JPS60158120A - Production of methane - Google Patents

Production of methane

Info

Publication number
JPS60158120A
JPS60158120A JP59013447A JP1344784A JPS60158120A JP S60158120 A JPS60158120 A JP S60158120A JP 59013447 A JP59013447 A JP 59013447A JP 1344784 A JP1344784 A JP 1344784A JP S60158120 A JPS60158120 A JP S60158120A
Authority
JP
Japan
Prior art keywords
catalyst
gas
shift reaction
reaction
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59013447A
Other languages
Japanese (ja)
Inventor
Takao Takinami
滝浪 高男
Tsutomu Toida
戸井田 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP59013447A priority Critical patent/JPS60158120A/en
Publication of JPS60158120A publication Critical patent/JPS60158120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To effect the desorption and regeneration of S from an incompletely sulfurized sulfur-resistant shift reaction catalyst, by contacting the catalyst with a feed gas containing CO, H2 and S together with steam to effect the adsorption of S to the catalyst, and contacting the gas with a methanization catalyst. CONSTITUTION:The feed gas CG is supplied in combination with steam Stm to the shift reaction catalyst bed 1A to effect the shift reaction and desulfurization. The other catalyst bed 1B containing the shift reaction catalyst having lowered desulfurization activity is supplied with the regeneration gas RG (e.g. steam, H2, air, etc.) to remove the S component in the form of H2S, SO2, etc. and regenerate the catalyst. The flow of the feed gas to the catalyst beds 1A and 1B is switched alternately to carry out the continuous shift reaction and desulfurization. The gas is cooled to 220-400 deg.C after the reaction, and supplied to the methanization reaction catalyst bed 2 to obtain methane gas Met. The shift reaction catalyst is preferably an Ni(or Co)-Mo-K2CO3 catalyst supported on alumina.

Description

【発明の詳細な説明】 本発明は、COおよびH2とともにイオウ分を含有する
ガスを原料として、メタンを製造する方法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing methane using a gas containing sulfur as well as CO and H2 as a raw material.

たとえば石炭や重質油のガス化により生成したガスを、
接触的にメタン化反応させてメタンとする場合、 G O+ 3 H2→ Cト14 + )→ 20GO
+4H2→ CH4+ 2 t−(20従来行なわれて
いる方法は、まず生成ガス中のCOと1−12との比を
メタン化反応に適する値にするため、スチームを吹き込
んで、接触的にシフト反応を行なうものである。
For example, gas produced by gasifying coal or heavy oil,
In the case of catalytic methanation reaction to produce methane, GO+ 3 H2→ Cto14 + )→ 20GO
+4H2→ CH4+ 2 t- (20 The conventional method is to first make the ratio of CO and 1-12 in the produced gas to a value suitable for the methanation reaction, by blowing steam into it to carry out a catalytic shift reaction. This is what we do.

CO+t−120−+ CO2+Hま ただし、金山シフト反応させるとト12が多くなりすぎ
るので、一部はバイパスさせる。
CO+t-120-+ CO2+H However, if the Kanayama shift reaction is carried out, too much t-12 will be present, so a part of it is bypassed.

シフト反応後のガスは冷却して過剰のスチームを凝縮除
去し、H2/ G Oの比がほぼ3となるような比率で
バイパスしたガスと混合して使用する。
The gas after the shift reaction is cooled to condense and remove excess steam, and is mixed with the bypassed gas at a ratio such that the H2/GO ratio is approximately 3 for use.

ガス化反応生成カス中には通常かなりの吊のイオウ分が
含まれているため、シフト反応の触媒としては耐イオウ
性のもの、たとえばアルミナ担持のX+ <またはCo
) Mo −に2GO3系触媒を硫化させた状態で使用
している。
Since the gasification reaction product usually contains a considerable amount of sulfur, the catalyst for the shift reaction is a sulfur-resistant catalyst, such as alumina-supported X+ or Co.
) Mo − is used in a state in which a 2GO3-based catalyst is sulfurized.

