線」が
冷媒Rの流離〔第6図の符号26で示す冷煤管に当る〕
で、「荒い破線」はトラップ103内の熱媒液の流路の
境界〔第6図で符号27に示す仕切壁に当る〕で、この
トラップ103の横断面の一例を示す図が第6図である
。この実施例において、トラップ103内に配管されて
いる袷媒管26は、第6図に示している如く、トラップ
103の蒸気凝結面を構成するよう中空の平盤状に形成
されている該トラツプ103の外周壁たる凝結プレート
103aに対し、熔接・圧着等の手段で密接状態として
、前記凝結プレート103aが、冷煤Rの伝熱フィンの
役割を果すようにしてあって、これにより、冷煤管26
内の冷媒Rとトラップ103内に前記仕切壁27によっ
て形成される流路b内の熱煤液Bとの熱交換、及び、前
記流路b内の熱煤液Bとトラップ103外周の蒸気Vと
の熱交換、ならびに、前記冷0煤管26内の冷煤Rとト
ラップ103外周の蒸気Vとの熱交換が、このフィンプ
レートたる凝結プレート103aを効果的に利用して行
なわれるようになっている。
In FIG. 4, the "fine broken line" inside the trap 103 indicates the flow of refrigerant R [corresponds to the cold soot pipe indicated by the reference numeral 26 in FIG. 6].
The "rough broken line" is the boundary of the heat transfer liquid flow path in the trap 103 (corresponds to the partition wall indicated by the reference numeral 27 in FIG. 6), and FIG. 6 shows an example of the cross section of this trap 103. It is. In this embodiment, the medium pipe 26 installed in the trap 103 is formed into a hollow flat plate so as to constitute a vapor condensation surface of the trap 103, as shown in FIG. The condensation plate 103a, which is the outer circumferential wall of 103, is brought into close contact with the condensation plate 103a by means of welding, pressure bonding, etc., so that the condensation plate 103a functions as a heat transfer fin for the cold soot R. tube 26
heat exchange between the refrigerant R in the trap 103 and the hot soot liquid B in the flow path b formed by the partition wall 27 in the trap 103, and the hot soot liquid B in the flow path b and the steam V on the outer periphery of the trap 103. Heat exchange between the cold soot R in the cold zero soot pipe 26 and the steam V on the outer periphery of the trap 103 is now performed by effectively utilizing the condensation plate 103a, which is a fin plate. ing.

なお、第4図及び第5図において、23は真空タ室(ト
ラップ室)2の、真空室(乾燥室)と通ずる蒸気入口、
22は真空ポンプ4と通ずる真空引口、24は水抜き弁
、25は真空室(トラツプ室)2の底部に設けた熱媒液
・温水・スチーム等によるジャケットヒーター、21は
真空引口22に蒸気が直接引かれるのを防ぐように設け
た遮断板である。
In addition, in FIG. 4 and FIG. 5, 23 is a steam inlet of the vacuum chamber (trap chamber) 2 that communicates with the vacuum chamber (drying chamber);
22 is a vacuum port connected to the vacuum pump 4, 24 is a water drain valve, 25 is a jacket heater provided at the bottom of the vacuum chamber (trap chamber) 2 and uses heat medium liquid, hot water, steam, etc., and 21 is a vacuum port connected to the vacuum port 22. This is a shield plate installed to prevent steam from being drawn directly.

第1図に示すトラップ101が「冷煤直袷型」になって
いる真空乾燥装置の場合は、周知の通り大中な負荷変動
に対して、袷媒循環サイクルを常に最適条件に維持する
ことは困難である。
In the case of a vacuum dryer in which the trap 101 shown in Fig. 1 is of the "cold soot direct type", it is necessary to always maintain the media circulation cycle at the optimum condition even in the face of large and medium load fluctuations, as is well known. It is difficult.

