JPS60158558A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS60158558A
JPS60158558A JP59013688A JP1368884A JPS60158558A JP S60158558 A JPS60158558 A JP S60158558A JP 59013688 A JP59013688 A JP 59013688A JP 1368884 A JP1368884 A JP 1368884A JP S60158558 A JPS60158558 A JP S60158558A
Authority
JP
Japan
Prior art keywords
fuel
pressure
fuel cell
operating pressure
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59013688A
Other languages
Japanese (ja)
Other versions
JPH036623B2 (en
Inventor
Hiroko Yamada
裕子 山田
Yoshiyuki Taguma
良行 田熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59013688A priority Critical patent/JPS60158558A/en
Publication of JPS60158558A publication Critical patent/JPS60158558A/en
Publication of JPH036623B2 publication Critical patent/JPH036623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To readily increase cell operating pressure from atmospheric pressure to rated operating pressure in starting by installing a brahch means by which an excess fuel which flows in an excess fuel line through a fuel electrode is introduced into an atmospheric release circuit. CONSTITUTION:When operating pressure slightly exceeds back pressure, a three- way control valve 14 which was completely opened in a flare stack 16 direction is gradually opened in an excess gas outlet direction, and excess gas flow is gradually switched from a flare stack 16 direction to an excess gas circuit. After the three-way control valve 14 was completely opened in the excess gas outlet direction, operating pressure is increased to rated operating pressure by throttling a pressure control valve 11. A check valve 15 prevents back flow when back pressure is high. Thereby, pressure can be increased with excess fuel sets free to the flare stack 16 in cell starting. Switching from the flare stack circuit to the excess fuel circuit is easily performed. Operating pressure of a cell is easily kept and controlled without giving quick pressure change to a fuel cell main body 1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は水素主成分ガスを燃料として利用する燃料電
池発心システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell centered system that utilizes hydrogen-based gas as a fuel.

〔従来技術〕[Prior art]

食塩電解プラントや、エチレンプラントで代表される石
油化学プラントにおいては、製品生産の過程で副生物と
して多量の水素が発生する。
In petrochemical plants such as salt electrolysis plants and ethylene plants, a large amount of hydrogen is generated as a byproduct during the product production process.

従来、この副生水素は、製精後、ボンベ詰めにして販売
されたり、−4た一部コンビナート内でボイラその他の
熱温として利用されるのが普通であった。近年、燃料電
池発電システムの開発に伴い、その新しい利用形感の1
つとして、この副生水素k ;+」用するシステムが考
えられ、各方面で検討されている。
Conventionally, this by-product hydrogen was usually sold in cylinders after refining, or used as a heat source in boilers and other equipment in some industrial complexes. In recent years, with the development of fuel cell power generation systems, one of the new uses of fuel cell power generation systems has been developed.
One possible solution is a system that utilizes this by-product hydrogen, and is being studied in various fields.

副生水素を利用する燃料電池発電システムは、天然ガス
等を燃料とするシステムと異なり、燃料改質装置が不要
となるのでプラントコスト低数、プラント構成闇路化、
プラン、ト効率向上等全期待することができる。
Unlike systems that use natural gas as fuel, fuel cell power generation systems that use by-product hydrogen do not require a fuel reformer, resulting in lower plant costs, lower plant configurations, and
We can expect improvements in plan efficiency, etc.

オ1図は従来の一般的な副生水素利用燃料電池兄電シス
テムを示す。図において、111は燃料種αa入を無極
(ib)を何す燃料電池本体、)2)。
Figure 1 shows a conventional general fuel cell system using by-product hydrogen. In the figure, 111 is the main body of the fuel cell, which includes fuel types αa and non-polar (ib).)2).

