JPS60156921A - Denitrating method of exhaust gas in prime mover - Google Patents

Denitrating method of exhaust gas in prime mover

Info

Publication number
JPS60156921A
JPS60156921A JP59013132A JP1313284A JPS60156921A JP S60156921 A JPS60156921 A JP S60156921A JP 59013132 A JP59013132 A JP 59013132A JP 1313284 A JP1313284 A JP 1313284A JP S60156921 A JPS60156921 A JP S60156921A
Authority
JP
Japan
Prior art keywords
combustion
exhaust gas
boiler
fuel
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59013132A
Other languages
Japanese (ja)
Inventor
Hideo Hirano
秀夫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59013132A priority Critical patent/JPS60156921A/en
Publication of JPS60156921A publication Critical patent/JPS60156921A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/26Construction of thermal reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To make exhaust gas denitrateable without using a denitrater catalyzer, by leading the exhaust gas into a burner air box of a boiler furnace and, after being burned, making it into combustion with a reducing atmosphere upon adding fuel, then successively burning it slowly with air added. CONSTITUTION:Exhast gas out of a prime mover 20 is led into a burner air box 25 of a boiler 22 and a furnace 23, then mixed with primary fuel 29a and made into a primary combustion A inside the furnace 23. And, secondary fuel 29b alone is fed to a slipstream range of a primary combustion range and made into a secondary combustion B as a case that a reducing atmosphere is lack of oxigen. Next, combustion air 37 in the amount required to burn an unburned portion left over at the secondary combustion is fed to a spot nearby the secondary combustion range, thus a slow-going tertiary combustion C takes place.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ヂーゼルエンジンやガスタービンなどの原動
機から排出される燃焼排ガスに対して脱硝を行なう原動
機の排ガス脱硝方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an exhaust gas denitrification method for a prime mover, which denitrates combustion exhaust gas discharged from a prime mover such as a diesel engine or a gas turbine.

従来例の構成とその問題点 ヂーゼルエンジンやガスタービンなどのIjXd機から
排出される燃焼排ガス中には、燃料燃焼時に発生する大
量の窒素酸化物(以下NOxと記す)が含まれてお9、
ことに陸上で使用する場合、ボイラなみのNOx値とい
う制約のため大I’ljな脱硝を行なう必要があり、脱
硝触媒を使用した排ガスの脱硝方法の研究が進められて
いる。
Conventional configuration and its problems The combustion exhaust gas emitted from IJXD machines such as diesel engines and gas turbines contains large amounts of nitrogen oxides (hereinafter referred to as NOx) generated during fuel combustion9.
In particular, when used on land, it is necessary to perform a large amount of denitrification due to the restriction that the NOx value is the same as that of a boiler, and research is underway on methods of denitrifying exhaust gas using denitrification catalysts.

第1図に従来におけるヂーゼルエンジンの排ガス脱硝方
法を示している。すなわち、(υは発電機(2)に連動
するヂーセ゛ルエンジンで、このヂーセ゛ルエンジン(
1)からの排ガスは排ガスダクト(3)を通って排ガス
脱硝装置(4)に流入し、この排ガス脱硝装置(4)内
の脱硝触媒(5)を通過中に脱硝され、そして排ガスボ
イラ、(6)を通って煙突(7)へと流れる。
FIG. 1 shows a conventional method for denitrating exhaust gas from a diesel engine. That is, (υ is a diesel engine linked to the generator (2), and this diesel engine (
The exhaust gas from 1) flows through the exhaust gas duct (3) into the exhaust gas denitrification device (4), is denitrified while passing through the denitrification catalyst (5) in this exhaust gas denitrification device (4), and is denitrified while passing through the exhaust gas boiler, ( 6) to the chimney (7).

この従来方法によると、ヂーゼルエンジン(1)の特殊
性として、未燃の燃料油や潤滑油などが脱硝触媒(5)
に付着し、悪影響を及ぼす。また触媒層はヂーゼルエン
ジン(υの排圧増加により出力低下を来たすため、抵抗
の少ない触媒が必要など、研究課題が多く、いまだ実用
化されていない。
According to this conventional method, a special feature of the diesel engine (1) is that unburned fuel oil, lubricating oil, etc.
adheres to and has a negative effect. In addition, the catalyst layer has not yet been put into practical use because there are many research issues, such as the need for a catalyst with low resistance as the output of the diesel engine decreases due to an increase in the exhaust pressure of υ.