まして変動する負荷に対してトラップ温度を正確に制御
することはできない。一60q0程度の低温が高負荷時
に要求される凍結乾燥では、その後期に過度の冷却によ
る冷凍機油の固化、液圧縮、過度の圧縮化による冷凍機
油の炭化などの不具合、事故を生じ易く、0℃程度のト
ラツプが求められる真空冷却では、初期の過負荷、後期
の過度の冷却による野菜などの凍結事故をまねき易し、
。圧縮過程、高圧高温ガス流路、凝縮過程、高圧中温液
流路、断熱蝿彰張過程、低圧低温の気液浪合流、低圧ガ
ス流離と大中な圧力温度の変動と相変換、加えて温度に
より著しく粘度が変化する冷凍機油の循環をともなう複
雑なサイクルを大中な負荷変動に適合させることは当然
困難である。これに対し、第2図のトラツプ102が「
間接熱煤型」となっている真空乾燥装置の場合は、熱煤
循環系の中に過度の低負荷を緩和する負荷を加えること
により、負荷変動を緩和でき、さらにトラツプ102温
度も所望の値に制御することができ「冷媒直袷型」の欠
点は解決できる。
Furthermore, the trap temperature cannot be accurately controlled with varying loads. Freeze drying, which requires a low temperature of about -60q0 during high load, is prone to problems and accidents such as solidification of the refrigerating machine oil due to excessive cooling, liquid compression, and carbonization of the refrigerating machine oil due to excessive compression in the latter stage. Vacuum cooling, which requires a trap of around 30°F, can easily lead to freezing accidents of vegetables due to overload in the early stage and excessive cooling in the latter stage.
. Compression process, high-pressure and high-temperature gas flow path, condensation process, high-pressure and medium-temperature liquid flow path, adiabatic process, low-pressure and low-temperature gas-liquid merging, low-pressure gas separation and large-scale pressure-temperature fluctuations and phase transformation, as well as temperature Naturally, it is difficult to adapt a complex cycle involving the circulation of refrigerating machine oil whose viscosity changes significantly due to large to medium load fluctuations. On the other hand, the trap 102 in FIG.
In the case of a vacuum dryer that is an "indirect hot soot type," load fluctuations can be alleviated by adding a load to the hot soot circulation system to alleviate excessively low loads, and the trap 102 temperature can also be maintained at the desired value. The disadvantages of the ``refrigerant direct type'' can be solved.

加えて、低温トラップのために用いる冷煤と熱媒液との
熱交換器7を、トラツプ102の冷却工程中、あるいは
その前後工程における、トラツプ以外の部分の温度の冷
熱制御に用いうる、という利点を生じる。
In addition, the heat exchanger 7 between cold soot and heat medium used for the low-temperature trap can be used to control the temperature of parts other than the trap during the cooling process of the trap 102, or in the processes before and after the cooling process. produce benefits.

しかし、「間接熱媒型」トラップ102は、0℃近辺の
温度の場合はかなり用いられても、一50〜6000の
場合には僅かしか用いられていない。
However, although the "indirect heating medium type" trap 102 is widely used for temperatures around 0°C, it is rarely used for temperatures between 150 and 6000°C.

次の2つの冷熱損失のために、過大な冷凍設備と過大な
エネルギー消費を強いられ経済的不利を招くからである
。第一の冷熱損失は、冷媒蒸発器(管またはプレ−ト)
面と熱媒液、熱媒液と熱煤トラツプ(管またはプレート
)面の2回の境膜伝熱を経るための温度損失である。
This is because, due to the following two cooling losses, excessive refrigeration equipment and excessive energy consumption are forced, resulting in economic disadvantage. The first cold loss is caused by the refrigerant evaporator (tube or plate)
This is the temperature loss due to two film heat transfers: between the surface and the heat transfer liquid, and between the heat transfer liquid and the hot soot trap (tube or plate) surface.

「冷媒直袷型」と同じトラツプ温度を、「間接熱煤型」
でうるためには、この温度損失分だけ低い蒸発温度を要
する。第二の損失は、熱煤液を熱交換器からトラップへ
循環させるための循環ポンプによる熱媒液への入熱損失
である。
The "indirect heat soot type" has the same trap temperature as the "direct refrigerant type".
In order to achieve this, the evaporation temperature must be lower by this temperature loss. The second loss is the heat input loss to the heat transfer liquid due to the circulation pump that circulates the hot soot liquid from the heat exchanger to the trap.

袷煤蒸発器での冷熱は蒸発潜熱でありk9当り大きい冷
熱がえられるが、熱媒液での冷熱は顕熱であり、均温的
でなければならないトラップの場合は大きい流量を要し
、従って入熱損失は大きい。この二つの冷熱損失をカバ
ーするには、過大な設備と過大なエネルギー消費を要す
るのである。
The cold heat in the soot evaporator is latent heat of vaporization, and a large amount of cold heat can be obtained per k9, but the cold heat in the heat transfer liquid is sensible heat, and in the case of a trap that must be isothermal, a large flow rate is required. Therefore, heat input loss is large. In order to cover these two types of cooling and heat losses, excessive equipment and excessive energy consumption are required.

