JPS6015604A - Reflection mirror for automobile - Google Patents

Reflection mirror for automobile

Info

Publication number
JPS6015604A
JPS6015604A JP12384483A JP12384483A JPS6015604A JP S6015604 A JPS6015604 A JP S6015604A JP 12384483 A JP12384483 A JP 12384483A JP 12384483 A JP12384483 A JP 12384483A JP S6015604 A JPS6015604 A JP S6015604A
Authority
JP
Japan
Prior art keywords
film
transparent dielectric
light
thin film
dielectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12384483A
Other languages
Japanese (ja)
Inventor
Takashi Taguchi
隆志 田口
Yoshiki Ueno
上野 祥樹
Tadashi Hattori
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP12384483A priority Critical patent/JPS6015604A/en
Publication of JPS6015604A publication Critical patent/JPS6015604A/en
Priority to US06/902,028 priority patent/US4673248A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/08Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors
    • B60R1/083Anti-glare mirrors, e.g. "day-night" mirrors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To obtain a desired color tone at a low cost and to prevent the driver's fatigue owing to the dazzle by forming transparent thin dielectric films having different refractive indexes on base glass then forming a metallic film thereon. CONSTITUTION:The 1st transparent thin dielectric film 2 (refractive index n=2.3) consisting of MgF2 having a low refractive index is deposited by vacuum evaporation on base glass 1 (n=1.53). The 2nd transparent thin dielectric film 3 (n=2.3) consisting of TiO2 having the refractive index higher than the refractive index of the glass 1 is deposited by vacuum evaporation on the surface of the film 2. A metallic film 4 consisting of a nickel-chromium alloy to serve as a reflecting surface of light is deposited by vacuum evaporation at a desired film thickness on the surface of the film 3. When light is made incident to such reflection mirror from the direction of an arrow L, the light of the quantity determined by the difference in the refractive indexes is reflected at the boundary between the glass 1 and the film 2 and the boundary between the film 2 and the film 3. The reflected light and the light reflected on the surface of the film 4 interfere with each other, by which the spectral characteristic of the reflected light is not made flat and the effect of coloring and preventing the dazzle is obtd.

Description

【発明の詳細な説明】 本発明は自動車用反射鏡に関するもので、例えば自動車
のルームミラーあるいはフェンダ−ミラーに用いて有効
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reflecting mirror for automobiles, and is effective for use in, for example, a rearview mirror or a fender mirror of an automobile.

従来の自動車用反射鏡は、ガラス基板にアルミを蒸着し
たものであり、この反射率は80〜90%と高く、分光
特性はフランiである。このため、太陽を背にした場合
や夜間に後続者のライトによって照らされた場合には、
眩しさにより疲労の原因となる。また、これを防ぐため
に光干渉を用いて50%程度の視感反射率に落し、かつ
青色ミラーとしたものがある。しかし、これば3層乃至
5層+黒色塗膜の構成であって製造コストが高い。
Conventional automotive reflectors are made by vapor-depositing aluminum on a glass substrate, have a high reflectance of 80 to 90%, and have spectral characteristics of Furan I. For this reason, if you have your back to the sun or are illuminated by a trailing light at night,
The glare causes fatigue. In order to prevent this, there are some that use optical interference to reduce the luminous reflectance to about 50% and use a blue mirror. However, this has a structure of 3 to 5 layers plus a black coating, and the manufacturing cost is high.

また、他の色調(例えばブロンズ色)にしようとした場
合、視感反射率が極端に低下し、自動車規格を満足でき
ないという問題点がある。
Furthermore, if another color tone (for example, bronze color) is attempted, there is a problem in that the luminous reflectance is extremely reduced and the automobile standards cannot be satisfied.

そこで本発明は上記問題点に鑑み、定コストで任意の色
調にすることができ、眩しさによる運転者の疲労を防止
する自動車用反射鏡を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a reflector for an automobile that can be made into any color tone at a fixed cost and that prevents driver fatigue due to glare.