(3)は燃料電池本体+11の燃料極(1a)入口国の
140生水素供給ライン及び燃料極(la)出口側の余
剰燃料ライン、+41 、15]は燃料電池本体fil
の視気碌(lb)入口側の空気供給ライン及び空気u+
< (lb)出口側のボ判?気ライン、(6)は気水分
離器、+71 I″i傭環水環水ポンプ8)はd池冷却
水ライン、+91flスチーム朕出ライン、(+o) 
、 +121はそれぞれ燃料、空気の流Mk、に両面す
るための流量調整弁、 (ill 、 1181は電池
の動作圧力全一定に匣つための圧力調整弁である。
(3) is the fuel cell main body + 11 fuel electrode (1a) entrance country 140 raw hydrogen supply line and fuel electrode (la) exit side surplus fuel line, +41, 15] is the fuel cell main body fil
air supply line and air u+ on the lb inlet side
< (lb) Bo size on the exit side? Air line, (6) is a steam water separator, +71 I''i ring water pump 8) is a d pond cooling water line, +91fl steam extraction line, (+o)
, +121 are flow rate regulating valves for controlling the fuel and air flows Mk, respectively, and 1181 is a pressure regulating valve for keeping the operating pressure of the battery constant.

次に動作について直間すると、化学プラントで生成され
る副生水素は、副生水素供給ライン(2)全経由して(
荒量調歪升(lO)でIjfl量をW、1擬されたあと
、濡4−+電l屯本体(1)の燃料種(1〜に役人され
る。燃料極(1a)で消費され、tあとの余剰燃料は、
余剰燃料ライン(3)及び圧力調整弁(1り全経由して
システム外に放出される。
Next, regarding the operation, the by-product hydrogen generated in the chemical plant is passed through the entire by-product hydrogen supply line (2) (
After the amount of Ijfl is simulated by W and 1 with the rough amount of strain (lO), the fuel type (1~) of the wet 4- + electric ton body (1) is used. It is consumed at the fuel electrode (1a). , the surplus fuel after t is
Excess fuel is discharged out of the system via the excess fuel line (3) and pressure regulating valve (1).

この余!Ill燃枡は梢製賊売あるいはプラント内で燃
料等の用途に使用される。一般PC,燃F+電池は特性
向上のため、ある程度の動作圧力(例えば4〜avla
)が必要とされるので、副生水素の圧力が低い場合には
供給ライン(2)に昇If装置(図示せず)が$置され
る。但し、一般に石油化学プラントにおいては高圧の副
生水素が得られるため特別に昇圧装置を必要としない。
This rest! Ill fuel tanks are used for fuel, etc. in treetop sales or within plants. General PCs and fuel F+ batteries require a certain amount of operating pressure (e.g. 4 to AVLA) to improve their characteristics.
) is required, so an elevating If device (not shown) is placed in the supply line (2) when the pressure of the by-product hydrogen is low. However, in general, petrochemical plants do not require a special booster because high-pressure by-product hydrogen is obtained.

一方、コンプレッサ(図示せず)で昇圧された依気は空
気供給ライン(4)を経由してl光量調整弁(121で
流猷全調歪されたあと、燃料電池本体11+の空気Ia
(1υに投入され、そCで消費された空気は合判空気ラ
イン(5)及び圧力調整弁(131を経由して糸外に放
出される。
On the other hand, the air pressurized by the compressor (not shown) passes through the air supply line (4) and is fully distorted by the light intensity adjustment valve (121).
(The air injected into 1υ and consumed in 1υ is discharged to the outside of the thread via the air line (5) and the pressure regulating valve (131).

捷た、循環水ポンプ(7)、−池冷却水ライン(8)、
気水分14w +6+でもって、電池の冷却系を構成す
る。%水分磁器(6)より排出されるスチームは放出ラ
イン(9)全経由してシステム外に放出される。
Disconnected circulating water pump (7), - pond cooling water line (8),
The cooling system for the battery is made up of 14w+6+ of air and moisture. % moisture The steam discharged from the porcelain (6) is discharged out of the system through the entire discharge line (9).