イオウ分は常用のメタン化反応触媒にとって有害である
から、メタン化に先立って除去する必要があり、従来は
上記の112 / G Oの組成を調整したガスから、
CO2およびH2Sを除去してメタン化工程に送ってい
た。 耐イオウ性のメタン化触媒も開発されつつあるが
、活性そのほかの点で、既知の触媒に及ばない。
Since sulfur content is harmful to commonly used methanation reaction catalysts, it is necessary to remove it prior to methanation.
CO2 and H2S were removed and sent to the methanation step. Sulfur-resistant methanation catalysts are also being developed, but they fall short of known catalysts in terms of activity and other aspects.

本発明者らは、上記したガス化−シフト反応−〇 〇 
2 / l−12S除去−メタン化反応の一連のプロセ
スの合理化を目的として研究をした。 その過程で、硫
化状態にある耐イオウ性シフト触媒にスチームを作用さ
せると分解して、イオウ分が放出され、この未硫化ない
し不完全硫化の状態になったシフト反応触媒はイオウ分
を吸着除去する機能をもつ一方で、シフト活性はかなり
の程度維持されることを見出し、シフト反応と脱硫とを
同時に行なう方法を確立して別途提案した。 さらに研
究を進め、このシフト反応と脱硫を同時に行なう方法を
メタン化ど組み合わせたプロレスを完成して本発明に至
つlζ。
The present inventors have developed the above-mentioned gasification-shift reaction-〇 〇
The purpose of this research was to rationalize the series of processes of 2/l-12S removal and methanation reaction. In the process, when steam is applied to the sulfur-resistant shift catalyst in a sulfurized state, it decomposes and releases sulfur, and the shift reaction catalyst, which is in an unsulfurized or incompletely sulfurized state, adsorbs and removes the sulfur. We found that the shift activity was maintained to a considerable extent while having the function of desulfurization, and we established and separately proposed a method to perform the shift reaction and desulfurization at the same time. Further research led to the completion of a process that combines this shift reaction and desulfurization method with methanation, leading to the present invention.

本発明のメタンを製造覆る方法は、COJ>よび(」2
ととbにイAつ分を含有づる原料ガスからメタンを製造
]る方法であつC1未硫化または不完全硫化の状態にあ
る耐イオウ性シフI〜反応触媒に原料ガスをスチームと
ともに接触さけてシフ1〜反応全反応わけるととしにガ
ス中のイAつをシフ1〜反応触媒に吸着さl!(除去し
、このガスをメタン化触媒に接触さUてメタンを生成さ
せ、硫化状態に〒ったシフ1〜反応触媒に再生用ガスを
作用さけて、イオウを1悦着させることにより触媒を再
生さけることからなる。
The method for producing methane of the present invention includes COJ> and ('2
This is a method for producing methane from a raw material gas containing 1 and 2 A and 2 A, and is a method in which the raw material gas is brought into contact with a sulfur-resistant Schiff I reaction catalyst in an unsulfurized or incompletely sulfurized state. Schiff 1 ~ Reaction When dividing all reactions, A in the gas is adsorbed onto the Schiff 1 ~ reaction catalyst! (This gas is brought into contact with a methanation catalyst to produce methane, and a regeneration gas is applied to the reaction catalyst in a sulfurized state to adsorb sulfur, thereby converting the catalyst. It consists of avoiding regeneration.

耐イAつ性シフ1−反応触媒としては、前記したNi 
(co )−MO−に2GO3/A立203系だ(プで
なく、F e 203− Or 203系も使用できる
。 要するに、ガス中のイオウ分を吸着除去する性質と
、吸着したイAつ分を再生用ガスで分解して回収するこ
とができ、再生が可能な触媒でありさえづ−ればよい。
As the anti-A Schiff 1 reaction catalyst, the above-mentioned Ni
2GO3/A 203 system for (co)-MO- (instead of pu, Fe 203-Or 203 system can also be used. It is sufficient that the catalyst can be decomposed and recovered using a regeneration gas and can be regenerated.