この目的を達するため本発明では次の様な手段を講じた
。つまり、基板ガラス上に基板ガラスより低屈折率の第
1透明誘電薄膜を形成し、この第1透明誘電体薄膜を上
に前記基板ガラスより高屈折率の第2透明誘電薄膜を形
成し、さらにこの第2透明誘電体薄膜の上に金属膜を形
成した。
In order to achieve this objective, the present invention takes the following measures. That is, a first transparent dielectric thin film having a lower refractive index than the substrate glass is formed on a substrate glass, a second transparent dielectric thin film having a higher refractive index than the substrate glass is formed on the first transparent dielectric thin film, and A metal film was formed on this second transparent dielectric thin film.

次に本発明の実施例を図に基づいて説明する。Next, embodiments of the present invention will be described based on the drawings.

第1図に示す様に、基板ガラス1の一方の面には、基板
ガラス1(屈折率1.53)より低屈折率を持つフッ化
マグネシウム(MgF2)からなる第1透明誘電体薄膜
2(屈折率1.38)が真空蒸着されている。この第1
透明誘電体薄膜2の表面には+1il記基板ガラス1よ
り高屈折率を持つ酸化チタン(1” i 02 )から
なる第2透明誘電体111A3(屈折率2.3)が真空
蒸着されている。さらに、この第2透明誘電体薄膜3の
表面には、光の反射面となるニッケル・クロム合金から
なる金属膜4が任意の膜厚で真空蒸着されている。
As shown in FIG. 1, a first transparent dielectric thin film 2 (made of magnesium fluoride (MgF2)) having a refractive index lower than that of the substrate glass 1 (refractive index 1.53) is formed on one surface of the substrate glass 1. A refractive index of 1.38) is vacuum deposited. This first
On the surface of the transparent dielectric thin film 2, a second transparent dielectric 111A3 (refractive index 2.3) made of titanium oxide (1" i 02 ) having a higher refractive index than the substrate glass 1 is vacuum deposited. Further, on the surface of the second transparent dielectric thin film 3, a metal film 4 made of a nickel-chromium alloy and serving as a light reflecting surface is vacuum-deposited to a desired thickness.

なお、第1.2透明誘電体薄M2,3および金属膜4は
真空蒸着法に限ることなく、スパッタリング法によって
形成してもよi。
Note that the first and second transparent dielectric thin films M2 and 3 and the metal film 4 are not limited to the vacuum deposition method, but may be formed by a sputtering method.

光は第1図中、矢印りの方向から入射し、基板ガラス1
及び第1,2透明誘電体IM膜2.3を透過して金属膜
4表面で反射され、再び第1.2透明誘電体薄膜2,3
及び基板ガラス1を透過して入射方向へもどる。この時
、基板ガラス1と第1透明誘電体薄膜2の界面および第
1透明誘電体薄膜2と第2透明誘電体薄膜3の界面にお
いても、その屈折率の差によって決まる量の光が反射さ
れる。この反射光と、金属膜4の表面で反射した光が互
いに干渉することにより、反射光の分光特性がフラット
でなくなり、着色および防眩効果をりえる。この時の色
調および反射率について以下に述べる。
The light enters from the direction of the arrow in Fig. 1, and the light enters the substrate glass 1.
It passes through the first and second transparent dielectric IM films 2.3 and is reflected on the surface of the metal film 4, and then passes through the first and second transparent dielectric thin films 2 and 3.
The light then passes through the substrate glass 1 and returns to the direction of incidence. At this time, an amount of light determined by the difference in refractive index is also reflected at the interface between the substrate glass 1 and the first transparent dielectric thin film 2 and the interface between the first transparent dielectric thin film 2 and the second transparent dielectric thin film 3. Ru. When this reflected light and the light reflected on the surface of the metal film 4 interfere with each other, the spectral characteristics of the reflected light are no longer flat, and the coloring and anti-glare effects can be improved. The color tone and reflectance at this time will be described below.