このスチームは工場スチームとして昇磁設備あるいは冷
暖腑用に使用されたり、またスチームタービン光電磯の
動力として回収されたシする、さて、この様な副生水素
利用燃料電池システムにおいては、燃料極Qa)で、消
費された後の余剰燃料がシステム外に排出される時、一
般にシステム外で背If(例えば2〜3・もG)を持つ
This steam is used as factory steam for magnetization equipment or for cooling/heating, or is recovered as power for a steam turbine photovoltaic unit.In such a fuel cell system using by-product hydrogen, the fuel electrode Qa ), when the surplus fuel after being consumed is discharged from the system, it generally has a value If (for example, 2 to 3 G) outside the system.

一方、篭浦起励時には動作圧力を大気圧状態から運転圧
力まで昇圧させる必要があり、したがって、このとき、
電池に供給ライン(21全経由して供給する燃料ガス圧
力を大気圧から運転圧力までFF1fさせる必要がある
。このとき、余剰燃料ライン(3)が系外において背圧
をもっているため、このままの構成では、燃料電池の動
作圧力がこのd圧よりも政い間は燃N−電池の動作圧力
金城技・制御することが非常に困難である。
On the other hand, when pumping Kamoura, it is necessary to increase the operating pressure from atmospheric pressure to operating pressure.
It is necessary to increase the pressure of the fuel gas supplied to the battery via the supply line (21) from atmospheric pressure to operating pressure by FF1f.At this time, since the excess fuel line (3) has back pressure outside the system, the configuration as it is will not be changed. As long as the operating pressure of the fuel cell is lower than this d pressure, it is very difficult to control the operating pressure of the fuel cell.

さらに、燃料電池本体+11においては、燃料極(la
)、Q気槽(ib)間のガスのリーク(クロスオーバ)
k防ぐために、両極間の差圧′fI:4JC少値におさ
えなければならず、電池の燃料ガス圧の調歪は精密さを
要する。
Furthermore, in the fuel cell main body +11, the fuel electrode (la
), gas leak (crossover) between Q tank (ib)
In order to prevent this, the differential pressure 'fI:4JC between the two electrodes must be kept to a small value, and adjustment of the fuel gas pressure in the cell requires precision.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点に鑑みてなさ
れたものであり、システム起動時、燃料電池本体の燃料
極金繰て余ψ」燃料ラインを流れる余剰・燃料を大気解
放回路へ辱く分岐手段を設置することにより、システム
起動時に燃料′電池の動作圧力全大気圧から定格運転圧
力まで補動に昇圧させることができる燃料電池発′成シ
ステムkW供するものである。
This invention was made in view of the above-mentioned drawbacks of the conventional ones. When the system is started, the fuel cell's fuel reserve ψ", the surplus fuel flowing through the fuel line, is released into the atmosphere release circuit. By installing a branching means, a fuel cell generation system kW is provided which can supplementally increase the operating pressure of the fuel cell from full atmospheric pressure to the rated operating pressure when the system is started.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を第2図に基づいて直間する
0図において1.l)〜(131は上述した従来量のも
のと同様である。−は燃料電池本体II+の燃料4fi
(la)出口側の余剰燃料ライン(31上に設置された
例えば三方調整弁からなる分岐手段(以下、三方−−報
弁と称す)であり、この三万調螢弁+14の一方の出口
を系外の余剰燃料排出回路へ、もう一方の出口を大気解
放回路へ接続しており、システム起動時、余剰燃料ライ
ン(3)を流れる余利燃P+を大気解放回路へ辱くよう
にしている。
Hereinafter, one embodiment of the present invention will be described in 1. with reference to FIG. 2. l) to (131 are the same as the conventional amounts described above. - is the fuel 4fi of the fuel cell main body II+
(la) Branching means (hereinafter referred to as a three-way control valve) installed on the surplus fuel line (31) on the outlet side, for example, a three-way control valve (hereinafter referred to as a three-way control valve), which connects one outlet of the three-way control valve +14. The other outlet is connected to the surplus fuel discharge circuit outside the system, and the other outlet is connected to the atmosphere release circuit, so that when the system is started, the surplus fuel P+ flowing through the surplus fuel line (3) is discharged to the atmosphere release circuit. .

uai逆止弁、+161はフレアスタックである。uai check valve, +161 is flare stack.