 ここでいう触媒の1再生」とは、脱硫能力の回復を意
味りる。 シフト活性は硫化が進/υだ状態の方が高い
が、脱硫(幾能が十分に(qられる低度の硫化状態でも
、実用的なレベルを維持する。
Here, "1 regeneration of the catalyst" means recovery of desulfurization ability. The shift activity is higher in highly sulfided states, but it remains at a practical level even in low-sulfided states where desulfurization (ability) is sufficiently high.

シフト反応は、それぞれの触媒に好適であることが知ら
れている条件で、たどえば上記のN1(Co ) −M
O−に2GO3/A、1!、203系テハ、温a 20
0〜4−50℃、圧力2〜50K(]/cm’G1空間
速度500〜5000/hrの範囲で実施すればよい。
The shift reaction is carried out under conditions known to be suitable for each catalyst.
2GO3/A to O-, 1! , 203 series Teha, Ona 20
What is necessary is just to carry out in the range of 0-4-50 degreeC, pressure 2-50K(]/cm'G1 space velocity 500-5000/hr.

 シフト反応d3よび脱硫は、もちろん触媒のイオウ吸
着能が飽和する萌に終止しな()ればならない。それぞ
れの場合の使用条件の下で、破過点つまりイオウ化合物
が反応器出口に流出覆るに至る時間を把握し、少し余裕
をもって(たとえば破過時間の95%を経過したところ
で)反応を止め、再生に切り換えるべきである。
Of course, the shift reaction d3 and the desulfurization must end at a point where the sulfur adsorption capacity of the catalyst is saturated. Under the usage conditions in each case, determine the breakthrough point, that is, the time required for the sulfur compound to flow out to the reactor outlet, and stop the reaction with some margin (for example, when 95% of the breakthrough time has passed). You should switch to playback.

再生は、前記したスチームのほかに、ト12、空気、あ
るいはこれらの2種または3種の混合物を、加熱下に作
用させることにより実施し、シフト反応触媒に吸着され
たイオウ分を除去づる。 再生率つまり吸着したイオウ
分の何%までを脱着させるかは、高いほど脱硫能力は増
すがシフ1〜反応活性は低下りるので、両者の妥協点を
めて決定することになる。′一般には、50〜70%程
度が適当であろう。 湿度は高いほど再生が速やかであ
るが、600℃を超えると触媒成分中のMOO3の屏華
が起って好ましくないから、これ以下にづ−る。 圧力
は低い方が、また空間速度は高い方が再生に有利である
。 これらの条件は、シフト反応および脱硫の時間より
も短い時間で、上記の好ましい範囲の再生率が実現づる
ように選択づるとよい。
In addition to the above-mentioned steam, the regeneration is carried out by applying fluorine, air, or a mixture of two or three of these under heating to remove the sulfur content adsorbed on the shift reaction catalyst. The regeneration rate, that is, the percentage of adsorbed sulfur to be desorbed, must be determined by finding a compromise between the two, since the higher the regeneration rate, the higher the desulfurization ability, but the lower the Schiff 1 reaction activity. 'Generally, about 50 to 70% would be appropriate. The higher the humidity, the faster the regeneration, but if the humidity exceeds 600°C, the MOO3 in the catalyst component will fold, which is undesirable. A lower pressure and a higher space velocity are advantageous for regeneration. These conditions are preferably selected so that the regeneration rate within the above-mentioned preferred range can be achieved in a time shorter than the time required for the shift reaction and desulfurization.