742図に従来におけるガスタービンの排ガス脱硝方法
を示している。すなわち、uCJは発電機u〃に連動す
るガスタービンで、このガスタービン叫からの排ガスは
排ガスダクト@を通って排ガス脱硝装置i¥(至)に流
入し、この排ガス脱硝装置(至)内の脱硝触媒す4を通
過中に脱硝され、そして煙突0υへと流れる。Iロ紀排
ガス脱硝装置は罎は排ガスボイラ四の一部を構成し、そ
の内部に配設した伝熱’WIJ7)をポイラドヲムQ樽
に連通している。
FIG. 742 shows a conventional exhaust gas denitrification method for a gas turbine. In other words, uCJ is a gas turbine linked to generator u〃, and the exhaust gas from this gas turbine passes through the exhaust gas duct @ and flows into the exhaust gas denitrification equipment i (to), and the exhaust gas inside this exhaust gas denitrification equipment (to) It is denitrified while passing through the denitrification catalyst 4, and then flows to the chimney 0υ. The Iroki exhaust gas denitrification device constitutes a part of the exhaust gas boiler 4, and the heat transfer system installed inside it communicates with the boiler dome Q barrel.

この従来方法によると、排ガス脱硝装置t u3には反
応器中に脱硝触媒u4)を多量に装備する必要があり、
そのためガスタービン四の排圧増mによる出力低下を米
たす。また脱硝は、主としてアンモニヤによる乾式選択
式接触還元分解法が採用されており、これによると、ア
ンモニヤ注入による残余アンモニヤで発生する酸性硫安
による後部伝熱面のつまりの発生と、その除去対策、更
に触媒の劣化による収り替えなど不具合が多く、その上
、イニンアルコストやメンテナンスコスト4 +% <
つく。
According to this conventional method, it is necessary to equip the exhaust gas denitrification device tu3 with a large amount of denitrification catalyst u4) in the reactor.
Therefore, the reduction in output due to the increase in exhaust pressure of gas turbine 4 is compensated for. In addition, for denitrification, a dry selective catalytic reduction cracking method using ammonia is mainly used. There are many problems such as replacement due to deterioration of the catalyst, and on top of that, the initial cost and maintenance cost are 4 +%.
arrive.

発明の目的 本発明の目的とするところは、脱硝触媒を使用すること
なく排ガスの脱硝を行なえるyi、wJ機の排ガス脱硝
方法を提供する点にある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for denitrating exhaust gas from yi and wj machines, which can denitrate exhaust gas without using a denitrification catalyst.

発明の構成 上記目的を達成するために本発明における原動機の排ガ
ス脱硝方法は、原動機からの排ガスをボイラ火炉のバー
ナJiiiliK#き、そして−次燃料と混合させて火
炉内にて一次燃焼させ、これにより形成した一次燃焼域
の後流域に二次燃料のみを供給して酸素不足の還元雰囲
気として二次燃焼させ、次いで二次燃焼域の近くに、二
次燃焼で残存した未燃分を燃焼させるに必要な量の燃焼
用空気を供給して、緩慢な三次燃焼を行なうものである
Structure of the Invention In order to achieve the above object, the present invention provides a method for denitrifying exhaust gas from a prime mover. Only the secondary fuel is supplied to the downstream area of the primary combustion zone formed by the process to create a reducing atmosphere lacking in oxygen for secondary combustion, and then the unburnt material remaining from the secondary combustion is burned near the secondary combustion zone. This system supplies the necessary amount of combustion air to perform slow tertiary combustion.

実施例と作用 以下に本発明の実施例を第3図、第4図に基づいて説明
する。
Embodiments and Effects Embodiments of the present invention will be described below with reference to FIGS. 3 and 4.