この負担のために、「間接熱煤型」は「冷煤直冷型」の
欠点を解消しながら、これに代る方法になりえない。と
ころで本発明による第3図の真空乾燥装置の場合には、
第一にトラップ103における負荷変動を、熱媒液流路
bにおける負荷調整によって容易に緩和でき、トラップ
103温度を正確に制御できる点では第2図の場合と同
様であり、第二に、第2図の「間接熱煤型」における二
つの冷熱損失がなく、「袷煤直冷型」の場合と殆んど同
じ冷凍設備とエネルギー消費で等しいトラッブ温度を実
現できる。
Because of this burden, the ``indirect heating soot type'' cannot replace the ``cold soot direct cooling type'' while eliminating its shortcomings. By the way, in the case of the vacuum drying apparatus shown in FIG. 3 according to the present invention,
First, load fluctuations in the trap 103 can be easily alleviated by adjusting the load in the heat medium liquid flow path b, and the temperature of the trap 103 can be accurately controlled, which is the same as in the case shown in FIG. There are no two cooling losses in the "indirect soot cooling type" shown in Figure 2, and the same trub temperature can be achieved with almost the same refrigeration equipment and energy consumption as in the "direct soot cooling type".

また、蒸気凝結負荷が加わると同じ位置に冷煤蒸発器が
あるので、熱媒液循環を充分小さくしても、トラツプ熱
媒液の出入口の温度差の心配はない。
Furthermore, since the cold soot evaporator is located at the same location as the steam condensation load is applied, there is no need to worry about temperature differences between the entrance and exit of the trap heat transfer liquid even if the heat transfer liquid circulation is sufficiently reduced.

冷媒直冷型(特に乾式蒸発器)の場合には、入口では充
分湿った冷嬢であっても、出口におし、ては、殆んど全
冷蝶が蒸発して高い乾き度になっていなければ、圧縮機
への液バックを生じる。このため、出入口で袷蝶温度差
はなくても、乾き度による玲煤とトラップ面との熱伝達
の差により、トラップ面温度は異ってしまう。しかし、
本発明のトラップ103は、冷蝶が乾き状態になる出口
附近を冷却された熱媒液が冷却するので、出入口の温度
差の心配はない。また、熱煤液の流量は「冷煤直冷型」
で避けられるトラップ温度の不均一を緩和する程度で充
分であり、循環ポンプによる入熱損失も僅かである。ま
た、本発明によるトラップ103は、当然にトラツプ1
03冷却中にも、また、その前後工程にも、袋贋の他の
部分の冷熱制御に、冷媒・熱煤液間の熱交換器として機
能させることができ、かつ、この点でも、第2図に示す
通常の間接熱媒トラツプの場合より優れる。
In the case of a refrigerant direct cooling type (especially a dry evaporator), even if the refrigerant is sufficiently moist at the inlet, at the outlet, almost all of the cooled air will evaporate and become highly dry. Otherwise, liquid will back up into the compressor. For this reason, even if there is no difference in temperature at the entrance and exit, the trap surface temperature will differ due to the difference in heat transfer between the soot and the trap surface depending on the degree of dryness. but,
In the trap 103 of the present invention, since the cooled heat medium liquid cools the vicinity of the exit where the cold butterflies are in a dry state, there is no need to worry about temperature differences between the entrance and exit. In addition, the flow rate of hot soot liquid is "cold soot direct cooling type".
It is sufficient to alleviate the non-uniformity of the trap temperature that can be avoided, and the heat input loss due to the circulation pump is also small. Moreover, the trap 103 according to the present invention naturally has a trap 1
03 During cooling, as well as in the processes before and after that, it can function as a heat exchanger between the refrigerant and the hot soot liquid for cooling and heating control of other parts of the bag counterfeit. This is superior to the conventional indirect heating medium trap shown in the figure.

この点について真空蒸気凝結器の代表的用途である真空
凍結乾燥装置の場合を例に説明する。
This point will be explained using an example of a vacuum freeze-drying device, which is a typical application of a vacuum steam condenser.