上述したところから理解されるように、本発明の方法は
、シフト反応に関する限り、触媒床を2基またはそれ以
上用意し、交互に切り換えて使用する態様をとれば、連
続的なシフト反応−メタン化反応が実現する。 すなわ
ち、第1図に示すにうに、シフト反応触媒床1△にガス
化により生成したガスCGをスチーム3tmどともに供
給し、シフト反応および脱硫を行なう。 脱硫機能の低
下したシフト反応触媒をもつ触媒床1Bへは、再生用ガ
スRGを供給して、イオウ分を、H2SXSO2,3x
の形で除去し、触媒の再生を行なう。
As understood from the above, the method of the present invention, as far as the shift reaction is concerned, can achieve continuous shift reaction - methane by preparing two or more catalyst beds and using them alternately. reaction is realized. That is, as shown in FIG. 1, the gas CG produced by gasification is supplied to the shift reaction catalyst bed 1Δ together with 3 tm of steam to carry out the shift reaction and desulfurization. Regeneration gas RG is supplied to the catalyst bed 1B having a shift reaction catalyst with a reduced desulfurization function, and the sulfur content is removed by H2SXSO2,3x
The catalyst is regenerated by removing it in the form of

触媒床1Aの触媒が多聞のイオウ分を吸着して脱硫機能
が低くなり、一方、触媒床1Bの触媒が脱硫機能を回復
したならば、両者への供給ガスの流れを変ればよい。
If the catalyst in the catalyst bed 1A adsorbs a large amount of sulfur and its desulfurization function becomes low, while the catalyst in the catalyst bed 1B recovers its desulfurization function, the flow of gas supplied to both may be changed.

このようにして連続的にシフト反応と脱硫を行なって得
たガスは、メタン化反応に適する温度にすなわち220
〜400℃に冷却してメタン化反応触媒床2へ供給する
。 メタン化反応の生成ガスは、分留装置3で未反応原
料を分離して循環利用し、メタン留分をCO2除去装置
4へ送って精製し、製品メタンガス1vletを得る。
The gas obtained by continuously performing the shift reaction and desulfurization in this way is heated to a temperature suitable for the methanation reaction, that is, 220°C.
It is cooled to ~400°C and supplied to the methanation reaction catalyst bed 2. The gas produced by the methanation reaction is recycled by separating unreacted raw materials in a fractionator 3, and the methane fraction is sent to a CO2 removal device 4 for purification to obtain 1 vol of product methane gas.

メタン化反応は多量の発熱を伴なうので、そのコントロ
ールのためスチームを存在させることが好ましい。 前
記した反応の平衡を利用して、過度の温度上昇をおさえ
るわけである。 これには、シフ1へ反応で残ったスチ
ームを原料ガスから除去することなく、メタン化反応触
媒へ送ればよく、いったん与えたスチームを凝縮除去し
てから再度スチームを添加するという方法よりエネルギ
ーロスが少なく、装置も簡単になるので有利である。
Since the methanation reaction is accompanied by a large amount of heat generation, it is preferable to use steam to control it. Excessive temperature rise is suppressed by utilizing the equilibrium of the reaction described above. To achieve this, it is sufficient to send the steam remaining from the reaction to Schiff 1 to the methanation reaction catalyst without removing it from the raw material gas, which results in less energy than the method of condensing and removing the steam that has been applied and then adding steam again. This is advantageous because there are fewer problems and the equipment is simpler.

本発明の方法に従えば、メタン化反応の触媒とじて耐イ
オウ性のものを使用づる必要がなく、上記のスチームを
利用した温度コン1〜ロールとあいまって、メタン化工
程を有利に実施できる。 C02を除去する工程では、
従来技術とちがって、りでにメタン化が行なわれてガス
の容積が減少しているから、装置は小型のもので足りる
。 また、放出されるCO2中にt−12SなどのイA
つ分が混在しないので、環境上の問題が生じない。
According to the method of the present invention, there is no need to use a sulfur-resistant catalyst for the methanation reaction, and in combination with the above-mentioned temperature controller using steam, the methanation process can be carried out advantageously. . In the process of removing C02,
Unlike the prior art, since methanation is carried out on the stream and the volume of gas is reduced, a small device is sufficient. Also, in the emitted CO2, t-12S etc.
Since there are no mixed components, there are no environmental problems.

