JPS60154119A - Liquid level measuring device - Google Patents

Liquid level measuring device

Info

Publication number
JPS60154119A
JPS60154119A JP940784A JP940784A JPS60154119A JP S60154119 A JPS60154119 A JP S60154119A JP 940784 A JP940784 A JP 940784A JP 940784 A JP940784 A JP 940784A JP S60154119 A JPS60154119 A JP S60154119A
Authority
JP
Japan
Prior art keywords
liquid level
differential pressure
signal
liquid
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP940784A
Other languages
Japanese (ja)
Inventor
Mitsuaki Kaneda
金田 光昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP940784A priority Critical patent/JPS60154119A/en
Publication of JPS60154119A publication Critical patent/JPS60154119A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the simplicity and reliability of maintenance by measuring the density and level of liquid by using a differential pressure gauge. CONSTITUTION:A liquid level signal H is led out of the differential pressure gauge 13 by introducing atmosphereic pressure in the low pressure side of the differential pressure gauge 13 by powering on a three-way solenoid valve 15 and supplied to a holding circuit through a selection switch 20. The holding circuit 21 holds the liquid level signal H before the three-way solenoid valve 15 is powered off. Once the three-way solenoid valve 15 is powered off, the low pressure side of the differential pressure side receives the hydraulic pressure of a high position corresponding to the passing of piping 16, so pressure H0rho is applied to the high pressure side of the differential pressure gauge 13 and pressure (H0-h)rho is applied to the low pressure side respectively, outputting a differential pressure signal hrho. In this case, (h) is constant, so this signal is used as a concentration signal as it is, and supplied to a holding circuit 22 through the selection switch 20 to hold the density signal rho before the power-on operation starts. Consequently, an actual liquid level signal H0 is outputted from an arithmetic circuit 23.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、密1哀変化を伴なう液体の液位を測定りるに
好適な液位測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a liquid level measuring device suitable for measuring the level of a liquid that is subject to fluctuations.

「発明の技術的背切」 一般に、化学プラン1〜や上下水道等に設置された液槽
内に収納されている液体は、その成分変化、環境変化に
よって密度が経時的に変化する場合が多く、この液位を
差圧計を用いて測定する場合、当該差圧計で測定した液
位と実際の液位との間に液体密度の変化に伴う誤差が生
じてしまう。このため、差圧計で測定した液位をその時
の液体密度に基づいて補正して実際の液位を鋒定する必
要がある。
"Technical violation of the invention" In general, the density of liquids stored in liquid tanks installed in chemical plans 1~ and water and sewage systems often changes over time due to changes in their composition and environmental changes. When this liquid level is measured using a differential pressure gauge, an error occurs between the liquid level measured by the differential pressure gauge and the actual liquid level due to a change in liquid density. Therefore, it is necessary to determine the actual liquid level by correcting the liquid level measured by the differential pressure gauge based on the liquid density at that time.