医薬品用その他、特に厳密を要する凍結乾燥の場合、装
置は通常第1図の構成であり、第一工程の予備凍結にお
いては、冷凍装置11の冷煤は熱交換器7に循環し、熱
煤液は、冷却されて、循環ポンプ9により熱板5に循環
し、熱板5および、熱板上の被乾燥物は室温から−46
0なし、し−50℃に冷却され物体は凍結する。この第
一工程は、第2図、第3図の場合も同様であるが、本発
明の場合(第3図)は、熱交換器7の機能はトラップ1
03によってはたされる。トラップ103の蒸気凝結プ
レート103aは、冷媒・熱媒液間熱交換器として機能
する第一工程では、冷媒・熱煤液間の良熱フィンとして
働き、真空室(トラッブ室)2を真空状態にできるので
、外部からの入熱損失は通常型熱交換器7より小さい。
したがって通常型の熱交換器7に少しも劣らない。第二
の工程の真空凍結乾燥への切換えの際、通常型(第1図
)においては、冷凍装置11の袷蝶は突然にトラップ1
川こ切替えねばならず、冷凍装置と冷煤系の負荷は−4
5q0〜一50oo温度から一挙に常温のトラツプ10
1冷却の大きい負荷に急変する。しかも、既に冷却され
なくなった熱板の温度が外部からの入熱で上昇しない短
時間、ふつう20分程度の中にトラツプは−50oo〜
一590に冷却されねばならず、第一〜第二工程の切替
時の負荷と袷媒流路の切替えは、通常型の不具合や事故
の一つの要因である。第2図の場合は、熱交換器7はト
ラップ冷却に引継がれるので、袷煤流路の急変はなく、
熱嬢流路の切換えのみである。しかし切換え後のトラッ
プ102と熱交換器7の温度は両方の混合温度(一25
o0なし、し一30℃)であり、冷凍装置の負荷と蒸発
温度の急変動が起きる。そしてトラップ102と熱交換
器7の両方の熱容量が大きいから、これを−5ぴC〜−
5yoまで20分程度で冷却するのは困難である。この
困難は、第2図において、熱交換器7とトラツプ用循環
ポンプ10の位置を入れ替え、予備凍結時に熱板5、熱
交換器7と共にトラップが冷却されていけば解決する。
しかし、予備凍結時の冷却速度はトラツプ102が加わ
るため遅延する。これを防ぐには冷凍装置が過大になっ
てしまう。ところが本発明の場合は、第一工程から第二
工程(熱板5冷却からトラップ103冷却)への切換え
には、冷煤流路が不変なだけでなく、熱媒液流路を切替
えても負荷温度も不変である。
In the case of freeze-drying, which requires particularly strict conditions such as those for pharmaceutical products, the equipment usually has the configuration shown in Fig. 1. In the first step of preliminary freezing, the cold soot in the freezing equipment 11 is circulated to the heat exchanger 7, and the hot soot is The liquid is cooled and circulated to the hot plate 5 by the circulation pump 9, and the hot plate 5 and the material to be dried on the hot plate are heated from room temperature to -46°C.
0, the object is cooled to -50°C and freezes. This first step is the same in the cases of FIGS. 2 and 3, but in the case of the present invention (FIG. 3), the function of the heat exchanger 7 is
03. In the first step where the vapor condensation plate 103a of the trap 103 functions as a heat exchanger between the refrigerant and the heat medium, it functions as a good heat fin between the refrigerant and the hot soot liquid, and keeps the vacuum chamber (Trub chamber) 2 in a vacuum state. Therefore, the heat input loss from the outside is smaller than that of the conventional heat exchanger 7.
Therefore, it is no inferior to the conventional heat exchanger 7. When switching to vacuum freeze-drying in the second process, in the normal type (Fig.
The load on the refrigeration equipment and cold soot system was -4.
10 room temperature traps at once from 5q0 to 150oo temperature
1 Sudden change in cooling load. Moreover, within a short period of time, usually around 20 minutes, when the temperature of the hot plate, which is no longer being cooled, increases due to heat input from the outside, the trap will reach -50 oo~
The load at the time of switching between the first and second steps and the switching of the medium flow path are one of the causes of common malfunctions and accidents. In the case of Fig. 2, the heat exchanger 7 is taken over for trap cooling, so there is no sudden change in the soot flow path.
The only thing to do is to switch the heat sink flow path. However, the temperature of the trap 102 and the heat exchanger 7 after switching is both the mixing temperature (-25
(0, 30°C), and rapid fluctuations in the load on the refrigeration equipment and evaporation temperature occur. Since the heat capacity of both the trap 102 and the heat exchanger 7 is large, the heat capacity of the trap 102 and the heat exchanger 7 is large, so this
It is difficult to cool down to 5yo in about 20 minutes. This difficulty can be solved if the positions of the heat exchanger 7 and the trap circulation pump 10 are interchanged in FIG. 2, and the trap is cooled together with the hot plate 5 and the heat exchanger 7 during preliminary freezing.
However, the cooling rate during pre-freezing is delayed due to the addition of the trap 102. To prevent this, the refrigeration equipment would have to be too large. However, in the case of the present invention, when switching from the first process to the second process (from cooling the hot plate 5 to cooling the trap 103), not only the cold soot flow path remains unchanged, but also the heat transfer liquid flow path must be changed. The load temperature also remains unchanged.

