JPS60156107A - Track correcting method of robot hand - Google Patents

Track correcting method of robot hand

Info

Publication number
JPS60156107A
JPS60156107A JP1003884A JP1003884A JPS60156107A JP S60156107 A JPS60156107 A JP S60156107A JP 1003884 A JP1003884 A JP 1003884A JP 1003884 A JP1003884 A JP 1003884A JP S60156107 A JPS60156107 A JP S60156107A
Authority
JP
Japan
Prior art keywords
value
memory
proportional
data
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1003884A
Other languages
Japanese (ja)
Other versions
JPH0623928B2 (en
Inventor
Muneyuki Sakagami
坂上 志之
Koichi Sugimoto
浩一 杉本
Shinichi Arai
荒井 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59010038A priority Critical patent/JPH0623928B2/en
Priority to US06/623,455 priority patent/US4617502A/en
Priority to DE8484107470T priority patent/DE3485141D1/en
Priority to EP84107470A priority patent/EP0130570B1/en
Publication of JPS60156107A publication Critical patent/JPS60156107A/en
Publication of JPH0623928B2 publication Critical patent/JPH0623928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33119Servo parameters in memory, configuration of control parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33263Conversion, transformation of coordinates, cartesian or polar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41177Repetitive control, adaptive, previous error during actual positioning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45083Manipulators, robot

Abstract

PURPOSE:To improve linear track accuracy and constant speed properties by obtaining a feedback gain based on output data of a position detector of an actuator. CONSTITUTION:A processor 1 of a track correction controller of a robot hand executes a management of a memory 3, etc. through various operation controls and a bus 2. In this state, in accordance with an instruction from a teaching box 8, four proportional coefficients in the memory 3 are initialized to a small value, and in accordance with program data, a playback operation by a linear path is executed. In this case, an output value of a displacement detector of an actuator of each sampling time is read, and stored as track data in the memory 3. Also, after the playback, the position of the head is calculated based on said stored data, and the distance between its position and theoretical track is calculated and stored in the same way. The same operation is repeated by changing said proportional coefficient, and an optimum value of each coefficient is determined.

Description

【発明の詳細な説明】 〔発明の利用分野) 本発明は、ロボットノ・ンドの軌道修正制御装置に係り
、特に、直線軌道精度の向上および定速性に好適な経路
補間データを発生するだめの前処理を行ない、軌道精度
を向上させるための軌道修正方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a trajectory correction control device for a robot node, and particularly to a device for generating path interpolation data suitable for improving linear trajectory accuracy and maintaining constant speed. The present invention relates to a trajectory correction method for improving trajectory accuracy by performing preprocessing.

〔発明の背景〕[Background of the invention]

本出願人は、速度制御を用いた直線軌道制御方法として
、ロボットハンドの指定直線軌道からの位置偏差と速度
偏差を次回のサンプリング時の速度指令値釦フィードバ
ックすることによ勺直線軌道精度を向上できる方法を開
発している。この時、フィードバックする・ものは1位
置偏差に比例する量1位置偏差の蓄積量忙比例する量、
直線上の定速指令域での速度偏差に比例する酸、それに
この速度偏差の蓄積量に比例する量を加えたものである
As a linear trajectory control method using speed control, the applicant improves linear trajectory accuracy by feeding back the position deviation and speed deviation of the robot hand from a specified linear trajectory to the speed command value button at the next sampling time. We are developing a method to do so. At this time, the feedback is an amount proportional to 1 position deviation, an amount proportional to the accumulation of 1 position deviation,
The acid is proportional to the speed deviation in the constant speed command range on a straight line, and the amount proportional to the accumulated amount of this speed deviation is added to it.