第2図は、第2透明誘電体膜3の膜厚と色調との関係を
示したもので、前記実施例の反射鏡にJISZ8701
で定められた標準の光Cが垂直に入射した時の反射光の
色調を色度座標で表わしである。ここで、第1透明誘電
体薄膜2の膜厚は1000人一定である。第2図におい
て色度座標は、Xが赤の成分、Yが緑の成分、1−(X
−1−Y)が青の成分を表わすもので、大まかにいって
第2図中点線で囲った領域Gは緑、領域Yは黄、領域R
は赤、領域■は紫、領域Bは青の色相をとり、各々の領
域の間はその中間色をとる。また、膜厚と色相の関係は
、膜厚が400人ごとの色度を○で40人ごとの色度を
・で示しである。
FIG. 2 shows the relationship between the thickness of the second transparent dielectric film 3 and the color tone.
The color tone of the reflected light when the standard light C defined by C is perpendicularly incident is expressed by chromaticity coordinates. Here, the thickness of the first transparent dielectric thin film 2 is constant for 1000 people. In Figure 2, the chromaticity coordinates are: X is the red component, Y is the green component, 1-(X
-1-Y) represents the blue component; roughly speaking, the area G surrounded by the dotted line in Figure 2 is green, the area Y is yellow, and the area R
is red, area (3) is purple, area B is blue, and the area between each area is an intermediate color. Further, the relationship between film thickness and hue is as follows: chromaticity for each 400 persons is indicated by ○, and chromaticity for each 40 persons is indicated by .

第3図は、第1透明誘電体薄膜2がない場合、即ち、第
2透明誘電体薄膜3の1層のみとした場合の、第2透明
誘電体薄膜3の膜厚と色調との関係を示すものである。
FIG. 3 shows the relationship between the film thickness and color tone of the second transparent dielectric thin film 3 when there is no first transparent dielectric thin film 2, that is, when there is only one layer of the second transparent dielectric thin film 3. It shows.

この第2図と第3図を比較してみると、第2図の色度曲
線の方が第3図の色度曲線に比べてより光源色C点から
離れた軌跡を描いていることがわかる。即ち、本発明実
施例の方が、より濃い色を表現できるのである。これは
、第2透明誘電体薄膜3と第1透明誘電体薄膜2との屈
折率の差が、第2透明誘電体薄膜3と基板ガラス1との
屈折率の差より大きいため、第1透明誘電体薄膜2と第
2透明誘電体薄膜3との境界層でより多くの光を反射し
ており、光の干渉が強くなって色が濃くなっているので
あ。
Comparing Figure 2 and Figure 3, we find that the chromaticity curve in Figure 2 traces a trajectory farther from the light source color point C than the chromaticity curve in Figure 3. Recognize. In other words, the embodiment of the present invention can express darker colors. This is because the difference in refractive index between the second transparent dielectric thin film 3 and the first transparent dielectric thin film 2 is larger than the difference in refractive index between the second transparent dielectric thin film 3 and the substrate glass 1. This is because more light is reflected at the boundary layer between the dielectric thin film 2 and the second transparent dielectric thin film 3, and the light interference becomes stronger and the color becomes darker.

第4図は第2透明誘電体薄膜3の膜厚と明度(人間の視
感反射率)の関係を示したものである。
FIG. 4 shows the relationship between the film thickness and brightness (human visual reflectance) of the second transparent dielectric thin film 3.

この図の様に・視感反射率に波が生じるのは、人間の目
の感度が約5550人の波長に対して最大であり、これ
から離れるに従い低下することに起因する。即ち、人間
の目では緑色の光を最も明るいと感じ、同一強度の赤色
・青色の光を暗いと感じるので、赤色・青色を示ず薄厚
では視感反射率は低下する。
The wave in the luminous reflectance as shown in this figure is due to the fact that the sensitivity of the human eye is maximum at a wavelength of approximately 5,550, and decreases as the distance from this wavelength increases. That is, the human eye perceives green light as the brightest and perceives red and blue light of the same intensity as dark, so if the material does not exhibit red or blue and is thin, the luminous reflectance will decrease.