第3図は本発明の一実施例であるヂーゼルエンジンの排
ガス脱硝方法を示している。すなわち、■は発電機12
υに連動するヂーゼルエンジン(原動機の一例)、(2
)は火炉骨やボイラドラム(至)や風箱(ホ)などから
なるボイラである。14il 記ヂーセ゛ルエンジン(
イ)と風箱■とは排気管(イ)を介して連通し、また排
気管(ホ)の終端には第エダンバ(ロ)が配設しである
。前記風箱(7)は火炉qの前部に収付けてあり、その
上部に前記排気管(ト)が連通している。また風箱(至
)の中央部には後部に向く主バーナ(至)が配設でれ、
この主バーナ(ホ)に対してボイラ燃料(イ)の−次m
(29a)=&供給可能としている。主バーナ(ホ)側
の一次燃焼により形成される一次燃焼M(主燃焼[)囚
の後流域に対向するように、前記火炉骨の中間上部に二
次バーナ(7)が配設され、この二次バーナに)に対し
てボイラ燃料−の二次燃料(29b)を供給可能として
いる。前記穴l175−の後部には後部伝熱面Cil+
が6d設され、この後部伝熱面611の出口は煙突cl
力に連通している。關は押込送111a機で、その送風
管(2)の終端は前記風箱−の[部に連通し、また終端
近くには第2ダンパ(至)が1d設しておる。oiJ記
送風¥1f341の中間に分岐送風管側が連通し、この
分岐送風管□□□の終端は火炉のの後部に設けた二段空
気供給口口ηに連通している。−は分岐送風管側中に設
けた第3ダンパ、田)は二次燃焼域(還元燃焼JJE)
、fclは三次燃焼[(完全燃焼域)を示す。
FIG. 3 shows a method for denitrating exhaust gas from a diesel engine, which is an embodiment of the present invention. In other words, ■ is the generator 12
Diesel engine (an example of a prime mover) linked to υ, (2
) is a boiler consisting of a furnace frame, boiler drum (to), wind box (ho), etc. 14il recording diesel engine (
A) and the wind box ■ communicate with each other via an exhaust pipe (A), and a third edamba (B) is provided at the end of the exhaust pipe (E). The wind box (7) is housed in the front part of the furnace q, and the exhaust pipe (g) communicates with the upper part of the wind box (7). In addition, the main burner (to) facing the rear is located in the center of the wind box (to),
−m of boiler fuel (A) for this main burner (E)
(29a)=& is available for supply. A secondary burner (7) is arranged at the middle upper part of the furnace frame so as to face the downstream area of the primary combustion M (main combustion [)] formed by the primary combustion on the main burner (E) side. Secondary fuel (29b), which is boiler fuel, can be supplied to the secondary burner (29b). A rear heat transfer surface Cil+ is provided at the rear of the hole l175-.
6d is installed, and the outlet of this rear heat transfer surface 611 is the chimney cl
connected to power. The connection is a forced feeder 111a, the terminal end of which is connected to the section of the wind box, and a second damper (1d) is installed near the terminal end. A branch blow pipe side communicates with the middle of the air blow pipe ¥1f341, and the terminal end of this branch blow pipe □□□ communicates with a two-stage air supply port η provided at the rear of the furnace. - is the third damper installed in the branch air pipe side, and ) is the secondary combustion area (reduction combustion JJE)
, fcl indicates tertiary combustion [(complete combustion region).

以下に、上記実施例における作用について説明する。ヂ
ーゼルエンジン(イ)の排ガスは、−例としてNOxが
約1200ppm程度含まれている。しかしo2は約1
25%程度含まれており、ガス温度も約400″C位で
あり、ボイラ(ホ)の燃料燃焼用空気として、そのまま
使うことができる。そこでヂーゼルエンジン四からの排
ガスを、排気管(ホ)を通して風箱(至)に導き、火炉
@ではこの排ガス全量をボイラ燃料燃焼用空気として使
用し、燃料と共に燃焼させる。
The effects of the above embodiment will be explained below. The exhaust gas from the diesel engine (a) contains, for example, about 1200 ppm of NOx. But o2 is about 1
The gas temperature is about 400"C and can be used as is as fuel combustion air for the boiler (E).Therefore, the exhaust gas from the diesel engine 4 is transferred to the exhaust pipe (E). The exhaust gas is led to the wind box through the furnace, and the entire amount of this exhaust gas is used as boiler fuel combustion air and combusted together with the fuel.