各サンプリング時には、この4つの比例量を定める4m
の比例係数が最適な値に定まって込なければ高い直線軌
道精度を得ることはセきない。ところが、これらの比例
係数の最適値は、ロボットハンドの移動距離、指定移動
速度、移動中のハンドの位置姿勢が変化する毎に変動す
るという問題を残していた。そのため、プレイバック動
作時に直線軌道精度が最も高くなるように比例係数の値
を設定すること#i困Skものであった。
At each sampling time, 4 m to determine these four proportional quantities.
It is not possible to obtain high linear trajectory accuracy unless the proportionality coefficient of is determined to an optimal value. However, the problem remains that the optimal values of these proportional coefficients vary each time the moving distance of the robot hand, the designated moving speed, and the position and orientation of the moving hand change. Therefore, it is difficult to set the value of the proportionality coefficient so that the linear trajectory accuracy is maximized during the playback operation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる比例係数の値を設定するときの
困難をなくシー プレイバック動作時に最高の直線軌道
精度を得るだめの比例係数の最適値を決定する方法を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for determining the optimum value of the proportionality coefficient to obtain the highest linear trajectory accuracy during sea playback operations without the difficulty in setting the value of such a proportionality coefficient.

〔発明の概要) 本発明の特徴は、ロボットノ・ンドの速度指令値に軌道
からの位置偏差と指定速度からの速度偏差を帰還して軌
道精度と定速性を向上させるにおいて、#還ゲインをア
クチェータの位置検出器の出力データをもとに最適な値
を得るようにした点である。
[Summary of the Invention] A feature of the present invention is that the position deviation from the trajectory and the speed deviation from the specified speed are returned to the speed command value of the robot node to improve trajectory accuracy and constant speed. The point is that the optimum value is obtained based on the output data of the actuator's position detector.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図〜第3図に従って本発明の一実施例を詳述
する。第1図はロボットに、Sれた2点を教示させた後
、この2点間を直線で結ぶようにプレイバック動作させ
た場合の比例係数の値と、直線軌道精度の関係の実測デ
ータを示したものであシ、横軸に時間、縦軸に予定直線
軌道からの実際の軌道の位置偏差をとっである。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3. Figure 1 shows the measured data of the relationship between the proportionality coefficient value and the linear trajectory accuracy when the robot is taught two S points and then is made to perform a playback operation to connect these two points with a straight line. As shown, the horizontal axis is time, and the vertical axis is the positional deviation of the actual trajectory from the planned straight trajectory.

同データを得る忙使用したロボットは、上腕長さ800
mm5 前腕長600mmの関節型5自由度のロボット
で、サンプリング時間55m1移動指令速度100 m
m/llの場合で、速度パターンは等加速度の台形状と
したものである。
The robot used to obtain the same data had an upper arm length of 800 mm.
mm5 Articulated 5 degrees of freedom robot with forearm length 600 mm, sampling time 55 m1, movement command speed 100 m
In the case of m/ll, the velocity pattern is a trapezoid with constant acceleration.

そして、変化させた比例係数は現在の位置偏差を次回の
サンプリング時に比例で、フィードバックさせる項の係
数でPID制御での比例補償項に相当するものである。
The changed proportional coefficient is a coefficient of a term in which the current positional deviation is proportional to and fed back at the next sampling time, and corresponds to a proportional compensation term in PID control.

他の3種の比例係数はゼロとしている。第1図において
は、この比例係数を変化にとおいてbる。比例係数kが
小さいとき(k=4)は位置度差は第1図(a)のよう
になる。
The other three types of proportionality coefficients are set to zero. In FIG. 1, this proportionality coefficient is set as b. When the proportionality coefficient k is small (k=4), the position difference becomes as shown in FIG. 1(a).

比例係数に=24のときは第1図(b)の如くでありて
1位置変差は第1図(a)の場合の115相度に減少す
る。さらに比例係数に=28のときは、第1図(a)V
C示すように1比例補償量が過大で、そのため大きく発
振して位置偏差が再び大きくなる。
When the proportionality coefficient is 24, the situation is as shown in FIG. 1(b), and the one-position deviation is reduced to 115 phase degrees as in the case of FIG. 1(a). Furthermore, when the proportional coefficient = 28, Fig. 1 (a) V
As shown in C, the 1-proportional compensation amount is excessive, which causes a large oscillation and the positional deviation becomes large again.

1″(″)〜1°)′″′”[ml!(’)ilJt1
61サンプリング時間毎忙加えてサンプリング回数で除
した1回のサンプリングでの平均の位置偏差を縦軸釦、
比例係数を横軸にとって示したのが第2図である。同・
図に示すように、比例係数を大きくして騒ぐと1位置偏
差の絶対値は徐々に少なくなってb〈が、所定の位置か
ら逆に位置偏差が大きくなる。
1″ (″) ~ 1°)′″′” [ml! (')ilJt1
61 The vertical axis button shows the average positional deviation in one sampling, which is calculated by adding the busyness of each sampling time and dividing it by the number of sampling times.
FIG. 2 shows the proportionality coefficient on the horizontal axis. same·
As shown in the figure, when the proportional coefficient is increased and the noise is made, the absolute value of one positional deviation gradually decreases, and b<<, but the positional deviation conversely increases from a predetermined position.