えi」 第2図に示す構成の実験装置を一構成し、反応器1には
耐イオウ性シフト反応触媒を、また反応器2にはメタン
化反応触媒を、それぞれ充填した。
An experimental apparatus having the configuration shown in FIG. 2 was constructed, and reactor 1 was filled with a sulfur-resistant shift reaction catalyst, and reactor 2 was filled with a methanation reaction catalyst.

6はシフ1−反応用のスチームの発生器であり、7は再
生用のスチームの発生器である。
6 is a steam generator for the Schiff 1 reaction, and 7 is a steam generator for regeneration.

原料ガスとして石炭ガス化ガスを想定し、第1表に示す
組成の模擬ガスを調製した。
Assuming coal gasification gas as the raw material gas, a simulated gas having the composition shown in Table 1 was prepared.

−1−K H256,3容積% CH411,5容積%C030,
6〃 N2 0.6 〃 CO21,On H2S 500111)m系内をN2
ガスでパージしたのち1」2ガスを流し、メタン化触媒
の温度を高めて活性化した。
-1-K H256, 3% by volume CH411, 5% by volume C030,
6〃 N2 0.6 〃 CO21, On H2S 500111) N2 inside the m system
After purging with gas, 1 and 2 gases were flowed to raise the temperature of the methanation catalyst and activate it.

ついでシフト触媒を昇温して、l−12に代えて第1表
の原料ガスおよびスチームを供給してシフト反応を開始
した。
Next, the temperature of the shift catalyst was raised, and the raw material gases and steam shown in Table 1 were supplied in place of l-12 to start the shift reaction.

反応条件を下記のにうに維持して反応を続けたところ、 ト120(スチーム)/原料ガス=3 空間速度 シフ1−触媒で1000/hrメタン化触媒
で3000/hr 反応温疫(いずれも) 350℃ 圧力(ともに) 9に!J/cm2−G5時間後に、第
2表に示1−組成のガスを得た。
When the reaction conditions were maintained as shown below and the reaction continued, the following results were obtained: To120 (steam)/raw material gas = 3 Space velocity Schiff 1 - 1000/hr for the catalyst, 3000/hr for the methanation catalyst Reaction temperature (both) 350℃ Pressure (both) 9! J/cm2-G After 5 hours, a gas having the composition 1 shown in Table 2 was obtained.

15時間反応を続けても反応器1の出口ガス中に1−1
28は検出されなかった(検出限度1ppn+)。
Even if the reaction continues for 15 hours, 1-1 remains in the outlet gas of reactor 1.
28 was not detected (detection limit 1 ppn+).

f12 66.2容積% 50.1容積%CO0,9I
I O171I CO223,5ノJ 23 、 3 〃CF+4. 8
.9 II 25.2 nN2 0.5 n O,7n It’s lppm以下 1 ppm以下カス容積比 原料ガス/シフ1〜出ロガス/メタン化出ロガス=1/
1.2910.’88 メタン化触媒へのガス供給を停止し、反応器1の出口で
ガスを放出り−るようにしてから、1」2Sを約1容梢
%になるように供給した。 反応器1の出口に1−12
8がリークしてくるのを確認したのち)−128の供給
を停止し、再び反応器2のメタン化触媒へガスを供給し
た。 前記の反応条件に保ったところ、メタン化触媒の
活性低下が認められ、5時間後には、反応器2の出口の
ガス組成が第3表に示すようになった。
f12 66.2 volume% 50.1 volume% CO0,9I
I O171I CO223,5 no J 23, 3 CF+4. 8
.. 9 II 25.2 nN2 0.5 n O, 7n It's lppm or less 1 ppm or less Kass volume ratio raw material gas/Schif 1~ output log gas/methanation output log gas = 1/
1.2910. After stopping the gas supply to the '88 methanation catalyst and releasing the gas at the outlet of the reactor 1, 1''2S was fed at a concentration of about 1% by volume. 1-12 at the outlet of reactor 1
After confirming that 8 was leaking, the supply of -128 was stopped, and gas was again supplied to the methanation catalyst in reactor 2. When the above reaction conditions were maintained, a decrease in the activity of the methanation catalyst was observed, and after 5 hours, the gas composition at the outlet of reactor 2 became as shown in Table 3.

