JPS60154140A - Method and apparatus for thermal weight analyzing measurement under high temperature and high pressure atmosphere - Google Patents

Method and apparatus for thermal weight analyzing measurement under high temperature and high pressure atmosphere

Info

Publication number
JPS60154140A
JPS60154140A JP958684A JP958684A JPS60154140A JP S60154140 A JPS60154140 A JP S60154140A JP 958684 A JP958684 A JP 958684A JP 958684 A JP958684 A JP 958684A JP S60154140 A JPS60154140 A JP S60154140A
Authority
JP
Japan
Prior art keywords
temperature
pressure
temp
sample
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP958684A
Other languages
Japanese (ja)
Other versions
JPH0330807B2 (en
Inventor
Takeshi Okuya
猛 奥谷
Yoshinori Nakada
善徳 中田
Shigeru Ueda
成 上田
Yoshihisa Hasegawa
長谷川 義久
Tadashi Yoshida
忠 吉田
Ryoichi Yoshida
諒一 吉田
Shinichi Yokoyama
慎一 横山
Hideo Narita
英夫 成田
Yuusuke Maekawa
前河 涌典
Fujitaro Goto
後藤 藤太郎
Junichi Watanabe
純一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZUKI SHOKO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SUZUKI SHOKO KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZUKI SHOKO KK, Agency of Industrial Science and Technology filed Critical SUZUKI SHOKO KK
Priority to JP958684A priority Critical patent/JPS60154140A/en
Publication of JPS60154140A publication Critical patent/JPS60154140A/en
Publication of JPH0330807B2 publication Critical patent/JPH0330807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To use repeatedly the titled apparatus without corrosion problem by measuring directly the weight variation of a sample accompanied by the reaction and the state variations in a high temp. and high pressure system by using a quartz spring under precise temp. control. CONSTITUTION:The quartz spring 10 is hung down in a main body from the top part, a quartz rod 11, next a sample holder 13 are hung down thereunder. The temp. of the sample part is controlled by a furnace 14 and a program controller 27 up to a prescribed temp., and measurements in a fixed temp. rising rate, fixed temp. lowering rate and fixed temp. are possible. The temp. in the system is measured by a thermocouple 16 inserted into the apparatus main body 9. The reaction occurs under some condition in a gaseous atmosphere, as the result, the weight of the sample in the holder 13 is varied. But the weight variation thereat is measured by reading the position of a quartz marker 11 moved by a displacement of the spring 10 through a high pressure peep hole 12 by using a reading telescope 18, an image sensor 19.

Description

【発明の詳細な説明】 未発1jJは、高温高圧ドの固体−気体反応および超臨
界ガス雰囲気下での固体・液体の状1ル変化(固体→気
体、固体→液体→気体、液体→気体)に伴なう試料の重
量変化をa+1定する装置に関する。
[Detailed description of the invention] Undeveloped 1jJ is a solid-gas reaction at high temperature and high pressure, and a change in state between solid and liquid in a supercritical gas atmosphere (solid → gas, solid → liquid → gas, liquid → gas). This invention relates to a device that determines a+1 the weight change of a sample due to ).

従来、高温高圧下の反応等に伴なう重量変化を1111
1定するに当っては、高温高圧系中に設置された電気天
秤を用いて行われている。電気天秤が実用化される以前
は、高温高圧下での熱重量分析はほとんど行われていな
い。
Conventionally, weight changes due to reactions under high temperature and high pressure were measured using 1111
The determination is carried out using an electric balance installed in a high-temperature, high-pressure system. Before the practical use of electric balances, thermogravimetric analysis under high temperature and pressure was hardly performed.

電気天秤を用いる装置では1重量変化による変位を′屯
磁石に電流を流すことにより生ずる電磁力によってトル
クを生じさせ、これを利用して、元の位置(重量変化が
生じる前)にもどす。この時に必要な電流を電気信号と
して取り出し、変位を変換する方法を用いている。この
場合、電気天秤本体は、高圧系の中に設置され、電気信
号のみを系外に取り出し、記録する方式である。
In devices using electric balances, the displacement caused by a single weight change is returned to the original position (before the weight change occurs) by generating torque by the electromagnetic force generated by passing a current through the magnet. A method is used to extract the current required at this time as an electrical signal and convert the displacement. In this case, the main body of the electric balance is installed in a high-voltage system, and only electrical signals are taken out of the system and recorded.