すなわち、下方(−@)K凸状の曲線となって込る。こ
れは他の5種の比例係数にっhても同様の結果が侍られ
るものである。従って1位置偏差を一番小ざくする比例
係数の値をめるには、比例係数をゼロから次第に大きく
してゆき1位置偏差の単調減少が単鯛増加に切シ変わる
点をさがせばよい。これによってめ得た比例係数の値を
比例係数の最適値と呼ぶことにする。
That is, it forms a downward (-@)K convex curve. Similar results can be obtained for the other five types of proportionality coefficients. Therefore, in order to find the value of the proportionality coefficient that minimizes the 1-position deviation, it is necessary to gradually increase the proportionality coefficient from zero and find the point where the monotonous decrease in the 1-position deviation changes to a sharp increase in the single sea bream. The value of the proportionality coefficient obtained in this way will be referred to as the optimal value of the proportionality coefficient.

ところで、ある比例係数の最適値がめ得た後。By the way, after finding the optimal value for a certain proportionality coefficient.

他の比例係数の値を変動させると既に定った比例係数の
最適値は少し変動する。従って、順番に4種の比例係数
の最適値を決定して最後にそれらのR適値の近傍で再度
同様の操作を繰ル返えせば。
If the values of other proportionality coefficients are varied, the optimal value of the proportionality coefficient that has already been determined will vary slightly. Therefore, if the optimum values of the four types of proportionality coefficients are determined in order, and finally, the same operation is repeated again in the vicinity of those R optimum values.

真の最適値がまる。The true optimal value is true.

従って、特定の2点間を直線でプレイバック動作すると
きの4種の比例係数の最適値をめるには1次のような装
置があればよ込。
Therefore, in order to find the optimal values of the four types of proportionality coefficients when playing back in a straight line between two specific points, it is necessary to have a first-order device.

すなわち、4種の比例係数を任意に設定したままロボッ
トハンド釦グレイパック動作指令を与え。
That is, the robot hand button gray pack operation command is given while the four proportional coefficients are set arbitrarily.

プレイバック動作中の各サンプリング時間毎の予定軌道
と実際に動すた軌道との間の位置偏差を測定し、その位
置偏差の絶対値の和を計算し、他の比例係数の値の場合
とその位置偏差の絶対値の和を比較し、第2図のグラフ
をベースにした最適値探索し、得られた最適値をメモリ
に格納する装置があればよいわけである。
Measure the positional deviation between the planned trajectory and the actually moved trajectory at each sampling time during playback operation, calculate the sum of the absolute values of the positional deviation, and compare it with the values of other proportional coefficients. All that is required is a device that compares the sum of the absolute values of the positional deviations, searches for an optimal value based on the graph of FIG. 2, and stores the obtained optimal value in a memory.

第3図は本発明を実施する具体的なブロック構成図であ
って1図中、1はプロセッサを示し、バス2を介してメ
モリ3.テーブル49乗除算器5゜出力ポートロ、入力
ポードア、ティーチングボックス8とインターフェース
する。出力ポートロ。
FIG. 3 is a concrete block configuration diagram for implementing the present invention, in which 1 indicates a processor, and a memory 3. Table 49 multiplier divider 5° Output port door, input port door, interface with teaching box 8. Output Portro.

入力ポードアはロボット本体9とバス2との間の入出力
部を形成する。
The input port door forms an input/output section between the robot body 9 and the bus 2.