一方、ボイラ燃料−は、−次燃料(29a)と二次燃料
(29b)に分けて供給する。−次燃料(29a)は主
バーナに)に供給され、ヂーゼルエンジン(イ)からの
排ガスと混合されて一次燃焼され、以って一次燃焼域囚
を形成する。このとき第2ダンパ四は閉じられており、
送風管制側から燃焼用′!!!気は供給されていない。
On the other hand, the boiler fuel is supplied separately into secondary fuel (29a) and secondary fuel (29b). - The secondary fuel (29a) is supplied to the main burner (29a), mixed with the exhaust gas from the diesel engine (a) and subjected to primary combustion, thereby forming a primary combustion zone. At this time, the second damper 4 is closed,
For combustion from the ventilation control side! ! ! Qi is not supplied.

次に一次燃焼域囚の後流域に向けて、二次バーナ(7)
から二次燃料(29b)のみを噴射し、この部と酸素不
足の還元雰囲気として燃焼させ、二次燃焼成(131を
形成する。これにより二次燃焼域(BlでNOxをN2
と02等に分離させ得、したがって−火燃焼にともなう
新たなNOx発生が加算されたとしても、大中な低NO
x化を計り得る。更に、二次燃焼* fB+で燃焼でき
なかった未燃分を燃焼させるに必要な蛍の新鮮な空気が
、押込送風機l33)により二段空気供給口3ηを通し
て火炉@内に供給され、緩慢な三次燃焼を行なって三次
燃焼域tc)を形成する。
Next, the secondary burner (7) is installed toward the downstream area of the primary combustion zone.
Only the secondary fuel (29b) is injected from the secondary combustion zone (Bl) and combusted in a reducing atmosphere lacking oxygen to form the secondary combustion fuel (131).
Therefore, even if new NOx generation due to fire combustion is added, large to medium low NOx
It is possible to measure the Furthermore, in the secondary combustion*fB+, the fresh air necessary for burning the unburned matter that could not be burned in fB+ is supplied into the furnace @ through the second stage air supply port 3η by the forced air blower l33), resulting in slow tertiary combustion. Combustion is performed to form a tertiary combustion zone tc).

三次燃焼は前述したように緩慢であることから、NOx
再発生を抑制しながら燃焼を完結することになる。この
ようにしてNOxが低減された排ガスは、ボイラ(イ)
の後部伝熱面(ボイラ接触伝熱面、エコノマイザ、ガス
エヤーヒータなど)31)で十分熱回収され、そして煙
突□□□に導かれて排出される。
As mentioned above, tertiary combustion is slow, so NOx
Combustion will be completed while suppressing re-occurrence. The exhaust gas with reduced NOx in this way is sent to the boiler (a).
The heat is sufficiently recovered at the rear heat transfer surface (boiler contact heat transfer surface, economizer, gas air heater, etc.) 31), and then led to the chimney and discharged.

なおボイラ四の単独運転時には、第1ダンパ(ロ)を閉
じると共に第2ダンパ3FGを開けて、押込送風機−に
よる燃焼用空気を風箱■に供給すればよい。
In addition, when the boiler 4 is operated independently, the first damper (b) is closed and the second damper 3FG is opened to supply combustion air from the forced blower to the wind box (b).

上述した実施例方法によると、ヂーゼルエンジン四から
排出される高温で且つ高空気比の排ガスが持つエネルギ
ーを有効利用することができ、また高価な排ガス脱硝装
置を使用することなく、ヂーセ゛ルエンジン排ガスの約
rz00ppm(02:12.彫杉に放て)のNOx値
を、ボイラ排ガスのNOx値(150〜250ppm)
程度まで低減できる。さらに大巾なNOx低減が要求さ
れる場合には、すでに実用化されている脱硝触媒を使っ
たボイラ排ガス用脱硝装置ft1−ボイラ出口ガスの最
適部に装備すればよく、前述のヂーゼルエンジン翰から
の排ガス中に直接装備する場合のような不都合は考えな
くても良いことになる。
According to the method of the embodiment described above, it is possible to effectively utilize the energy of the high temperature and high air ratio exhaust gas discharged from the diesel engine, and also to reduce the amount of exhaust gas from the diesel engine without using an expensive exhaust gas denitrification device. The NOx value of approximately rz00ppm (02:12. released into carved cedar) is compared to the NOx value of boiler exhaust gas (150 to 250ppm).
It can be reduced to a certain extent. If an even greater reduction in NOx is required, it is sufficient to install the boiler exhaust gas denitrification device ft1, which uses a denitrification catalyst that has already been put into practical use, at the optimal point of the boiler outlet gas. This means that there is no need to consider the inconveniences that would occur if the device were installed directly into the exhaust gas.