高圧系中に反応ガスとして腐蝕性ガスを充填する場合(
たとえば酸化鉄の高圧硫化反応 Fe2O3+1−i2
+2H2S+2FeS+3H20)あるいは、反応に伴
なって腐蝕性ガスが生成する場合(たとえば硫化鉄の高
圧水素中での反応 Fe32 +H,、−+FeS+H
7S)は、電気天秤本体の高圧系内の金属部分等を腐蝕
し、長期間あるいは繰り返し使用することは不u(能で
ある。
When filling a high-pressure system with a corrosive gas as a reactive gas (
For example, high-pressure sulfidation reaction of iron oxide Fe2O3+1-i2
+2H2S+2FeS+3H20) or when a corrosive gas is generated as a result of the reaction (e.g. reaction of iron sulfide in high pressure hydrogen Fe32 +H,, -+FeS+H
7S) corrodes the metal parts in the high-pressure system of the electric balance body, making it impossible to use it for a long time or repeatedly.

」二連した電気天秤を用いる他に、光センサを利用した
電気天秤を用いる場合もあるが、腐蝕性カスが関′jす
る場合のトラブルは、同一である。
In addition to using a double electric balance, an electric balance using an optical sensor may also be used, but the problems when corrosive debris is involved are the same.

本発明は高温高圧下で腐蝕性カスを用いたり、あるいは
反応により腐蝕性ガスが副生ずる場合の高温高圧下での
熱重量分析に適している。上記の腐蝕の問題がなく繰り
返し使用−II)能の方法・装置を提供することを目的
とする。
The present invention is suitable for thermogravimetric analysis under high temperature and high pressure using corrosive scum or when corrosive gas is produced as a by-product of the reaction. It is an object of the present invention to provide a method and apparatus that can be used repeatedly without the above-mentioned corrosion problem.

また、超臨界気体中の物性に関する知見は、超臨界気体
による抽出分離技術において特に屯要である。使用され
ている超臨界ガスは主としてエチレン(臨界圧5.03
M P a、臨界温度−8°C)、て−酸化炭素(臨界
圧7.38MPa、臨界温度31°C)、トルエン(臨
界圧4−14−1l、臨界温度319°C)等であり、
温度としては20〜300°C(=J近、圧力としては
50kg/am2以−1の条件が多く用いられる。超臨
界ガス中での相平衡及び物性を調べる場合、温度、圧力
を変化させる必要がある。
Furthermore, knowledge regarding the physical properties of supercritical gases is particularly important in extraction and separation technology using supercritical gases. The supercritical gas used is mainly ethylene (critical pressure 5.03
MPa, critical temperature -8 °C), carbon oxide (critical pressure 7.38 MPa, critical temperature 31 °C), toluene (critical pressure 4-14-1 l, critical temperature 319 °C), etc.
Conditions of temperature of 20 to 300°C (near J) and pressure of 50 kg/am2 or more are often used. When investigating phase equilibrium and physical properties in supercritical gas, it is necessary to change the temperature and pressure. There is.

本発明はその温度、圧力を別個あるいは同時にコントロ
ールできる方法および装置を提供することを目的とする
The object of the present invention is to provide a method and apparatus that can control the temperature and pressure separately or simultaneously.

さらにまた、超臨界ガス状fmを維持するために高圧系
内全体を気体の臨界温度以−にに保持する必要がある。
Furthermore, in order to maintain the supercritical gas-like fm, it is necessary to maintain the entire high-pressure system at a temperature below the critical temperature of the gas.

(例えば系内の一部に臨界温度以下の領域が存在する場
合、超臨界状態は維持できない。)従って、試料の重量
測定部も臨界温度以上の温度となるため電気天秤などの
方式を採用している天秤では測定は不可能である。
(For example, if there is a region below the critical temperature in a part of the system, a supercritical state cannot be maintained.) Therefore, since the sample weight measuring section also reaches a temperature above the critical temperature, a method such as an electric balance is used. It is impossible to measure with a balance that is

本発明は、この高温度の雰囲気でも測定を可能としたも
のである。
The present invention enables measurement even in this high temperature atmosphere.