12 66.3容積% 66.9容積%CO0,8l!
 0.6 〃 C0223,5〃 23.6 II Cト14 9.OJ/ 9.4 /j N2 0.4 // 0.4 n H2S 470ppm 15ppm 反応を中止して反応器1の下部からスチームおよび空気
を供給し、シフト反応触媒層を350℃に10時間保っ
たのち、系をN2ガスでパージした。 メタン化触媒を
交換して、前記の各触媒の活性化を行なったのち、前記
と同じ条件でシフト反応およびメタン化反応を行ったと
ころ、第2表に示した結果が再現された。 15時間反
応を続【ノても、反応器1の出口ガス中に1」2Sは見
出されなかった。
12 66.3% by volume 66.9% by volume CO0.8l!
0.6 〃 C0223,5〃 23.6 II Cto14 9. OJ/ 9.4 /j N2 0.4 // 0.4 n H2S 470ppm 15ppm The reaction was stopped, steam and air were supplied from the bottom of reactor 1, and the shift reaction catalyst layer was kept at 350°C for 10 hours. Afterwards, the system was purged with N2 gas. After replacing the methanation catalyst and activating each of the catalysts described above, a shift reaction and a methanation reaction were performed under the same conditions as above, and the results shown in Table 2 were reproduced. Even after continuing the reaction for 15 hours, no 1'2S was found in the outlet gas of reactor 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のメタンを製造する方法を説明りるフ
ローチ+7−1〜である。 第2図は、本発明の実施例C使用した実験装置を示すフ
ローヂャ−1−である。 1△、1B・・・・・・シフト反応触媒床2・・・・・
・メタン化反応触媒床 3・・・・・・分留装置 4・・・・・・GO2除去装置 CG・・・・・・石炭カス化生成カス 3tm・・・・・・スチーム RG・・・・・・再生用
ガス1yjet・・・・・・メタンガス 特許出願人 日 揮 株 式 会 社 代理人 弁 理 士 須 賀 総 夫
FIG. 1 is flowchart +7-1 to explain the method of producing methane of the present invention. FIG. 2 is a flow chart 1 showing the experimental apparatus used in Example C of the present invention. 1△, 1B...Shift reaction catalyst bed 2...
・Methanation reaction catalyst bed 3...Fraction distillation device 4...GO2 removal device CG...Coal casing product 3tm...Steam RG... ...Regeneration gas 1yjet...Methane gas patent applicant JGC Corporation Company agent Patent attorney Souo Suga

Claims (4)

【特許請求の範囲】[Claims] (1) GoおよびH2とともにイオウ分を含有Jる原
料ガスからメタンを製造する方法であって、未硫化また
は不完全硫化の状態にある耐イオウ性シフト反応触媒に
原料ガスをスチームとともに接触させてシフト反応を行
なわせるとともにガス中のイオウをシフト反応触媒に吸
着させて除去し、このガスをメタン化触媒に接触させ−
Cメタンを生成させ、硫化状態に至ったシフト反応触媒
に再生用ガスを作用させて、イオウを肌着させることに
より触媒を再生させることからなるメタンを製造する方
法。
(1) A method for producing methane from a raw material gas containing sulfur as well as Go and H2, which comprises bringing the raw material gas into contact with steam and a sulfur-resistant shift reaction catalyst in an unsulfurized or incompletely sulfurized state. While performing a shift reaction, sulfur in the gas is removed by adsorption to a shift reaction catalyst, and this gas is brought into contact with a methanation catalyst.
A method for producing methane, which comprises producing C methane, causing a regeneration gas to act on a shift reaction catalyst that has reached a sulfurized state, and regenerating the catalyst by depositing sulfur on the catalyst.
(2) シフト反応触媒の触媒床を複数用意して交互に
切り換えて使用し、一部の触媒床においてシフト反応お
よびイオウ吸着反応を行ない、その間に他の触媒床にお
いて脱硫機能の再生を行なう特許請求の範囲第1項の方
法。
(2) A patent for preparing a plurality of catalyst beds for shift reaction catalysts, switching them over and using them alternately, performing shift reactions and sulfur adsorption reactions in some of the catalyst beds, and regenerating the desulfurization function in other catalyst beds during that time. The method according to claim 1.
(3) シフト反応触媒がアルミナ担持のNi(または
Co )−MO−に2GO3系触媒である特許請求の範
囲第1項の方法。
(3) The method according to claim 1, wherein the shift reaction catalyst is an alumina-supported Ni (or Co)-MO-2GO3-based catalyst.
(4) 再生用ガスとして、スチーム、H2、空気また
はこれらの2種または3種の混合物を使用する特許請求
の範囲第1項の方法。
(4) The method according to claim 1, wherein steam, H2, air, or a mixture of two or three thereof is used as the regeneration gas.
JP59013447A 1984-01-30 1984-01-30 Production of methane Pending JPS60158120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59013447A JPS60158120A (en) 1984-01-30 1984-01-30 Production of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59013447A JPS60158120A (en) 1984-01-30 1984-01-30 Production of methane