第4図は本発明の別の実施例であるガスタービンの排ガ
ス脱硝方法を示している。前実施例と異なるのは、原動
機としてガスタービン唾を使用した点のみで、他は同一
またはほぼ同一となる。
FIG. 4 shows a method for denitrating exhaust gas from a gas turbine, which is another embodiment of the present invention. The only difference from the previous embodiment is that a gas turbine is used as the prime mover, and the rest are the same or almost the same.

この実施例によると、高価な排ガス脱硝装置を使用する
ことなく、ガスタービン排ガス中の、−例として、約4
00−500pprn (02:4%換算)のN04t
、ボイラ排ガスのNOx値(150〜200ppm)程
度まで低減できる。
According to this embodiment, without using expensive exhaust gas denitrification equipment, - for example, about 4
N04t of 00-500pprn (02:4% conversion)
, the NOx value of boiler exhaust gas can be reduced to about 150 to 200 ppm.

発明の効果 上記構成の本発明によると次のような効果を期待できる
Effects of the Invention According to the present invention having the above configuration, the following effects can be expected.

0 ヂーゼルエンジンやガスタービンなど原動機から排
出はれる排ガスのNOx値を、高価で且つ神々な問題が
ある排ガス脱硝装置を用いることなく、ボイラ排ガスの
NOx値程度まで低減することができる。
0 The NOx value of exhaust gas emitted from a prime mover such as a diesel engine or gas turbine can be reduced to about the NOx value of boiler exhaust gas without using an expensive and problematic exhaust gas denitrification device.

O原動機からの排ガスの持つ熱エネルギはポ・イラにて
回収でき、損失はない。
Thermal energy contained in the exhaust gas from the O prime mover can be recovered at the po-ira, and there is no loss.

Oボイラ用の押込送風機の使用は、ボイラ単独運転時の
み全力にて運転するだけで、通常の場合は三次燃焼用の
空気を送るのみの小さい出力で運転するだけでよい。
When using a forced air blower for an O-boiler, it is only necessary to operate it at full power only when the boiler is operating alone, and in normal cases it is only necessary to operate it at a small output to send air for tertiary combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

$1図、第2図は従来例を示し、第1図はヂーゼルエン
ジン排ガヌ脱硝方法の概略装置図、第2図はガスタービ
ン排ガス脱硝装置の概略装置図、第3図、第4図は夫々
本発明の実施例を示し、第3図はヂーゼルエンジン排ガ
ス脱硝方法の概略装置図、第4図はガスタービン排ガス
脱硝方法の概略装置図である。 (ホ)°°“ヂーゼルエンジン(IjXI4JJ機) 
、□□□・・・ボイラ、脅・−・火炉、(至)・・・ボ
イラドラム、四・・・風箱、(7)・・・排気管、(支
)・・・主バーナ、(29a)・・・−次燃料、(29
b)・・・二次燃料、…・・−二次バーナ、鰻・・・押
込送風機、i3′6・・・二段空気供給口、139)・
・・ガスタービン(原動機)、囚・・・−次燃焼成、0
3)・・・二次燃焼域、(C)・・・三次燃焼域 代理人 森 本 義 弘
Figure 1 and Figure 2 show conventional examples, Figure 1 is a schematic diagram of the diesel engine exhaust gas denitrification method, Figure 2 is a schematic diagram of the gas turbine exhaust gas denitration equipment, Figures 3 and 4. FIG. 3 is a schematic diagram of a diesel engine exhaust gas denitration method, and FIG. 4 is a schematic diagram of a gas turbine exhaust gas denitration method. (E)°°“Diesel engine (IjXI4JJ machine)
, □□□... Boiler, Threat - Furnace, (To)... Boiler drum, 4... Wind box, (7)... Exhaust pipe, (Support)... Main burner, ( 29a)...-Next fuel, (29
b)...Secondary fuel,...-Secondary burner, Eel...Forced blower, i3'6...Second air supply port, 139)
...Gas turbine (prime mover), prisoner...-Next combustion composition, 0
3)...Secondary combustion area, (C)...Tertiary combustion area agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】[Claims] 1、原動機からの排ガスをボイラ火炉のバーナ風箱に導
き、そして−次燃料と混合させて火炉内にて一次燃焼さ
せ、これにより形成した一次燃焼域の後流域に二次燃料
のみを供給して酸素不足の還元雰囲気として二次燃焼さ
せ、次いで二次燃焼域の近くに、二次燃焼で残存した未
燃分を燃焼させるに必要な皿の燃焼用空気を供給して、
g!慢な三次燃焼を行なうことを特徴とする原動機の排
ガス脱硝方法。
1. Exhaust gas from the prime mover is led to the burner wind box of the boiler furnace, mixed with secondary fuel, and primary combusted in the furnace, thereby supplying only secondary fuel to the downstream area of the primary combustion area formed. to perform secondary combustion in an oxygen-deficient reducing atmosphere, and then supply a pan of combustion air necessary for burning the unburned matter remaining in the secondary combustion near the secondary combustion zone,
g! A method for denitrifying exhaust gas from a prime mover, which is characterized by slow tertiary combustion.
JP59013132A 1984-01-26 1984-01-26 Denitrating method of exhaust gas in prime mover Pending JPS60156921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59013132A JPS60156921A (en) 1984-01-26 1984-01-26 Denitrating method of exhaust gas in prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59013132A JPS60156921A (en) 1984-01-26 1984-01-26 Denitrating method of exhaust gas in prime mover