トラップ103内の熱媒液に混合する常温の熱煤液はト
ラツプ用循環ポンプ10と弁だけで、新たな配管部分は
充分短かくでき、トラツプ103の熱容量に比べトラッ
フ。用循環ポンプ10その他の熱容量は充分に小さい。
第一工程末の負荷温度−45℃〜−50午0を引継ぎ、
これを−50)C〜−55℃に追加冷却するだけであり
、しかもトラップ冷却系の熱容量は、第2図に示す在来
の「間接熱煤型」の場合の熱交換器7とトラップ102
との合計より小さく、熱交換器7と同程度のトラップ1
03だけである。したがって、第2図の「間接熱煤型」
の場合に比べ、熱板5の予備凍結冷却と共にトラップ1
03の冷却を行なっても熱板5の冷却速度を劣化させず
、また、予備凍結後のトラツプ103の追加冷却も容易
である。第二工程の真空凍結乾燥過程に入って後は、第
1図に示している通常型の真空乾燥装置においては、熱
板5温度を冷熱制御(0℃ないし一3ぴ0程度)するた
めに、通常は副冷凍機12と劉熱交換器8が必要である
The room-temperature hot soot liquid mixed with the heat medium liquid in the trap 103 can be mixed with the trap circulation pump 10 and the valve, and the new piping can be made sufficiently short, so that the trough is small compared to the heat capacity of the trap 103. The heat capacity of the circulation pump 10 and others is sufficiently small.
Taking over the load temperature at the end of the first process from -45℃ to -50:00,
It is only necessary to additionally cool this to -50)C to -55℃, and the heat capacity of the trap cooling system is the same as that of the heat exchanger 7 and trap 102 of the conventional "indirect heat soot type" shown in Fig. 2.
Trap 1, which is smaller than the sum of
Only 03. Therefore, the "indirect heat soot type" in Figure 2
Compared to the case of , trap 1 is
03 does not deteriorate the cooling rate of the hot plate 5, and additional cooling of the trap 103 after preliminary freezing is also easy. After entering the second step, the vacuum freeze-drying process, in the normal vacuum drying apparatus shown in Fig. 1, the temperature of the hot plate 5 is controlled by cold (from 0°C to about 130°C). , normally a sub-refrigerator 12 and a heat exchanger 8 are required.

しかし、第2図および第3図の真空乾燥装置の場合は、
トラップ循環系と熱板循環系の間で熱煤系弁の調節によ
り、適度の混合を生ぜしめることによって副冷凍装置1
2と副熱交換器8は不用である。より高い熱板5温度に
よるより大きい蒸気凝結負荷に備えてある冷凍装置11
の能力は、熱板5を冷熱制御する際は当然にトラツプ冷
却には過剰であり、混合によって冷凍装置の能力不足は
生じない。凍結乾燥後期におけるトラップの過度の冷却
は、同じく適度の混合によって達成され、混合による熱
板5の所望値からの温度降下は加熱器6によりカバーさ
れる。以上説明したように、本発明による真空乾燥装置
は、第1図及び第2図に示す在来のものとの対比におい
て、トラップ103が、在来のものの冷蝶と熱煤液との
熱交換器を行なう熱交換器7を兼ねているのだから、そ
の熱交換器7を装備せしめるための占有スペースがそっ
くり省略できることになって、それだけ、設備費・据付
面積を少なくできる利益が得られ、しかも、トラツプ冷
却のための冷凍装置の運転の安定性と、トラップ温度の
正確な制御による真空圧力の正確な制御の達成が、過大
な設備・過大な冷凍装置のエネルギー消費ないこ達成し
得る利益が得られる。また、本発明におけるトラツプ1
03は、トラツプ103に蒸気を氷結せしめて橘集する
場合には、その氷結する氷の除去にも効果的である。
However, in the case of the vacuum drying equipment shown in Figures 2 and 3,
By adjusting the hot soot system valve between the trap circulation system and the hot plate circulation system, the sub-refrigeration system 1 is
2 and the auxiliary heat exchanger 8 are unnecessary. Refrigeration equipment 11 provided for larger steam condensation loads due to higher hot plate 5 temperatures
The capacity of is naturally excessive for trap cooling when the hot plate 5 is subjected to cooling control, and mixing does not cause insufficient capacity of the refrigeration system. Excessive cooling of the trap in the late stage of freeze-drying is also achieved by moderate mixing, and the temperature drop from the desired value of the hot plate 5 due to mixing is covered by the heater 6. As explained above, the vacuum drying apparatus according to the present invention is different from the conventional vacuum drying apparatus shown in FIGS. Since it also serves as the heat exchanger 7 for the heat exchanger 7, the space occupied by the heat exchanger 7 can be completely omitted, which provides the benefit of reducing equipment costs and installation area. The benefits that can be achieved by achieving stable operation of the refrigeration equipment for trap cooling and accurate control of the vacuum pressure through accurate control of the trap temperature will reduce the energy consumption of excessive equipment and refrigeration equipment. can get. In addition, trap 1 in the present invention
03 is also effective in removing ice when the steam is frozen and collected in the trap 103.

