JPS6015840A - Optical pickup - Google Patents

Optical pickup

Info

Publication number
JPS6015840A
JPS6015840A JP58122804A JP12280483A JPS6015840A JP S6015840 A JPS6015840 A JP S6015840A JP 58122804 A JP58122804 A JP 58122804A JP 12280483 A JP12280483 A JP 12280483A JP S6015840 A JPS6015840 A JP S6015840A
Authority
JP
Japan
Prior art keywords
semiconductor laser
objective lens
apertures
ratio
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58122804A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakamura
裕行 中村
Masayuki Ito
正之 伊藤
Hiroshi Yasuda
博 安田
Toshiki Matsuno
松野 俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58122804A priority Critical patent/JPS6015840A/en
Priority to EP84902723A priority patent/EP0148278B1/en
Priority to DE8484902723T priority patent/DE3483646D1/en
Priority to PCT/JP1984/000344 priority patent/WO1985000457A1/en
Publication of JPS6015840A publication Critical patent/JPS6015840A/en
Priority to US07/144,462 priority patent/US4868821A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam

Abstract

PURPOSE:To obtain an optical pickup with a low cost, high performance and a small size by increasing the number of apertures of a disc side more than the number of apertures at a semiconductor laser side so that the ratio of the number of apertures of the semiconductor laser side of an objective lens to the number of apertures of the disc side is a specified range. CONSTITUTION:Since a light irradiated from a semiconductor laser 3 is focused always onto a disc 5 by the focus control, even if the objective lens 1 moves to any positon, the luminous flux returns to the original optical path at all times. Thus, the image of the luminous flux separated by a half mirror 7 is formed to a position symmetrical to the semiconductor laser 3 at the opposite side of the half mirror 7 without fail and a normal signal is obtained. Since the ratio of the number of apertures of the object side to the image side, i.e., the magnifying power is fluctuated more or less through the objective lens 1 moved in the focus direction, the fluctuation width is increased if the ratio is too small and an aberration is produced. If too large, the optical path length from the semiconductor laser 3 to the disc 5 is longer, it results in increasing the size of the optical pickup. Let the movable range of the objective lens be + or -1mm., then the ratio of the number of apertures is 3-5 as a proper value taking the above into account.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、円盤状記録媒体(以下単にディスクという)
に高密度なデジタル信号を記録さぜた情報トラックに光
スポラトラ投影させて光学的に情報を読み取る光ピツク
アップに関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a disk-shaped recording medium (hereinafter simply referred to as a disk).
The present invention relates to an optical pickup that optically reads information by projecting an optical sporatra onto an information track on which a high-density digital signal is recorded.

従来例の構成とその問題点 近年、ディジタルオーディオディスクの普及に伴い、光
ピツクアップの開発は目ざ捷しいものがある。これに用
いられている光ピツクアップは小型・軽量化のために光
源として半導体レーザーを使用している。この光ビック
アップにおいてディスクのソリ、面振れ、あるいはディ
スクの回転中心に対する情報I・ラックの偏心に対して
対物レンズを追従させる方法として■第1図に示すよう
に対物レンズ1をフォーカス、トラッキングの2次元に
移動させる、■第2図に示すようにフォーカス方向は対
物レンズ1のみ移動させ、トラッキング方向は、レーザ
ー、受光素子、対物レンズ1を含めた光ピンクアップ全
体2を移動させる、■第3図に示すようにフォーカス方
向、トラッキング方向共、光ピツクアップ全体2を移動
させる等がある。
Conventional configurations and their problems In recent years, with the spread of digital audio discs, the development of optical pickups has been rapid. The optical pickup used for this uses a semiconductor laser as the light source to make it smaller and lighter. In this optical start-up, as a method for making the objective lens follow the disk warpage, surface runout, or eccentricity of the information I/rack relative to the rotation center of the disk, 2-dimensional movement, ■ As shown in Figure 2, only the objective lens 1 is moved in the focusing direction, and the entire optical pink-up 2 including the laser, light-receiving element, and objective lens 1 is moved in the tracking direction. As shown in FIG. 3, the entire optical pickup 2 may be moved in both the focusing direction and the tracking direction.