本発明は、」二記の目的を達成するために、前記特許請
求の範囲記載の構成としたもので、すなわち精害な温度
制御のもとで、石英スプリングを用いて試料の反応およ
び状態変化に伴なう試料の重量変化を、高温高圧系から
直接測定することによって、前記の腐蝕の問題を生じな
い。
In order to achieve the second object, the present invention has the structure described in the claims, that is, under precise temperature control, a quartz spring is used to detect reactions and state changes of a sample. By directly measuring the weight change of the sample due to the change from the high-temperature and high-pressure system, the above-mentioned corrosion problem does not occur.

また、高温高圧雲囲気下での試料の重量変化を石英スプ
リングの変位に変換し、その変位を高圧のぞき窓を通し
て高温高圧系から直接光学的に読み取り測定することに
より温度・圧力を別々にあるいは同時に制御できるもの
で、高温高圧雲囲気ドでの熱重量分析at11 疋手段
として極めて有効適切である。
In addition, temperature and pressure can be measured separately or simultaneously by converting the weight change of a sample under a high-temperature, high-pressure cloud atmosphere into the displacement of a quartz spring, and by optically reading and measuring the displacement directly from the high-temperature, high-pressure system through a high-pressure observation window. Since it can be controlled, it is extremely effective and suitable as a means of thermogravimetric analysis in a high-temperature, high-pressure cloud atmosphere.

次に本発明における装置の実施例を図面につし)て説明
する。
Next, embodiments of the device according to the present invention will be described with reference to the drawings.

9は本発明の主体となる高温高圧熱重量分析装置本体で
ある。この本体中には石英スプリングlOが頂部からつ
り下げられ、その下に石英棒(マーカとして使用)11
、次にサンプルホルダ13がつり下げられている。腐蝕
性ガスなどの雰囲気カスはシリンダ1から圧力調整器2
を経て、コンプレッサ3に送られ、所定の圧力まで昇圧
される。昇圧されたガスは蓄圧器4にためられ、圧力は
自動圧力調整器5により所定圧力までの一定圧に保持さ
れる。次にマスフローメータ6を経て、装置本体へ導入
される。流量はフローコントロールバルブ7・21で調
整される。系内の圧力は圧力伝送器8により測定される
Reference numeral 9 denotes a main body of a high-temperature, high-pressure thermogravimetric analyzer which is the main subject of the present invention. Inside this main body, a quartz spring lO is suspended from the top, and a quartz rod (used as a marker) 11 is placed below it.
, and then the sample holder 13 is suspended. Atmosphere debris such as corrosive gas is removed from cylinder 1 to pressure regulator 2.
The air is then sent to the compressor 3, where it is boosted to a predetermined pressure. The pressurized gas is stored in a pressure accumulator 4, and the pressure is maintained at a constant pressure up to a predetermined pressure by an automatic pressure regulator 5. Next, it passes through a mass flow meter 6 and is introduced into the main body of the apparatus. The flow rate is adjusted by flow control valves 7 and 21. The pressure within the system is measured by a pressure transmitter 8.

石英スプリング10により屯、1.)変化を1llll
 ’dする場合、試料および試料ホルダー13に及はさ
れる浮力を考慮し、必要に応じガスを−に方からド力へ
、あるいは下方から上方へ流す場合もある。装置本体9
内部を通過したカスはドレンセパレータ20を経て減圧
用自動圧力調整器(放圧弁)22を通って系外へ排出さ
れる。
By the quartz spring 10, 1. ) 1llll change
In the case of 'd', the buoyant force exerted on the sample and the sample holder 13 may be taken into consideration, and the gas may be allowed to flow from - to do, or from below to above, as necessary. Device body 9
The scum that has passed through the inside passes through a drain separator 20, an automatic pressure regulator (pressure relief valve) 22 for pressure reduction, and is discharged to the outside of the system.