ところで、反射率の自動車規格値は38%以」二であり
、第4図かられかる様に第2i3明誘電体薄膜3の膜厚
が0〜360人、800〜1530人、2000〜27
50人の範囲であれば自動車規格値を満足している。第
2図からこの膜厚の時に示す色調を見てみると、はとん
ど全ての色調にわたっていることがわかる。つまり、自
動車規格を満しながら、どの様な色調も表現し得る。ま
た、視感反射率は常に60%以下であり、80〜90%
の反射率をもつアルミ蒸着ミラーと比べて十分な防眩効
果を有する。
By the way, the automobile standard value of reflectance is 38% or more, and as shown in FIG.
If it is within the range of 50 people, it satisfies the automobile standard value. If we look at the color tones at this film thickness from FIG. 2, we can see that the color tones cover almost all the tones. In other words, any color tone can be expressed while meeting automotive standards. In addition, the luminous reflectance is always below 60%, and is 80-90%.
It has a sufficient anti-glare effect compared to an aluminum vapor-deposited mirror with a reflectance of .

次に、第2透明誘電体薄膜3の膜厚を800人一定とし
ておいて、第1透明誘電体薄膜2の膜厚を変化させたと
きの色調の変化を第5図に示す。
Next, FIG. 5 shows the change in color tone when the thickness of the first transparent dielectric thin film 2 is changed while keeping the thickness of the second transparent dielectric thin film 3 constant for 800 people.

膜厚によって色の濃淡は変化するが、第2透明誘電体薄
膜3の膜岨を青を示す膜厚(800人)としているので
、色相はどの場合も青であり、あまり変化していない。
The shade of color changes depending on the film thickness, but since the thickness of the second transparent dielectric thin film 3 is set to a film thickness that indicates blue (800 layers), the hue is blue in all cases and does not change much.

このことより、色相は第2透明誘電体薄膜3の光学膜厚
によって決まり、第1透明誘電体薄膜2の影響はほとん
ど受けないことがわかる。この場合は色相は青であるの
で、青を表わすような光の波長をλとすれば、第1透明
誘電体薄股2の膜厚と屈折率の積(光学膜厚nXd)が
λ/4あるいは3・λ/4におよそ等しくなる膜厚で濃
い色が得られている。従って、このような膜厚で第1透
明誘電体薄膜2を形成するのが望ましい。
This shows that the hue is determined by the optical thickness of the second transparent dielectric thin film 3 and is hardly influenced by the first transparent dielectric thin film 2. In this case, the hue is blue, so if the wavelength of light that represents blue is λ, the product of the film thickness and refractive index of the first transparent dielectric thin strip 2 (optical film thickness nXd) is λ/4 Alternatively, a deep color can be obtained with a film thickness approximately equal to 3·λ/4. Therefore, it is desirable to form the first transparent dielectric thin film 2 with such a film thickness.

また、第2透明誘電体薄膜3の膜厚を800人一定とし
、第1透明誘電体薄膜2にフッ化リチウム(L i F
) 、酸化シリコン(Sin2)を用いた場合の色度座
標を第6図に示す。この場合も第5図の場合と同様に第
2透明誘電体薄膜3の膜厚を青を示す膜厚としているの
で、色相はどの場合でも青であるが、屈折率がより小さ
い物質を用いることで、より濃い色が表現できることが
わかる。
In addition, the thickness of the second transparent dielectric thin film 3 was kept constant for 800 people, and lithium fluoride (LiF) was added to the first transparent dielectric thin film 2.
), chromaticity coordinates when using silicon oxide (Sin2) are shown in FIG. In this case as well, as in the case of FIG. 5, the thickness of the second transparent dielectric thin film 3 is set to a film thickness that indicates blue, so the hue is blue in all cases, but a material with a smaller refractive index is used. You can see that it is possible to express darker colors.

尚、第2透明誘電体薄膜3も酸化チタン(Ti02)に
限らず、酸化セリウム(Ce02)、酸化ジルコニウム
(Zr02)、酸化タングステン(W 03 )等、基
板ガラス1より屈折率の大きい物質を用いてよい。
The second transparent dielectric thin film 3 is not limited to titanium oxide (Ti02), but may also be made of a material having a higher refractive index than the substrate glass 1, such as cerium oxide (Ce02), zirconium oxide (Zr02), or tungsten oxide (W03). It's fine.