このうち■、■が従来最も良く用いられている方法であ
るが、■も含めて従来のものは対物レンズへ入射する光
はすべて平行光束VCすっている0これは、対物レンズ
の光束径よりも大きい平行光束の中では対物し/ンズを
どのような方向に動かしても対物レンズの性能が変化し
ないということと、従来より市販されている対物レンズ
が平行光束中で使用するような設計になっているためで
ある。
Among these methods, ■ and ■ are the most commonly used methods, but in the conventional methods including ■, all the light that enters the objective lens is a parallel beam VC0 This is because the diameter of the beam of light of the objective lens The performance of the objective lens does not change no matter what direction the objective lens is moved in a large parallel beam of light, and the conventional commercially available objective lenses are designed to be used in a parallel beam of light. This is because

しかし第4図に示すように光源に使用される半導体レー
ザー3は発散光束であるため、平行光束を作るためには
、対物レンズとは別に、コリメートレンズ4を用いる必
要がある。このコリメートレンズ4は高価なため、コス
トアップの要因になるばかりではなく、光学部品が増え
ることにより光学系全体の収差が大きくなるという欠点
があった。またコリメートレンズの焦点距離は通常14
〜17mmと長いため、第6図に示すように半導体レー
ザー3からディスク5までの距離が長くなり、このまま
の構成では小型化、特に薄型化が困難であり、また第6
図のように全反射プリズム8を使って光路を折り曲げる
と、全反射プリズム8によるコストアップ、収差の増大
、組立精度の悪さ等が問題になっていた○ さらに、従来のものは、平行光束中で対物1/ンズを移
動させるため、光学的な可動範囲が、第7図のようにコ
リメートレンズ4と対物レンズ1の光束径の差の範囲た
けに限定され、コリメートレンズ1の光束径を太きくし
ようとすると、コリメートレンズ1の焦点距離をさらに
長くするか、開口数を大きくするかしかなく、自ら限界
があった0発明の目的 本発明は上記のような従来の問題点tm決するもので、
低コスト、高性能、小型の光ピツクアップを提供するも
のである。
However, as shown in FIG. 4, since the semiconductor laser 3 used as the light source is a diverging light beam, it is necessary to use a collimating lens 4 in addition to the objective lens in order to create a parallel light beam. Since the collimating lens 4 is expensive, it not only increases the cost, but also increases the aberration of the entire optical system due to the increase in the number of optical components. Also, the focal length of the collimating lens is usually 14
Since the length is as long as ~17 mm, the distance from the semiconductor laser 3 to the disk 5 becomes long as shown in FIG.
When the optical path is bent using the total reflection prism 8 as shown in the figure, there are problems such as increased cost, increased aberrations, and poor assembly precision due to the total reflection prism 8. In addition, the conventional type In order to move the objective 1/lens at In order to achieve this, the only option is to further lengthen the focal length of the collimating lens 1 or increase the numerical aperture, which has its own limitations.Purpose of the InventionThe present invention solves the problems of the prior art as described above. ,
This provides a low-cost, high-performance, compact optical pickup.

発明の構成 本発明は、半導体レーサーの発散光束中に対物レンズ全
能した構成になっており、コリメートレンズを使用しな
いことにより、収差を軽減できると共に、対物レンズの
可動範囲を大きく取ることができ、同時に低コスト、小
型化を実現するものである。
Structure of the Invention The present invention has a structure in which the objective lens is omnipotent in the diverging light beam of the semiconductor laser, and by not using a collimating lens, aberrations can be reduced and the movable range of the objective lens can be increased. At the same time, it realizes low cost and miniaturization.

実施例の説明 第8図は本発明の一実施例における光ピツクアップの構
成を示すものである0 第8図において、1はディスクに対向して移動自在に配
置された対物レンズ、6は対物レンズ駆動装置、7はデ
ィスク6からの反射光全受光素子9の方へ分離するだめ
の71−フミラー、10はフォーカスエラー、あるいは
トラッキングエラー全検出するだめの検出光学系である
。なお、3は半導体レーザーでこれは従来例の構成と同
じものである。
DESCRIPTION OF EMBODIMENTS FIG. 8 shows the configuration of an optical pickup in an embodiment of the present invention. In FIG. 8, 1 is an objective lens movably arranged facing the disk, and 6 is an objective lens. A driving device 7 is a mirror 71 for separating all of the reflected light from the disk 6 toward a light receiving element 9, and 10 is a detection optical system for detecting all focus errors or tracking errors. Note that 3 is a semiconductor laser, which has the same configuration as the conventional example.

以上のように構成された本実施例の光ピツクアップにつ
いて以下にその動作を説明する。
The operation of the optical pickup of this embodiment configured as described above will be explained below.