プロセッサ1#′i各種の演算制御、及びバスを介した
メモリ5.テーブル49乗除算器5.出カポ−トロ、入
力ポードア、ティーチングボックス8の管理を行う。メ
モリは、演算制御用のプログ2ムおよび各種のデータを
格納する。テーブルは三角関数−1逆三角関数等を格納
するデータテーブルである。また1乗除算器5は乗除算
専用のハードウェアである。ティーチングボックス8は
、ティーチング時のマン−マシンインターフェイス用の
コンソールである。このティーチングボックス8によっ
て指示されたロボットの駆動系ある因はセンサから得ら
れるティーチングテータはメモリ3に格納される構成と
しである。
Processor 1#'i various calculation controls and memory via bus 5. Table 49 Multiply Divider 5. It manages the output ports, input ports, and teaching box 8. The memory stores arithmetic control programs and various data. The table is a data table that stores trigonometric functions-1 inverse trigonometric functions and the like. Further, the 1 multiplier/divider 5 is hardware dedicated to multiplication/division. The teaching box 8 is a console for man-machine interface during teaching. The reason for the robot drive system instructed by the teaching box 8 is that the teaching data obtained from the sensor is stored in the memory 3.

同回路構成によると、まず、ティーチングボックス8か
らの指示により、メモリ3の中の4つの比例係数を小さ
な値に初期設定する。次に、メモリ3に格納されたプロ
グラムデータに従って直線経路によるプレイバック動作
を行う。この時各サンプリング時のアクチュエータの変
位検出器(図示せず)の値を読み取シ、ロボットの軌道
データとしてメモリ3に格納する。プレイバック終了後
According to the same circuit configuration, first, four proportional coefficients in the memory 3 are initialized to small values in response to an instruction from the teaching box 8. Next, a playback operation along a straight path is performed according to the program data stored in the memory 3. At this time, the value of the displacement detector (not shown) of the actuator at each sampling time is read and stored in the memory 3 as robot trajectory data. After playback ends.

メモリ3に格納されたロボットの軌道データをもとにハ
ンドの空間内における位置を計算し、この位置とプレイ
バック時の理論軌道との距離を計算し、この値の絶対値
を、各サンプリング毎に加算し、その結果をメモリ3に
格納する。
The position of the hand in space is calculated based on the robot's trajectory data stored in the memory 3, the distance between this position and the theoretical trajectory during playback is calculated, and the absolute value of this value is calculated for each sampling. and stores the result in memory 3.

次に4つの比例係数のいずれか1つの値を2倍に変更し
て、上記と同様の操作を行い、得られた絶対値の総和と
前記メモリ3に格納された値との比較をし1次の作業を
実行する。
Next, double the value of any one of the four proportional coefficients, perform the same operation as above, and compare the sum of the obtained absolute values with the value stored in the memory 3. Perform the following tasks:

(1)、前回の値の方が大きい場合は、さらに比例係数
の値を等間隔で増し、上記の動作を繰シ返す。
(1) If the previous value is larger, the value of the proportionality coefficient is further increased at equal intervals and the above operation is repeated.

(2)、前回の値の方が小さい場合、前回の比例係数の
値の中間値を次回の比例係数の値とし、上記の動作を繰
り返えす。
(2) If the previous value is smaller, the intermediate value of the previous proportional coefficient values is set as the next proportional coefficient value, and the above operation is repeated.

(3)、前回の比例係数の値と今回の比例係数の値の中
間値を次回の比例係数の値とし、上記の動作を繰シ返す
。前回の値の方と同じ場合、比例係数の値を前回と今回
の中間値として、これを比例係数の最適値と決定する。
(3) Set the intermediate value between the previous proportional coefficient value and the current proportional coefficient value as the next proportional coefficient value, and repeat the above operation. If the value is the same as the previous value, the value of the proportionality coefficient is set as the intermediate value between the previous value and this time, and this is determined as the optimal value of the proportionality coefficient.

同様の操作を他の3つの比例係数の最適値が決定するま
で繰シ返し、この値をもと忙もう一度上記手順を繰シ返
し最終的な比例係数の最適値としてこの値をメモリ5に
格納し1通常のプレイバック時の比例係数として所定の
点間のプレイバック用データの1つとして引出せるよう
にする。
Repeat the same operation until the optimum value of the other three proportional coefficients is determined, and then repeat the above procedure again based on this value and store this value in the memory 5 as the final optimum value of the proportional coefficient. 1. It can be extracted as one of the playback data between predetermined points as a proportional coefficient during normal playback.