全行程終了後、再び熱板5とトラツプ103を含む流路
に熱煤が循環するように切換えると(熱量が不足の場合
には加熱器6を用いる)、トラップ103内の冷煤は冷
凍装置11に回収され、それと共にトラップ103は0
度C以上に昇温し、氷は凝結プレート103aの外面か
ら滑り落ち、あるいは剥離して真空室2の底部に落ちる
ようになる。そこで、底部に熱媒液・溢水・スチームな
どのジャケットヒーター25を設けておけば、氷結した
氷を外部からの注水やスチーム吹込ないこも速みやかに
藤氷除去でき、水抜き弁24から排出できるようになる
。なお、本発明におけるトラツプ103の構成は、第4
図乃至第6図に示した実施例に限るものではない。
After the completion of the entire process, when switching is made again so that the hot soot circulates in the flow path including the hot plate 5 and the trap 103 (if the amount of heat is insufficient, the heater 6 is used), the cold soot in the trap 103 is removed from the refrigeration system. 11, and at the same time, trap 103 becomes 0.
When the temperature rises above 0.degree. C., the ice slides off or peels off from the outer surface of the condensation plate 103a and falls to the bottom of the vacuum chamber 2. Therefore, if a jacket heater 25 for heat transfer liquid, overflowing water, steam, etc. is provided at the bottom, frozen ice can be quickly removed without pouring water or blowing steam in from the outside, and is discharged from the drain valve 24. become able to. Note that the configuration of the trap 103 in the present invention is similar to that of the fourth trap 103.
The present invention is not limited to the embodiments shown in FIGS. 6 to 6.