また、金属膜4にはニッケルークロム合金に限ることな
くチタンやクロム、ニッケルーコバルト合金など、薄膜
とした時の反射率が約50〜70%の金属を用いれば、
防眩効果の高い着色ミラーを得ることができる。
Furthermore, if the metal film 4 is not limited to nickel-chromium alloy, but also titanium, chromium, nickel-cobalt alloy, etc., the reflectance of which is approximately 50 to 70% when formed into a thin film can be used.
A colored mirror with high anti-glare effect can be obtained.

以上説明した様に、本発明の自動車用反射鏡を用いれば
、低コストで製作できると共に、任意の色調、濃さにす
ることができ、眩しさによる運転者の疲労を防止するこ
とができる。
As explained above, by using the automotive reflector of the present invention, it can be manufactured at low cost, and can have any color tone or density, thereby preventing driver fatigue due to glare.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図は第2透
明誘電体薄膜の膜厚と色調との関係を示す図、第3図は
第1透明誘電体薄膜がない場合の第2透明誘電体薄膜の
膜厚と色調との関係を示す図、第4図は第2透明誘電体
′Ws膜の膜厚と人間の視感反射率の関係を示す図、第
5図は第1透明誘電体薄膜の膜厚と色度座標との関係を
示す図、第6図は第1透明誘電体薄膜の材質と色度座標
との関係を示す図である。 1・・・基板ガラス、2・・・第1透明誘電体薄膜、3
・・・第2透明誘電体薄膜、4・・・金属膜。 代理人弁理士゛岡 部 隆 第1図 第2図 第3図 第4図 PIL隊 (入) 第5図 第6図
Figure 1 is a cross-sectional view showing an embodiment of the present invention, Figure 2 is a diagram showing the relationship between the film thickness and color tone of the second transparent dielectric thin film, and Figure 3 is a diagram showing the relationship between the thickness and color tone of the second transparent dielectric thin film. Figure 4 is a diagram showing the relationship between the thickness of the second transparent dielectric thin film and color tone. Figure 4 is a diagram showing the relationship between the thickness of the second transparent dielectric 'Ws film and human visual reflectance. Figure 5 is FIG. 6 is a diagram showing the relationship between the thickness of the first transparent dielectric thin film and the chromaticity coordinates, and FIG. 6 is a diagram showing the relationship between the material of the first transparent dielectric thin film and the chromaticity coordinates. DESCRIPTION OF SYMBOLS 1... Substrate glass, 2... First transparent dielectric thin film, 3
... second transparent dielectric thin film, 4... metal film. Representative patent attorney Takashi Okabe Figure 1 Figure 2 Figure 3 Figure 4 PIL team (entered) Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 基板ガラスと、こ゛の基板ガラス上に形成され、且つこ
の基板ガラスより小さい屈曲率を有する第1透明誘電体
薄膜と、この第1透明誘電薄膜上に形成され、且つ前記
基板ガラスより大きい屈曲率を有する第2透明誘電体薄
膜と、この第2透明誘電体薄膜上に形成される金属膜と
からなる自動車用反射鏡。
a first transparent dielectric thin film formed on the substrate glass and having a smaller curvature than the substrate glass; and a first transparent dielectric thin film formed on the first transparent dielectric thin film and having a larger curvature than the substrate glass. A reflective mirror for an automobile comprising a second transparent dielectric thin film having a second transparent dielectric thin film and a metal film formed on the second transparent dielectric thin film.
JP12384483A 1983-04-11 1983-07-07 Reflection mirror for automobile Pending JPS6015604A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12384483A JPS6015604A (en) 1983-07-07 1983-07-07 Reflection mirror for automobile
US06/902,028 US4673248A (en) 1983-04-11 1986-08-25 Reflecting mirror for an automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12384483A JPS6015604A (en) 1983-07-07 1983-07-07 Reflection mirror for automobile

Publications (1)

Publication Number Publication Date
JPS6015604A true JPS6015604A (en) 1985-01-26

Family

ID=14870786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12384483A Pending JPS6015604A (en) 1983-04-11 1983-07-07 Reflection mirror for automobile

Country Status (1)