そして、メモリのプレイバックプログラム中の高い直線
軌道精度を必要とするプレイバック命令のエリアにこの
比例係数の最適値を格納できるようにしておくことによ
って、複数の高直線軌道精度のプレイバック動作も可能
となる。
By storing the optimal value of this proportional coefficient in the area of the playback command that requires high linear trajectory accuracy in the memory playback program, multiple playback operations with high linear trajectory accuracy can be performed. It becomes possible.

上記、実施例によると1例えば、3次元空間中の始点と
終点の2点を指定速度で直線経路補間するときの精度は
大幅に向上し、特に、ロボット駆動部を指定された直線
軌道に従って駆動させた場合に有効である。
According to the above embodiments, 1. For example, when interpolating a linear path between two points in a three-dimensional space, a starting point and an ending point, at a specified speed, the accuracy is greatly improved, and in particular, the robot drive unit is driven according to a specified linear trajectory. It is effective when

〔発明の効果〕〔Effect of the invention〕

上述の実施例からも明らかなように本発明によれば、直
線軌道精度が向上すると共に、定速度性をロボットコン
トローラの能力の最大限まで向上でき、しかもそれが自
動的に行なえるので、ロボットの、駆動部の効率は向上
する。
As is clear from the above-mentioned embodiments, according to the present invention, linear trajectory accuracy is improved and constant velocity can be improved to the maximum capability of the robot controller, and this can be done automatically. , the efficiency of the drive section is improved.

【図面の簡単な説明】[Brief explanation of drawings]

添付図は本発明を説明するための図であって。 第1図は比例係数の大きさと位置偏差の関係を1回のプ
レイバック動作をも七に示した説明図、第2図は比例係
数の大きさと位置偏差の関係の説明図、第3図は本発明
の具体的な構成を示す回路ブロック図である。 1・・・プロセッサ、2・・・バス、3・・・メモリ、
4・・・テーブル、5・・・乗除算器、6・・・出力ボ
ート、7・・・入力ポート1.8・・・テーチングボッ
クス、9・・・ロボット本体。 第2図 と仁イ)°リイ系儒と(、
The attached drawings are diagrams for explaining the present invention. Figure 1 is an explanatory diagram showing the relationship between the magnitude of the proportionality coefficient and positional deviation for one playback operation, Figure 2 is an explanatory diagram of the relationship between the magnitude of the proportionality coefficient and positional deviation, and Figure 3 is an explanatory diagram of the relationship between the magnitude of the proportionality coefficient and positional deviation. 1 is a circuit block diagram showing a specific configuration of the present invention. FIG. 1...processor, 2...bus, 3...memory,
4...Table, 5...Multiplier/divider, 6...Output boat, 7...Input port 1.8...Teaching box, 9...Robot body. Fig. 2 and Ren-ii)°Li-type Confucianism and (,

Claims (1)

【特許請求の範囲】[Claims] ロボットI・ンドの指定直線軌道からの位置偏差と速度
偏差を速度指令値にフィートノ(ツクして直I/MIM
:路補間を行なうロボットノ・ンドの軌道修正装置にお
いて、フィードバックされる位置偏差に比例する量9位
置偏差の蓄積量に比例する量、速度偏差に比例する量、
速度偏差の蓄積量に比例する量の各比例係数の最適値を
、ロボット駆動部に直結した位置検出値のデータから得
るようにしたことを特徴とするロボット−・ンドの軌道
修正方式。
The position deviation and speed deviation from the specified linear trajectory of the robot I/MIM are converted into the speed command value.
: In a trajectory correction device for a robot node that performs path interpolation, an amount proportional to the feedback position deviation 9 An amount proportional to the accumulated amount of position deviation, an amount proportional to speed deviation,
A trajectory correction method for a robot, characterized in that the optimum value of each proportionality coefficient of an amount proportional to the accumulated amount of speed deviation is obtained from data of position detection values directly connected to a robot drive section.
JP59010038A 1983-06-30 1984-01-25 Robot hand trajectory correction method Expired - Lifetime JPH0623928B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59010038A JPH0623928B2 (en) 1984-01-25 1984-01-25 Robot hand trajectory correction method
US06/623,455 US4617502A (en) 1983-06-30 1984-06-22 Method and apparatus for controlling a robot hand along a predetermined path
DE8484107470T DE3485141D1 (en) 1983-06-30 1984-06-28 METHOD AND DEVICE FOR CONTROLLING A ROBOT'S HAND ALONG A SPECIFIC WAY.
EP84107470A EP0130570B1 (en) 1983-06-30 1984-06-28 Method and apparatus for controlling a robot hand along a predetermined path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010038A JPH0623928B2 (en) 1984-01-25 1984-01-25 Robot hand trajectory correction method