半導体レーザー3から出た光はノ・−7ミラー7を通過
し、発散光束のまま対物レンズ1に入射する。この光束
は対物し/ズ1によって絞られ、ディスク6上に微小ス
ポット全納ぶ。これがディスク6の信号面によって反射
され、ノ・−7ミラー7によって受光素子上へ結像する
0 この時、フォーカス制御によって常にティスフ6上に焦
点が合っているため、対物レンズ1がどのような位置に
移動しても、光束は常に元きた光路全戻るので、l・−
フミラー7によって分離された光束は必ず、l\−7ミ
ラー7に対して半導体レーザー3と対称な位置に結像し
、正常な信号を得ることができる。
The light emitted from the semiconductor laser 3 passes through the No.-7 mirror 7 and enters the objective lens 1 as a divergent beam. This light beam is condensed by the objective lens 1 and completely falls on a minute spot on the disk 6. This is reflected by the signal surface of the disk 6, and an image is formed on the light receiving element by the No.-7 mirror 7. At this time, since the focus is always focused on the lens 6 by focus control, the objective lens 1 is Even if it moves to a different position, the light beam always returns to its original optical path, so l・-
The light beam separated by the mirror 7 is always imaged at a position symmetrical to the semiconductor laser 3 with respect to the l\-7 mirror 7, and a normal signal can be obtained.

この時、対物レンズ1がフォーカス方向に動くことによ
って、物体側(牛導体し−ザ゛−側)と像側(ディスク
側)の開口数の比すなわち倍率が若干変動するため、こ
の比が小さすぎると、変動幅が大きくなり、収差を生じ
る。また太きすぎると、半導体レーザー3からディスク
6までの光路長が長くなり、光ピツクアップが大きなも
のになってし甘う。これらのことを考慮して、対物レン
ズの可動範囲を±1 mm (これは実際的な数値であ
る)とすると、開口数の比は3〜6(ディスク側〉半導
体レーザー側)が適切である0 また対物レンズ1は第8図に示すように発散光束4で移
動するため、従来例のように、ある範囲を越えれば光が
けられてしまうということはなく、対物レンズ1の可動
範囲を大きくすることができるO 以上のように本実施例ではコリメートレンズを用いない
ため、コストが安くなるはかりでなく、収差の発生が少
なく、対物レンズの可動範囲も大きく取れるため、性能
的にも向上し、小型化、薄型化も同時に実現できる。
At this time, as the objective lens 1 moves in the focus direction, the ratio of the numerical aperture on the object side (column side) and the image side (disk side), that is, the magnification, changes slightly, so this ratio becomes small. If it is too large, the fluctuation range becomes large and aberrations occur. If it is too thick, the optical path length from the semiconductor laser 3 to the disk 6 will become long, resulting in a large optical pickup. Taking these into account, and assuming that the movable range of the objective lens is ±1 mm (this is a practical value), the appropriate numerical aperture ratio is 3 to 6 (disk side > semiconductor laser side). 0 Furthermore, since the objective lens 1 moves with a diverging beam 4 as shown in Fig. 8, the light will not be eclipsed if it exceeds a certain range as in the conventional example, and the movable range of the objective lens 1 can be widened. O As described above, since a collimating lens is not used in this example, the cost is not reduced, and the performance is also improved because there is less aberration and the movable range of the objective lens is wide. , downsizing and thinning can be achieved at the same time.

なお本実施例では、半導体レーザー3と対物レンズ1の
間にハーフミラ−7を配したが、これは偏光ビームスプ
リッタと死波長板の組み合わせでもよく、さらにトラッ
キング制御に3ビーム法を用いる場合は回折格子を挿入
することもできる。
In this embodiment, the half mirror 7 is arranged between the semiconductor laser 3 and the objective lens 1, but it may also be a combination of a polarizing beam splitter and a dead wave plate, and if a three-beam method is used for tracking control, a diffraction mirror 7 may be used. You can also insert grids.

これらいずれの場合も、半導体レーザーから対物レンズ
までの距離が決まっているため、全長を長くせずに配置
することが可能である。
In any of these cases, since the distance from the semiconductor laser to the objective lens is fixed, it is possible to arrange it without increasing the overall length.

発明の効果 以上のように本発明はコリメートレンズを用いず、半導
体レーザーから出た発散光束中で対物レンズを移動させ
ることによって、 ■ コストを安くすることができる。
Effects of the Invention As described above, the present invention does not use a collimating lens and moves the objective lens within the diverging light beam emitted from the semiconductor laser, thereby reducing costs.

■ 収差を少なくすることができる。■ Aberrations can be reduced.