Publications (1)

Publication Number Publication Date
JPS60156921A true JPS60156921A (en) 1985-08-17

Family

ID=11824625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59013132A Pending JPS60156921A (en) 1984-01-26 1984-01-26 Denitrating method of exhaust gas in prime mover

Country Status (1)

Country Link
JP (1) JPS60156921A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133833A (en) * 1975-05-15 1976-11-19 Mitsubishi Heavy Ind Ltd Utilization method of combustioned gas
JPS5220449A (en) * 1975-08-08 1977-02-16 Zink Co John Method of reducing nitrogen oxides in combustion gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133833A (en) * 1975-05-15 1976-11-19 Mitsubishi Heavy Ind Ltd Utilization method of combustioned gas
JPS5220449A (en) * 1975-08-08 1977-02-16 Zink Co John Method of reducing nitrogen oxides in combustion gas

Similar Documents

Publication Publication Date Title
CN100402130C (en) System and method for controlling nox emissions from boilers combusting carbonaceous fuels without using external reagent
JP2698134B2 (en) Method of controlling combustion emissions and emissions combustors
US5224334A (en) Low NOx cogeneration process and system
US4811555A (en) Low NOX cogeneration process
ATE119985T1 (en) CATALYTIC COMBUSTION.
US5022226A (en) Low NOx cogeneration process and system
US4936088A (en) Low NOX cogeneration process
CN104976616B (en) Low heat value burnt gas high-temperature air combustion furnace with water-cooling wall
CN1817415A (en) Denitration of non-selective catalytic reducing smoke
CN109340789B (en) Carbon black tail gas low-nitrogen stable combustion process and carbon black tail gas low-nitrogen stable combustion system
KR100886190B1 (en) The burner for making deoxidizing atmosphere of exhaust gas in engine cogeneration plant with denox process
US4930305A (en) Low NOX cogeneration process
EP0317110B1 (en) Low nox cogeneration process
JPS60156921A (en) Denitrating method of exhaust gas in prime mover
US4981089A (en) Process for the reduction of nitrogen monoxide emissions during the combustion of solid fuels
JPS59180220A (en) Gas turbine combustor
JP2002228129A (en) Waste incinerator
JPS59191809A (en) Method for reducing production of nox in steam-gas composite cycle and device thereof
KR200199659Y1 (en) Improvement of boiler exhaust gas purifier
JPS61223411A (en) Catalyst burning method for pulverized coal
JPS58190513A (en) Effective utilization of exhaust gas of internal- combustion engine
JPH0463964B2 (en)
JPS5974408A (en) Combustion device
JPS60159512A (en) Process for denitration of waste gas from prime mover
JPS5924121A (en) Combustion in combustor for gas turbine