Publications (2)

Publication Number Publication Date
JPS60156107A true JPS60156107A (en) 1985-08-16
JPH0623928B2 JPH0623928B2 (en) 1994-03-30

Family

ID=11739219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010038A Expired - Lifetime JPH0623928B2 (en) 1983-06-30 1984-01-25 Robot hand trajectory correction method

Country Status (1)

Country Link
JP (1) JPH0623928B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205207A (en) * 1988-02-10 1989-08-17 Tokico Ltd Off-line teaching system
CN102419911A (en) * 2011-08-17 2012-04-18 成都智汇科技有限公司 Newspaper report commanding and dispatching management system based on GIS (Geographic information system)
CN103302668A (en) * 2013-05-22 2013-09-18 东南大学 Kinect-based space teleoperation robot control system and method thereof
WO2016125204A1 (en) * 2015-02-04 2016-08-11 川崎重工業株式会社 Automatic robot deviation adjustment device and automatic robot deviation adjustment method
CN114290327A (en) * 2021-11-25 2022-04-08 江苏集萃智能制造技术研究所有限公司 Six-axis mechanical arm control system based on first-order variable gain ADRC

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663605A (en) * 1979-10-30 1981-05-30 Mitsubishi Heavy Ind Ltd Optimum parameter search device of control unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663605A (en) * 1979-10-30 1981-05-30 Mitsubishi Heavy Ind Ltd Optimum parameter search device of control unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205207A (en) * 1988-02-10 1989-08-17 Tokico Ltd Off-line teaching system
CN102419911A (en) * 2011-08-17 2012-04-18 成都智汇科技有限公司 Newspaper report commanding and dispatching management system based on GIS (Geographic information system)
CN103302668A (en) * 2013-05-22 2013-09-18 东南大学 Kinect-based space teleoperation robot control system and method thereof
WO2016125204A1 (en) * 2015-02-04 2016-08-11 川崎重工業株式会社 Automatic robot deviation adjustment device and automatic robot deviation adjustment method
JPWO2016125204A1 (en) * 2015-02-04 2017-11-09 川崎重工業株式会社 Robot shake automatic adjustment device and robot shake automatic adjustment method
CN114290327A (en) * 2021-11-25 2022-04-08 江苏集萃智能制造技术研究所有限公司 Six-axis mechanical arm control system based on first-order variable gain ADRC
CN114290327B (en) * 2021-11-25 2023-05-30 江苏集萃智能制造技术研究所有限公司 Six-axis mechanical arm control system based on first-order variable gain ADRC

Also Published As

Publication number Publication date
JPH0623928B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US4617502A (en) Method and apparatus for controlling a robot hand along a predetermined path
EP0375749B1 (en) Robot axis controller employing feedback and open loop control
JPH0439085B2 (en)
JP2506760B2 (en) Robot controller
JP2874238B2 (en) Control method of articulated robot
JPS60156107A (en) Track correcting method of robot hand
JPH0570162B2 (en)
JP2643683B2 (en) Robot control method
JPH0193805A (en) Method for generating teaching data of robot
JPS5858609A (en) Locus interpolating method of industrial robot
JPH02148111A (en) Method and device for controlling robot
JPS6010309A (en) Method for interpolating path of robot hand
JPS6190207A (en) Robot controlling device
JPS61163406A (en) Robot control device
JPH10285969A (en) Load inertia estimation system, medium on which load inertia estimation program is recorded, and medium on which operation program of robot is recorded
JPS61217802A (en) Robot controller
JPS6327723B2 (en)
JPS59163609A (en) Route interpolating method of robot hand
JPS5924313A (en) High-speed locus generating device
JPH1020910A (en) Robot controller and control method for the same
JPS60220408A (en) Joint type robot controller
JPH06230818A (en) Servo controller
JPS6245562B2 (en)
Cuesta et al. Stability analysis of fuzzy reactive navigation
JPH0630008B2 (en) Robot control method