この葎なシステムにおいて、燃料電池の起動時、′−池
動作圧力全上昇させる手段について説明する。
In this advanced system, a means for increasing the total operating pressure of the cell at the time of starting the fuel cell will be explained.

′−電池起動時おいては、燃料極(1a)と空気極(1
t))の斧圧を微少値に制御しつつ燃料ガス・窒気各々
を徐々に昇圧する必要がある。電池停止時、燃料電池本
体il+の燃料極(la)入口側の副生水素供給ライン
(2)上の流量調整弁(10)は閉の状態にある。その
とき、燃料極(la)出ロ側余剌燃料うインL31上の
圧力調整弁l1l) e全開、三方調整弁t141 t
フレアスタック(l(へ)方向に全開の状惑ニしておく
。このとき、を気側も同様に流量調螢弁(121が閉、
圧力調蟹升jl:llが全開であり、との状態ではぼ也
は大気圧状怠にある。電池起動時には、副生水素供袷ラ
イン(2)上の流量調歪弁t101 f:徐々に開くと
同時に、余剰燃料ライン(3)上の圧力調蟹弁(lり金
体々に絞る。これにより燃料極(la)に流れるカスを
昇圧することができる。このとき、′電池両極の滝圧(
i?維持する模に窒気側も同様の操作を行なうことはも
ちろんである。この操作を動作圧力が余剰燃料の背圧に
達する壕で行なう。動作圧力が背圧に等しいかまたはわ
ずかに# If’k JMえたとき、フレアスタック鵠
方向に全開の状態にあった三方調整弁tl(1)を徐々
に余利燃料田口方向に開く。
'-When starting the battery, the fuel electrode (1a) and air electrode (1a)
It is necessary to gradually increase the pressure of the fuel gas and nitrogen while controlling the ax pressure of t)) to a minute value. When the cell is stopped, the flow rate regulating valve (10) on the by-product hydrogen supply line (2) on the inlet side of the fuel electrode (la) of the fuel cell main body il+ is in a closed state. At that time, the pressure regulating valve l1l on the fuel electrode (la) outlet side extra fuel inlet L31) e is fully open, and the three-way regulating valve t141 t
Keep the flare stack fully open in the L direction. At this time, the flow control valve (121 is closed) on the air side as well.
In the state where the pressure regulator jl:ll is fully open, the cylinder is at atmospheric pressure. At the time of battery startup, the flow rate adjustment valve t101 f on the by-product hydrogen supply line (2) gradually opens, and at the same time, the pressure adjustment valve (t101f) on the surplus fuel line (3) tightens the pressure. The pressure of the waste flowing to the fuel electrode (la) can be increased by
i? Of course, the same operation should be performed on the nitrogen side to maintain the same. This operation is carried out in a trench where the operating pressure reaches the back pressure of excess fuel. When the operating pressure is equal to the back pressure or slightly exceeds #If'k JM, the three-way regulating valve tl(1), which was fully open toward the flare stack, is gradually opened toward the surplus fuel outlet.