試料部の温度は所定温度まで炉14およびプログラムコ
ントローラ27によりコントロールされ、一定昇温・一
定降温、定温における測定が可能になっている。系内の
温度は装置本体9内に挿入されている熱電対16で測定
される。
The temperature of the sample section is controlled to a predetermined temperature by the furnace 14 and the program controller 27, making it possible to perform measurements at constant temperature increases, constant temperature decreases, and constant temperatures. The temperature within the system is measured by a thermocouple 16 inserted into the main body 9 of the device.

系内圧力は自動圧力調整器5争22で一定昇圧・一定降
圧、定圧にコントロールされる。系内の温度・圧力・流
量は各々温度測定ユニット28争圧力測定ユニツト23
11流量測定ユニツト24から各A/D変換器25を経
てマイクロコンピュータ26にデータが記憶される。1
5は炉コントロール用熱電対である。
The pressure in the system is controlled to a constant pressure increase, constant pressure drop, and constant pressure by automatic pressure regulators 5 and 22. The temperature, pressure, and flow rate in the system are measured by a temperature measurement unit 28 and a pressure measurement unit 23.
Data is stored in the microcomputer 26 from the flow rate measurement unit 24 via each A/D converter 25. 1
5 is a thermocouple for controlling the furnace.

雰囲気ガスのある条件下で反応が生じ、その結果、サン
プルホルダー13内の試料の重量変化が引きおこされる
が、その時の重量変化の測定は石英スプリングIOの変
位により移動した石英のマーカllの位置を高圧のぞき
窓12を通して読み取り望遠鏡18・イメージセンサ1
9で測定する。
A reaction occurs under the condition of atmospheric gas, and as a result, a change in weight of the sample in the sample holder 13 is caused, but the measurement of the weight change at that time is based on the position of the quartz marker 11 moved by the displacement of the quartz spring IO. is read through the high-pressure peephole 12 through the telescope 18 and image sensor 1.
Measure at 9.

この場合、装置本体9に設置された高圧のぞき窓12は
対角線上に2個おかれ、一方から光源17を用いてマー
カ11の変位を見やすくなるようになっている。得られ
たデータはマイクロコンピュータ26に記憶される。
In this case, two high-voltage viewing windows 12 installed in the main body 9 of the apparatus are placed diagonally, and the displacement of the marker 11 can be easily seen from one side using a light source 17. The obtained data is stored in the microcomputer 26.

次に超臨界ガス中での物質の相平衡あるいは物性を測定
する時の実施例を説明する。超臨界状態下の物性等を測
定しようとする重量既知の試料がサンプルホルダ13に
設置される。ガスを超臨界状態に維持するために、臨界
温度以−ヒの11M度に系全体を維持する必要がある。
Next, an example for measuring the phase equilibrium or physical properties of a substance in a supercritical gas will be described. A sample whose weight is known and whose physical properties under supercritical conditions are to be measured is placed in the sample holder 13 . In order to maintain the gas in a supercritical state, it is necessary to maintain the entire system at 11M degrees above the critical temperature.

そのため装置全体を恒温室中で温度制御を行ったり、超
臨界ガスか流れる容器、配管をリボンヒータ等により、
温度制御することもOf能である。ガスは、常温で気体
の場合はコンプレッサ3で臨界圧以上に昇圧する。
Therefore, the temperature of the entire device is controlled in a constant temperature room, and the container and piping in which supercritical gas flows are controlled using ribbon heaters, etc.
It is also possible to control the temperature. If the gas is a gas at room temperature, the compressor 3 increases the pressure to a critical pressure or higher.

また常温で液化状態にある時は液タンク30から供給さ
れる液体を液送ポンプ29で高圧系〜圧入 (し気化器
31で超臨界ガスとする。 1超臨界ガス下での物性相
平衡の測定は、温度・圧力の制御のもとで行われる。系
全体の温度は恒温室等で制御され、一定A・降温速度下
でも制御されるようになっている。圧力は自動圧力調整
器5・22で一定A、・降圧速度下、あるいは一定圧力
下に制御されるようになでいる。また超臨界ガスの流量
も制御され、流量は□マスフロメータ6で把握される。
In addition, when the liquid is in a liquefied state at room temperature, the liquid supplied from the liquid tank 30 is pumped into the high-pressure system by the liquid feed pump 29 (then converted to supercritical gas in the vaporizer 31. 1) Physical phase equilibrium under supercritical gas Measurements are performed under temperature and pressure control.The temperature of the entire system is controlled in a constant temperature room, etc., and is also controlled under constant A and temperature decreasing rates.The pressure is controlled by an automatic pressure regulator 5. - At 22, it is controlled to be constant A, - to a pressure lowering rate, or to a constant pressure.The flow rate of the supercritical gas is also controlled, and the flow rate is monitored by the □ mass flow meter 6.