Country Link
JP (1) JPS6015604A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177834A2 (en) * 1984-10-01 1986-04-16 Flachglas Aktiengesellschaft Rear view mirror for vehicles, in particular motor vehicles
JPS62113107A (en) * 1985-11-13 1987-05-25 Fujitsu Ltd Light attenuating plate
JPS62258403A (en) * 1986-05-02 1987-11-10 Asahi Chem Ind Co Ltd Plastic mirror
JPS6338902A (en) * 1986-08-01 1988-02-19 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Reflective ability sheet
US4944581A (en) * 1988-09-20 1990-07-31 Olympus Optical Company Limited Rear face reflection mirror of multilayer film for synthetic resin optical parts
US5007710A (en) * 1988-10-31 1991-04-16 Hoya Corporation Multi-layered surface reflecting mirror
WO2005111672A1 (en) * 2004-05-12 2005-11-24 Flabeg Gmbh & Co. Kg Low glare rear-view mirror for vehicles
WO2018030355A1 (en) * 2016-08-09 2018-02-15 日本電気硝子株式会社 Decorative plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975151A (en) * 1972-11-20 1974-07-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975151A (en) * 1972-11-20 1974-07-19

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177834A2 (en) * 1984-10-01 1986-04-16 Flachglas Aktiengesellschaft Rear view mirror for vehicles, in particular motor vehicles
JPS62113107A (en) * 1985-11-13 1987-05-25 Fujitsu Ltd Light attenuating plate
JPH0812281B2 (en) * 1985-11-13 1996-02-07 富士通株式会社 Light attenuator
JPS62258403A (en) * 1986-05-02 1987-11-10 Asahi Chem Ind Co Ltd Plastic mirror
JPS6338902A (en) * 1986-08-01 1988-02-19 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Reflective ability sheet
US4944581A (en) * 1988-09-20 1990-07-31 Olympus Optical Company Limited Rear face reflection mirror of multilayer film for synthetic resin optical parts
US5007710A (en) * 1988-10-31 1991-04-16 Hoya Corporation Multi-layered surface reflecting mirror
WO2005111672A1 (en) * 2004-05-12 2005-11-24 Flabeg Gmbh & Co. Kg Low glare rear-view mirror for vehicles
JP2007537087A (en) * 2004-05-12 2007-12-20 フラベーク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディート ゲゼルシャフト Anti-glare rearview mirror for vehicles
US7887201B2 (en) 2004-05-12 2011-02-15 Flabeg Gmbh & Co. Kg Low glare rear-view mirror for vehicles
WO2018030355A1 (en) * 2016-08-09 2018-02-15 日本電気硝子株式会社 Decorative plate
JPWO2018030355A1 (en) * 2016-08-09 2019-06-13 日本電気硝子株式会社 Decorative plate

Similar Documents

Publication Publication Date Title
US4921331A (en) Multi-layered mirror
JP2719367B2 (en) Multi-layer surface reflector
US4673248A (en) Reflecting mirror for an automobile
US4805989A (en) Multi-layered back reflecting mirror
JP3701826B2 (en) Colored anti-fog mirror
US4955705A (en) Multi-layered back reflecting mirror
EP1108228B1 (en) Partial reflector
JPH05246737A (en) Rearview mirror for vehicle, especially, for motor vehicle
JP5270152B2 (en) Anti-glare rearview mirror for vehicles
JPS6015604A (en) Reflection mirror for automobile
JPH0679092B2 (en) Colored mirror
US5159490A (en) Mirror
JPS59188602A (en) Reflection mirror for car
JPS60212705A (en) Reflection mirror
JP2010506788A (en) Anti-glare mirror face plate and rearview mirror having such anti-glare mirror face plate
JP2891566B2 (en) Anti-glare mirror
JP2719375B2 (en) Multi-layer surface reflector
JP2561947B2 (en) Multilayer back mirror
RU2007119612A (en) DICHROIC MIRROR
JPH02120802A (en) Surface reflecting mirror made of multilayered film
JPS61133902A (en) Reflection mirror for automobile
JP2561757B2 (en) Bronze color mirror
JPH0411001B2 (en)
JPH058401B2 (en)
JPH02309326A (en) Electrochromic mirror