■ 対物レンズの可動範囲を大きくすることができる。■ The movable range of the objective lens can be increased.

■ 小型化、薄型化ができる0 という効果が得られる。■ Can be made smaller and thinner 0 This effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来の光ピツクアツプの光スポットの
移動方法全示した図、第4図は従来例の平行光束を作る
方法を示した図、第6図、第6図は従来例の側面図、第
7図は従来例の対物レンズの可動範囲を示した図、第8
図は本発明の一実施例の側面図、第9図は同実施例の対
物レンズの可動範囲を示した図である。 1・・・・・・対物レンズ、3・・・・・・半導体レー
ザー、6・・・・・・ディスク、6・・・・・・対物レ
ンズ駆動装置、7・・・・・・ハーフミラ−19・・・
・・・受光素子、1o・・・・・・検出光学系。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 纂4図 45図 第6図 第 7 図
Figures 1 to 3 are diagrams showing all methods of moving the light spot of a conventional optical pickup, Figure 4 is a diagram showing a method of creating a parallel light beam in a conventional example, and Figures 6 and 6 are diagrams showing a conventional example. Figure 7 is a side view of the conventional objective lens.
The figure is a side view of one embodiment of the present invention, and FIG. 9 is a diagram showing the movable range of the objective lens of the same embodiment. 1... Objective lens, 3... Semiconductor laser, 6... Disk, 6... Objective lens drive device, 7... Half mirror. 19...
. . . Light receiving element, 1o . . . Detection optical system. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Collection 4 Figure 45 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 円盤上記録媒体に設けられた符号化された情報トラック
に対向して移動自在に配置された対物レンズを、半導体
レーザーから発光された発散光束中で移動させるように
構成するとともに、上記対物レンズの半導体レーザー側
と、ディスク側の開口数の比が3〜6となるようにディ
スク側の開口数を半導体1/−ザー側の開口数より大き
くしたことを特徴とする光ピツクアップ。
An objective lens is movably disposed facing an encoded information track provided on a disc-shaped recording medium, and is configured to move in a diverging beam emitted from a semiconductor laser. An optical pickup characterized in that the numerical aperture on the disk side is larger than the numerical aperture on the semiconductor laser side so that the ratio of the numerical apertures on the semiconductor laser side and the disk side is 3 to 6.
JP58122804A 1983-07-06 1983-07-06 Optical pickup Pending JPS6015840A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58122804A JPS6015840A (en) 1983-07-06 1983-07-06 Optical pickup
EP84902723A EP0148278B1 (en) 1983-07-06 1984-07-05 Light pickup
DE8484902723T DE3483646D1 (en) 1983-07-06 1984-07-05 LIGHT RECEIVING HEAD.
PCT/JP1984/000344 WO1985000457A1 (en) 1983-07-06 1984-07-05 Light pickup
US07/144,462 US4868821A (en) 1983-07-06 1988-01-19 Optical pickup which includes a single objective lens having magnification equal to or greater than 3 and equal to or smaller than 5

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122804A JPS6015840A (en) 1983-07-06 1983-07-06 Optical pickup

Publications (1)

Publication Number Publication Date
JPS6015840A true JPS6015840A (en) 1985-01-26

Family

ID=14845043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122804A Pending JPS6015840A (en) 1983-07-06 1983-07-06 Optical pickup

Country Status (1)

Country Link
JP (1) JPS6015840A (en)

Similar Documents

Publication Publication Date Title
JPH10134400A (en) Optical head
JPH0922540A (en) Optical pickup device
JPH0765407A (en) Optical head
JP3726979B2 (en) Optical pickup
JPH09297927A (en) Optical pickup device
JPS6322370B2 (en)
JP2698109B2 (en) Optical pickup device
JPS6015840A (en) Optical pickup
JPH10222856A (en) Optical information recording/reproducing device
JPH08203094A (en) Optical system
JP2817452B2 (en) Optical pickup device
JPS59215033A (en) Optical disc recording and reproducing device
JPS6015841A (en) Optical pickup
JPS6213231Y2 (en)
JPH09120573A (en) Optical head
JPH08263869A (en) Optical pickup device
JPH0636497Y2 (en) Optical system device
JPS6256581B2 (en)
JPH103690A (en) Optical pickup
JPH05266528A (en) Magneto-optical disk device
JPH02292736A (en) Optical head
JP2002208166A (en) Optical pickup device and optical disk device
JPH10149562A (en) Optical pickup and optical disk device
JPS6015842A (en) Optical pickup
JPH0991747A (en) Optical head device