特に試料の超臨界ガスにより抽出分離される時の抽出分
離能および抽出分離速度の測定では、従来の方法により
得られていた知見よりも、+13広く効率良く得られる
In particular, in measuring the extraction separation power and extraction separation rate when a sample is extracted and separated using supercritical gas, the results can be obtained more efficiently by +13 than the knowledge obtained by conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のブロック図である。 9は装置本体、10は石英スプリ〉・グ、11は石英棒
マーカ、12は高圧のぞき窓、13はサンプルホルダ、
14は炉、15−16は熱電対、17は光源、18は望
遠鏡、19はイメージセンサ、25はA/D変換器、2
6はマイクロコンピュータ。 4゜+i設−出願人工粟孜術院 第1頁の続き @発明者横山 慎− @発明者成1)英夫 @発明者前河 涌典 @発明者 後藤 藤太部 @発明者渡辺 純− 札幌市豊平区西岡5条14丁目48幡地札幌市豊平区月
寒東2条17T目2番2誇札幌市豊平区月寒東2条1汀
目6番1号札幌市豊平区月寒東2条1′7T目2番4号
川崎市幸区北加瀬143旙地
The drawing is a block diagram of the invention. 9 is the device main body, 10 is a quartz spring, 11 is a quartz rod marker, 12 is a high-pressure sight glass, 13 is a sample holder,
14 is a furnace, 15-16 are thermocouples, 17 is a light source, 18 is a telescope, 19 is an image sensor, 25 is an A/D converter, 2
6 is a microcomputer. 4゜+i Establishment - Continuation of page 1 of the Artificial Millet Surgery Clinic @ Inventor Shin Yokoyama - @ Inventor Sei 1) Hideo @ Inventor Wakunori Maekawa @ Inventor Totabe Goto @ Inventor Jun Watanabe - Toyohira, Sapporo City Nishioka 5-jo 14-48 Hatachi, Sapporo City Toyohira-ku Tsukisamu Higashi 2-jo 17T 2-2 Tsukisamu Higashi 2-jo 1 Tamome 6-1, Toyohira-ku, Sapporo City Tsukisamu Higashi 2-jo 1'7T, Toyohira-ku, Sapporo City 2-4 143 Kitakase, Saiwai-ku, Kawasaki City

Claims (1)

【特許請求の範囲】 (1)精密な温度制御のもとで、石英スプリングを用い
て試料の反応および状態変化に伴なう試料の重!−変化
を、高温高圧系から直接測定することを特色とする高温
高圧雰囲気下での熱重量分析測定方法。 (2)1η温高圧雰囲気ドでの試料の重量変化を石英ス
プリングの変位に変換し、その変位を高圧のぞき窓を通
して光学的に高温高圧系から直接読み取り測定すること
を特徴とする熱重量分析測定方法。 (3)石英スプリングの変化を高圧のぞき窓を通して望
遠鏡で直接読み取り、その望遠鏡にすえつけたイメージ
センサ、マイクロコンピュータにより、自動的に記録す
る特許請求の範囲(2)記載の装置。 (0高温高圧系で通常のガス・腐蝕性ガス・超臨界ガス
の静的あるいはそれらの気体流通下で試料の反応及び状
態変化に伴な月」変化を測定する特許請求の範囲(2)
記載の装置。 (5)高温高圧系で温度あるいは圧力を一定昇降温速度
下、−電昇降圧速度下、定温定圧下で物質の状態、反応
に伴なう重量変化、挙動を測定する特許請求の範囲(2
)記載の装置。
[Claims] (1) Under precise temperature control, a quartz spring is used to measure the weight of the sample as it reacts and changes in state! - A thermogravimetric analysis measurement method in a high-temperature, high-pressure atmosphere, which is characterized by directly measuring changes from a high-temperature, high-pressure system. (2) Thermogravimetric analysis measurement characterized by converting the weight change of the sample in a 1η temperature and high pressure atmosphere into the displacement of a quartz spring, and reading and measuring the displacement optically directly from the high temperature and high pressure system through a high pressure viewing window. Method. (3) The device according to claim (2), in which changes in the quartz spring are directly read with a telescope through a high-pressure peephole, and automatically recorded by an image sensor and a microcomputer installed in the telescope. (2) Claims (2) for measuring changes in the reaction and state of a sample in a high-temperature, high-pressure system under static or flowing normal gas, corrosive gas, or supercritical gas
The device described. (5) Claims that measure the state, weight change, and behavior of substances due to reactions in a high-temperature, high-pressure system under a constant temperature or pressure increase/decrease rate, -electronic increase/decrease rate, or constant temperature and constant pressure (2)
) device described.
JP958684A 1984-01-24 1984-01-24 Method and apparatus for thermal weight analyzing measurement under high temperature and high pressure atmosphere Granted JPS60154140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP958684A JPS60154140A (en) 1984-01-24 1984-01-24 Method and apparatus for thermal weight analyzing measurement under high temperature and high pressure atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP958684A JPS60154140A (en) 1984-01-24 1984-01-24 Method and apparatus for thermal weight analyzing measurement under high temperature and high pressure atmosphere