この勲作によって糸匍燃料の流れがフレアスタック回路
から回収金目的とする糸外の金利燃料回路に徐々に切り
替わる。三方調整弁t141が金利燃料出口方向に全開
となった後はさらに圧力調輩弁(11)τ絞ることによ
り、動作圧力’kf格運転圧力まで昇圧する・ なお、逆止弁(15)は背圧が高い時逆流を防止するた
めのものである◎ 以上のように、三方調整弁(14)を燃料電池本体(1
)の燃料極(la)出口側の余剰燃料ライン(3)上に
設置することにより、電池起動時に、余刊燃料全フレア
スタック用に逃がしつつ昇圧するCとができ、また、フ
レアスタック回路から系外金利燃料回路への切替えも簡
易に行なうことができ、燃4−4−電池本体+l+に何
ら急激な圧力変動全米たすことがなく、電池の動作圧力
を相持・制御することが容易となる。
As a result of this feat, the flow of fuel is gradually switched from the flare stack circuit to the outside fuel circuit, which is used for recovery purposes. After the three-way regulating valve t141 is fully opened in the direction of the fuel outlet, the pressure regulating valve (11) is further throttled to raise the operating pressure to the operating pressure 'kf. This is to prevent backflow when the pressure is high.◎ As mentioned above, the three-way regulating valve (14) is connected to the fuel cell main body (14).
) by installing it on the excess fuel line (3) on the outlet side of the fuel electrode (la), it is possible to raise the pressure of C while releasing excess fuel to the entire flare stack when starting the battery, and also to increase the pressure of C from the flare stack circuit. Switching to an external fuel circuit can be easily performed, and there is no sudden pressure fluctuation in the fuel cell main body +l+, making it easy to maintain and control the operating pressure of the battery. Become.

向、上記実施例では分岐手段α荀が三方調整弁である場
合について述べたが、分岐手段(141として、余剰燃
料ライン(3)に分岐管を設け、この分岐aと余剰燃料
ライン(3)にそれぞれ調整弁を1役は、それら調整弁
の開閉操作により、上記実施例と同様の昇1−E、動作
を行うようにしてもよく、同様の効果を奏する。
In the above embodiment, a case was described in which the branching means α was a three-way regulating valve, but as the branching means (141), a branch pipe was provided in the surplus fuel line (3), and this branch a and the surplus fuel line (3) By opening and closing the regulating valves, the same operations as those in the above embodiment may be performed, and the same effects can be obtained.

筐た、上記ツ(施例では化学プラントにおける副生水素
全利用する燃料電池本体システムについて述べたが、適
用分野金特に化学プラントに限定するものではなく、水
31m料として使用できる場合には分骨全問わず、全く
同様の効果でこの燃料電池本体システムを適用するCと
ができる。
In addition, the above example describes a fuel cell system that makes full use of by-product hydrogen in a chemical plant, but the application field is not limited to chemical plants in particular, and water can be separated if it can be used as a fuel. This fuel cell main body system can be applied with the same effect regardless of whether the bone is whole or not.

〔発明の効果〕〔Effect of the invention〕

以上の様にこの発明によれば、システム起動時、燃料電
池本体の燃料雁を経て余剰燃料ラインを流れる余剰燃料
を大気解放回路へ導く分岐手段全設置したことにより、
燃料電池の起動待時に、燃料電池の動作圧力を大気圧か
ら定格運転圧力まで簡易に昇圧させることができる燃料
電池発電システムを得ることができる。
As described above, according to the present invention, all the branching means are installed to guide the surplus fuel flowing through the surplus fuel line through the fuel goose of the fuel cell main body to the atmosphere release circuit when the system is started.
It is possible to obtain a fuel cell power generation system that can easily increase the operating pressure of the fuel cell from atmospheric pressure to the rated operating pressure when the fuel cell is waiting for startup.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料電池発電システムを示す系統図、第
2図はこの発明の一実施例による燃料電池発電システム
金示す系統図である。 図において、(1)は燃料電池本体、(3)は余剰燃料
ライン、+14)は分岐手段である。 図中、同一符号v1同−又は相当部分を示す。 代坤人 大暑 増雄
FIG. 1 is a system diagram showing a conventional fuel cell power generation system, and FIG. 2 is a system diagram showing a fuel cell power generation system according to an embodiment of the present invention. In the figure, (1) is the fuel cell main body, (3) is the surplus fuel line, and +14) is the branching means. In the figure, the same reference numerals v1 and - or equivalent parts are shown. Daikonto Masao Masao

Claims (1)