例えば、第6図に示している例における冷煤管26を、
熱媒液Bの流路bの中心部に配位して、稀路bと二重管
を形成するようにしたり、さらに、第7図及び第8図に
示している如く、トラツプ103をそれの外蓬が、真空
室2を形成している円筒状の外壁28の内径に対応する
筒状の二重管に形成して、そのトラッブ103の内周面
が真空室2の実質的な内周壁を構成するように、真空室
2の内腔に隊装し、その二重管で形成してあるトラップ
103の内腔に、冷媒管26を蛇管状に装入してそれに
袷媒Rを流し、かつ、該冷煤管26で蛇管状に区画され
るトラップ103の内控を熱媒液の流路bに形成して、
そこに熱嬢液Bを循環させることにより、真空室2の内
周壁となるトラップ103の内周面が凝結プレート10
3aとなるようにするなど、適宜に構成してよいもので
ある。また、装置の能力バランスの要求が特殊であると
かの場合には、トラップ103に組込まれる熱交換器に
、従前手段における熱交換器7および劉熱交換器8の容
量の全てを代位させず、熱交換の容量の一部を別の外部
熱交換器でまかなうようにするとか、冷凍装置11の他
に別個の冷凍装置を設けることもあり得る。また、トラ
ップ103を設ける真空室(トラツプ室)2は、主弁3
により真空室(乾燥室)1と分離した真空室2の場合に
限らず、真空室(乾燥室)1である場合もある。
For example, the cold soot pipe 26 in the example shown in FIG.
The trap 103 may be arranged at the center of the flow path b of the heat transfer liquid B to form a double pipe with the rare flow path b, or as shown in FIGS. 7 and 8. The outer wall of the trub 103 is formed into a cylindrical double tube corresponding to the inner diameter of the cylindrical outer wall 28 forming the vacuum chamber 2, and the inner circumferential surface of the trub 103 corresponds to the inner diameter of the cylindrical outer wall 28 forming the vacuum chamber 2. A refrigerant pipe 26 is inserted into the inner cavity of the trap 103, which is formed by double pipes, arranged in the inner cavity of the vacuum chamber 2 so as to form a peripheral wall, and a liner medium R is introduced into the inner cavity. The inner part of the trap 103, which is formed into a serpentine tube shape by the cold soot pipe 26, is formed in the flow path b of the heat transfer liquid,
By circulating the heat transfer liquid B therein, the inner circumferential surface of the trap 103, which becomes the inner circumferential wall of the vacuum chamber 2, becomes the condensation plate 10.
It may be configured as appropriate, such as 3a. In addition, if the requirements for the capacity balance of the device are special, the heat exchanger incorporated in the trap 103 does not substitute all of the capacity of the heat exchanger 7 and the Liu heat exchanger 8 in the conventional means, It is also possible to cover part of the heat exchange capacity with another external heat exchanger, or to provide a separate refrigeration device in addition to the refrigeration device 11. Further, the vacuum chamber (trap chamber) 2 in which the trap 103 is provided is connected to the main valve 3.
This is not limited to the case where the vacuum chamber 2 is separated from the vacuum chamber (drying chamber) 1 by the vacuum chamber (drying chamber) 1, but may also be the vacuum chamber (drying chamber) 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の概要説明図、第2図は別の従来装置
の概要説明図、第3図は本発明装置の概要説明図、第4
図は本発明装置の真空室(トラップ室)及びトラップの
縦断した概要説明図、第5図は同上の横断した概要説明
図、第6図は本発明装置のトラップの部分の横断面図、
第7図及び第8図は本発明装置のトラップ室及びトラッ
プの別の実施例を示し、第7図は縦断側面図、第8図は
縦断正面図である。 図面符号の説明、1・・・・・・真空室(乾燥室)、2
・・…・真空室(トラップ室)、3・・・・・・主弁、
3a・・・…主管、4・・・…真空排気系(真空ポンプ
)、5…・・・プレート(熱板)、6・・・・・・熱媒
液加熱器、7・・・・・・熱交換器、8・・・・・・副
熱交換器、9・・・・・・循環ポンプ、10・・・・・
・トラツブ用循環ポンプ、11・・・・・・冷凍装置、
12・・・・・・副冷凍装置、13・・・…冷嬢弁、1
4・…・・冷媒膨張弁、15・・…・仕切弁、21・・
・・・・遮断板、221・・・・・引口、23・・・・
・・蒸気入口、24…・・・水抜き弁、25・・・・・
・ヒーター、26・・・・・・冷煤管、27・・・・・
・仕切壁、28・・…・真空室2の外壁、1101,1
02,103・・・・・・蒸気凝結器(トラップ)、B
・…・・熱媒液、R・・・・・・冷媒。 第1図第2図 第3図 第4図 第5図 第6図 第了図 第8図
Fig. 1 is a schematic explanatory diagram of a conventional device, Fig. 2 is a schematic explanatory diagram of another conventional device, Fig. 3 is a schematic explanatory diagram of the present invention device, and Fig. 4 is a schematic explanatory diagram of a conventional device.
The figure is a schematic cross-sectional view of the vacuum chamber (trap chamber) and trap of the device of the present invention, FIG. 5 is a schematic cross-sectional view of the same as above, and FIG.
FIGS. 7 and 8 show another embodiment of the trap chamber and trap of the apparatus of the present invention, with FIG. 7 being a longitudinal sectional side view and FIG. 8 being a longitudinal sectional front view. Explanation of drawing symbols, 1... Vacuum chamber (drying chamber), 2
...Vacuum chamber (trap chamber), 3...Main valve,
3a... Main pipe, 4... Vacuum exhaust system (vacuum pump), 5... Plate (hot plate), 6... Heat medium liquid heater, 7...・Heat exchanger, 8...Sub-heat exchanger, 9...Circulation pump, 10...
・Circulation pump for truck, 11...refrigeration equipment,
12...Sub-refrigeration device, 13...Refrigerating valve, 1
4... Refrigerant expansion valve, 15... Gate valve, 21...
...Break plate, 221...Cut, 23...
...Steam inlet, 24...Drain valve, 25...
・Heater, 26...Cold soot pipe, 27...
・Partition wall, 28...Outer wall of vacuum chamber 2, 1101,1
02,103...Steam condenser (trap), B
...Heating medium liquid, R...Refrigerant. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Completed Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1 冷凍装置の冷媒蒸発器と真空室に設ける棚の冷却の
ためにその棚に流す熱媒液体との熱交換を行なわすよう
、真空乾燥装置に装備せしめる熱交換器を、それの外表
面の全部または一部が蒸気の凝結捕集面となるよう形成
して、蒸気を捕集する真空室内に装置したことを特長と
する真空乾燥装置。
1. A heat exchanger installed in a vacuum drying device is installed on the outer surface of the vacuum drying device so as to exchange heat between the refrigerant evaporator of the refrigeration device and the heat transfer liquid flowing to the shelf provided in the vacuum chamber to cool the shelf. 1. A vacuum drying device characterized in that all or part of the surface is formed as a vapor condensation and collection surface, and the device is installed in a vacuum chamber for collecting vapor.
JP2187180A 1979-07-04 1980-02-23 vacuum dryer Expired JPS6015866B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2187180A JPS6015866B2 (en) 1980-02-23 1980-02-23 vacuum dryer
US06/164,031 US4353222A (en) 1979-07-04 1980-06-30 Vacuum apparatus
DE19803025050 DE3025050A1 (en) 1979-07-04 1980-07-02 VACUUM DEVICE
IT68044/80A IT1128848B (en) 1979-07-04 1980-07-03 DEPRESSION GENERATOR APPARATUS
GB8022021A GB2061474B (en) 1979-07-04 1980-07-04 Vacuum apparatus
FR8015004A FR2461213B1 (en) 1979-07-04 1980-07-04 VACUUM APPARATUS, PARTICULARLY FOR THE PRESERVATION OF FOOD PRODUCTS
US06/403,163 US4407140A (en) 1979-07-04 1982-07-29 Vacuum apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187180A JPS6015866B2 (en) 1980-02-23 1980-02-23 vacuum dryer