Publications (2)

Publication Number Publication Date
JPS60154140A true JPS60154140A (en) 1985-08-13
JPH0330807B2 JPH0330807B2 (en) 1991-05-01

Family

ID=11724422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP958684A Granted JPS60154140A (en) 1984-01-24 1984-01-24 Method and apparatus for thermal weight analyzing measurement under high temperature and high pressure atmosphere

Country Status (1)

Country Link
JP (1) JPS60154140A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278470A (en) * 1975-12-24 1977-07-01 Ube Ind Ltd Optical hydrometer
JPS5629718U (en) * 1979-08-14 1981-03-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278470A (en) * 1975-12-24 1977-07-01 Ube Ind Ltd Optical hydrometer
JPS5629718U (en) * 1979-08-14 1981-03-20

Also Published As

Publication number Publication date
JPH0330807B2 (en) 1991-05-01

Similar Documents

Publication Publication Date Title
US5659126A (en) Gas chromatograph techniques for on-line testing of transformer faults
Aiello et al. Determination of hydrogen solubility in lead lithium using sole device
Sagdeev et al. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure
US5788373A (en) Method and apparatus for performing single differential thermal analysis
US2692497A (en) Adsorption isotherm determination
EP3400436B1 (en) Method and system for measuring sulfur solubility in gas
Roder The thermal conductivity of oxygen
US4813283A (en) Density measuring apparatus
US3292417A (en) Thermogravimetric balance
JPS60154140A (en) Method and apparatus for thermal weight analyzing measurement under high temperature and high pressure atmosphere
Badalyan et al. Development of an automated gas adsorption apparatus for the characterization of the surface area, pore size distribution, and density of powdered materials
US3011873A (en) Measurement and control of constituent potentials
US3263491A (en) Vapor pressure monitoring
Brandt et al. Phase Equilibria in Natural Gas Systems. Apparatus with Windowed Cell for 800 PSIG and Temperatures to—320° F.
US3681026A (en) Method and apparatus for determining the carbon activity of fluids
Mrowec et al. A new thermobalance for studying the kinetics of high-temperature sulfidation of metals
Sage et al. Apparatus for determination of volumetric behavior of fluids
Keyes Methods and procedures used in the Massachusetts Institute of Technology program of investigation of the pressures and volumes of water to 460 C. Part I
US3002372A (en) Steam purge indicator method and apparatus
RU2795903C1 (en) Device for controlling concentration of nitric acid
Eiseman et al. Accuracy of the Cutler-Hammer rimeter When Used With Gases
Cherry Determination of Water Vapor
Harris et al. Determination of Traces of Water Vapor in Gases
Pile et al. A precise method for determining the CO2 content of carbonate materials
Mason et al. Measurement of viscosity in the critical region. Ethylene

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term