Publications (1)

Publication Number Publication Date
JPS60158120A true JPS60158120A (en) 1985-08-19

Family

ID=11833387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59013447A Pending JPS60158120A (en) 1984-01-30 1984-01-30 Production of methane

Country Status (1)

Country Link
JP (1) JPS60158120A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040441A (en) * 2010-10-20 2011-05-04 北京低碳清洁能源研究所 System for producing CH4-rich gas and method for producing CH4-rich gas with system
CN111085189A (en) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 Sulfur-tolerant shift methanation bifunctional catalyst and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040441A (en) * 2010-10-20 2011-05-04 北京低碳清洁能源研究所 System for producing CH4-rich gas and method for producing CH4-rich gas with system
WO2012051924A1 (en) * 2010-10-20 2012-04-26 National Institute Of Clean-And-Low-Carbon Energy System for producing methane-rich gas and process for producing methane-rich gas using the same
CN111085189A (en) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 Sulfur-tolerant shift methanation bifunctional catalyst and preparation method thereof
CN111085189B (en) * 2018-10-24 2022-10-14 中国石油化工股份有限公司 Sulfur-tolerant shift methanation bifunctional catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
AU615032B2 (en) Desulphurisation
US3338030A (en) Depressuring technique for deltap adsorption process
US3594983A (en) Gas-treating process and system
EP2355918B1 (en) Multiple fixed-fluidized beds for contaminant removal
US4865826A (en) Desulphurization
US3361535A (en) Method for production of high purity hydrogen
JP2003246606A (en) Syngas purifying method
US3211644A (en) Liquid phase sulfur removal from hydrocarbons with zeolite
Kasuya et al. High purity CO gas separation by pressure swing adsorption
EP0678056A4 (en) A packed bed and process for removal of residual mercury from gaseous hydrocarbons.
JP2008528418A (en) Management of hydrogen in hydrogen-containing streams from hydrogen sources
KR20200049768A (en) Method and apparatus for the production of hydrogen
US2823766A (en) Gas removal with a carbon-water slurry
KR20140044890A (en) Regeneration of gas adsorbents
US3186789A (en) Method of removing hydrogen sulfide from gases
US2692656A (en) Adsorption by and reactivation of granular adsorbents
JPS60158120A (en) Production of methane
CA2845924A1 (en) Method for naphthalene removal
KR960010830A (en) Improved Hydrocarbon Catalytic Decomposition Method
US6652826B1 (en) Process for elimination of low concentrations of hydrogen sulfide in gas mixtures by catalytic oxidation
US9238601B2 (en) Method for providing oxygen free regeneration gas for natural gas dryers
JPH07267608A (en) Removal of nitrogen compound from synthesis gas
JPH08171B2 (en) Fluid desulfurization method
US2823763A (en) Acetylene separation
JP2005177716A (en) Processing method of off-gas discharged from hydrogen psa purifying device