Publications (2)

Publication Number Publication Date
JPS5610682A JPS5610682A (en) 1981-02-03
JPS6015866B2 true JPS6015866B2 (en) 1985-04-22

Family

ID=12067184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187180A Expired JPS6015866B2 (en) 1979-07-04 1980-02-23 vacuum dryer

Country Status (1)

Country Link
JP (1) JPS6015866B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294373A (en) * 1987-05-18 1988-12-01 Yoshio Oyama Packed food utilizing water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071528B2 (en) * 1983-12-29 1995-01-11 ソニー株式会社 Magnetic head device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294373A (en) * 1987-05-18 1988-12-01 Yoshio Oyama Packed food utilizing water

Also Published As

Publication number Publication date
JPS5610682A (en) 1981-02-03

Similar Documents

Publication Publication Date Title
US6666043B2 (en) Dewfall preventing device of refrigerator
US20110271703A1 (en) Refrigerator
JP2001147050A (en) Refrigerating system for refrigerator equipped with two evaporators
JP4184779B2 (en) Machine room cover of refrigerator
KR20030075802A (en) Refrigerator
JP3644845B2 (en) High-efficiency steam condenser in vacuum equipment.
KR102173814B1 (en) Cascade heat pump system
CN206291563U (en) Airborne evaporation circulating cooling integrated thermal management system
JPS6015866B2 (en) vacuum dryer
JPS5812042B2 (en) Steam condenser in vacuum equipment
CN109506382A (en) The direct condensation by contact cooling cycle system of three warm cooling supply
CN206399029U (en) A kind of freeze dryer and its refrigeration system
US20180100678A1 (en) Refrigerator and method for controlling the same
CN101337135A (en) Low-temperature cold trap
KR102257601B1 (en) Energy saving refrigeration and defrost system that exchanges refrigerant condensation heat and brine in plate heat exchanger
CN105222422B (en) Double heat exchange cooling cycle system
KR100493871B1 (en) Equipment for dehumidification and dryness
CN114152007A (en) Separation and purification device, refrigeration assembly, system, purification method and storage medium
KR100518842B1 (en) Device for prevention dewing of refrigerator
KR101996561B1 (en) Apparatus using thermal-stream
CN215676612U (en) Residual cold utilization system
JPS5912514Y2 (en) refrigeration cycle
CN216790594U (en) Separation and purification device, refrigeration assembly and refrigeration system
CN216448483U (en) Temperature control system of freeze dryer
JPS6144126Y2 (en)