【特許請求の範囲】 +11 水素主成分ガスを燃料として利用し、燃料電池
本体の燃料極出口側に余剰燃料ラインを何する慾料屯池
発屯システムにおいて、システム起動時、上記燃料電池
本体の燃料極金繰て上記余剰燃料ラインを流れる余剰燃
料を大気解放回路へ辱く分岐手段を備えたことを特徴と
する燃料電池発心システム。 (21分岐手段は三万調螢弁で構成されたことを特徴と
する特許請求の範囲11項記載の燃料電池本体システム
。 (3] 分岐手段は余剰燃料ラインに分岐された分分岐
管と、この分岐行と余剰燃料ラインにそれぞれ設けた調
螢弁とにより構成されたこと全特徴とする特許68氷の
4囲オ1項記載の燃料電池発電システム。
[Scope of Claims] +11 In the Hunryutunchi Shuntun system that uses hydrogen-based gas as a fuel and connects a surplus fuel line to the fuel electrode outlet side of the fuel cell body, when the system is started, the fuel cell body A fuel cell-based system comprising a branching means for diverting the surplus fuel flowing through the surplus fuel line to the atmosphere release circuit. (21) The fuel cell main body system according to claim 11, characterized in that the branching means is constituted by a Sanmancho firefly valve. (3) The branching means is a branch pipe branched to a surplus fuel line, The fuel cell power generation system described in Section 4, Paragraph 1 of Patent No. 68, which is characterized by being constituted by the branch line and the redundant valve provided in each of the surplus fuel lines.
JP59013688A 1984-01-27 1984-01-27 Fuel cell power generating system Granted JPS60158558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59013688A JPS60158558A (en) 1984-01-27 1984-01-27 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59013688A JPS60158558A (en) 1984-01-27 1984-01-27 Fuel cell power generating system

Publications (2)

Publication Number Publication Date
JPS60158558A true JPS60158558A (en) 1985-08-19
JPH036623B2 JPH036623B2 (en) 1991-01-30

Family

ID=11840125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59013688A Granted JPS60158558A (en) 1984-01-27 1984-01-27 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS60158558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331884A (en) * 2005-05-26 2006-12-07 Toyota Motor Corp Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331884A (en) * 2005-05-26 2006-12-07 Toyota Motor Corp Fuel cell system

Also Published As

Publication number Publication date
JPH036623B2 (en) 1991-01-30

Similar Documents

Publication Publication Date Title
JP4087443B2 (en) Method for operating fuel cell facility and fuel cell facility for carrying out this method
US7291416B2 (en) Fuel cell system having inlet fuel to more than one and/or recycle to less than all of the fuel fields
MXPA02012342A (en) Water recovery in the anode side of a proton exchange membrane fuel cell.
JPS621447A (en) Fuel cell system having premixing apparatus for water mixable fuel and water
JPH0622156B2 (en) Fuel cell device
CN106876751A (en) A kind of hydrogen-oxygen fuel cell
JP3522769B2 (en) Operating method of fuel cell plant and fuel cell plant
US4879189A (en) Fuel cell air pressurization system and method
US20070218326A1 (en) Approach of solving humidification device turndown ratio for proton exchange membrane fuel cells
JPS60158558A (en) Fuel cell power generating system
JPH0249359A (en) Fuel cell power generating system
JPS60158562A (en) Fuel cell power generating system
JPS59111272A (en) Fuel-cell control device
JPS61176077A (en) Fuel battery equipment
JPH02281569A (en) Fused carbonate fuel cell power generating plant
JP2005276764A (en) Fuel cell system
JPS61227372A (en) Fuel cell power generation system
JP3151860B2 (en) Molten carbonate fuel cell power generator
JPS61267273A (en) Control method for power generation plant of fuel cell and its apparatus
JPS60189176A (en) Flow control of fuel cell power generating system
JPS59111270A (en) Control device for fuel-cell power generating system
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
JP2841703B2 (en) Method and apparatus for controlling amount of air for cathode of molten carbonate fuel cell
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JPS61176076A (en) Fuel battery equipment