第1図はこのような密度変化を伴なう液体の液位測定の
従来例を示1M4成図である。第1図にお′いて、1は
液槽で、この液槽1の中には例えば時間経過などにより
密度が変化する液体2が収納されており、当該液槽に設
・ノられている配管(図示せず)を介して注入あるいは
排出されることによりその液位が変動する。このような
液槽1の底面イ1近には、配管6が設番ブられており、
当該配管は差圧計3の高圧側に接続されている。また差
圧側3の低圧側は大気に開放されている。ずなわら、差
圧計3は、その高圧側C液槽底面刊近の液圧を尋人づる
ように設けられており、その出力とじては高圧側に導入
し/j液圧、換言J゛れば液位に応じた信号1」となる
。一方、液槽1には、液体2の密度を測定するための密
度計4が設番プられており、液体2の密度が密度信号ρ
として出力されるようになっている。5は差圧計3の液
位信号ト1と密度計4の密度信号ρとを入力し液体2の
現在密度に応じて実際の液位信号Hoを演算出力する演
算回路である。当該演算回路では、測定開始に際してそ
の差圧計調整時に検出した液体2の初期密度をρ0とり
−ると、次式によって実際液位ト10を演nする。
FIG. 1 is a 1M4 diagram showing a conventional example of liquid level measurement involving such density changes. In Figure 1, 1 is a liquid tank, and this liquid tank 1 stores a liquid 2 whose density changes over time, for example, and the piping installed in the liquid tank. The liquid level is varied by being injected or discharged through (not shown). A pipe 6 is installed near the bottom of the liquid tank 1.
The pipe is connected to the high pressure side of the differential pressure gauge 3. Further, the low pressure side of the differential pressure side 3 is open to the atmosphere. Of course, the differential pressure gauge 3 is installed so as to measure the liquid pressure near the bottom of the C liquid tank on the high pressure side, and its output is introduced into the high pressure side. If so, the signal will be 1, which corresponds to the liquid level. On the other hand, a density meter 4 for measuring the density of the liquid 2 is installed in the liquid tank 1, and the density of the liquid 2 is determined by the density signal ρ.
It is now output as . 5 is an arithmetic circuit which inputs the liquid level signal T1 of the differential pressure gauge 3 and the density signal ρ of the densitometer 4, and calculates and outputs an actual liquid level signal Ho according to the current density of the liquid 2. In this arithmetic circuit, when the initial density of the liquid 2 detected at the time of adjusting the differential pressure gauge at the start of measurement is taken as ρ0, the actual liquid level 10 is calculated by the following equation.

1−1o−ρ/ρ0XI−1 したがっ−C1上記構成のごとく差圧計を用いて液位を
測定り−る場合、液体2の密度に応じて差圧513の液
位信号1−1と実際液位1」0との間には誤差がある。
1-1 o-ρ/ρ0 There is an error between digit 1 and 0.

そのため、畜庶1i14を別途設けて液位測定時の密度
イム号ρを得て、これにより演算回路5によって補正を
1″Jない、密度に応した正(1「な液位信号1−10
をi47るようにしCいる。
Therefore, a stock level signal 1i14 is separately provided to obtain a density value ρ at the time of liquid level measurement, and from this, the arithmetic circuit 5 corrects the liquid level signal 1-10 by 1"J, which is a positive (1") corresponding to the density.
I set it to i47.

[青用技術の問題点」 ところで、上記従来構成によれば、実際液位Hoの測定
に関し差圧計および畜瓜田の2つの検出器が必要である
ため、いずれの検出器が故障しても測定不可能な状態と
なり、また多く検出器を必要とすることにより故障率が
倍増してしよい信頼性の劣化の原因となる。特に、密度
計についでは、プロセスライン中で連続測定りることに
関して現状では不安定要素が多く、且つ故障時等のメン
テナンスに関して一般的に使用頻度の高い差圧計と比べ
て長時間を要するなどから問題がある。
[Problems with blue technology] By the way, according to the above-mentioned conventional configuration, two detectors, a differential pressure gauge and a kakuda, are required to measure the actual liquid level Ho, so even if either detector fails, the measurement will not be possible. In addition, the need for more detectors may double the failure rate and cause reliability deterioration. In particular, with regard to density meters, there are currently many unstable factors in continuous measurement in process lines, and maintenance in the event of a breakdown takes a longer time compared to differential pressure gauges, which are generally used more frequently. There's a problem.

このため、メンテナンス中の測定を確保り−るため、従
来では検出器を2セット設けるなどの不経済な対策が必
要であった。
For this reason, in order to ensure measurement during maintenance, conventionally it has been necessary to take uneconomical measures such as providing two sets of detectors.

[、発明の目的] 本発明は従来の技術の上記問題点を改善りるもので、そ
の目的は、液体の液位を単一の差圧計(゛正確に測定−
することが可能な液位測定装置を提供覆ることにより、
メインテナンスの容易性a3よび信頼性の向上を図るこ
とにある。
[Object of the Invention] The present invention is intended to improve the above-mentioned problems of the prior art, and its purpose is to measure the liquid level with a single differential pressure gauge (accurately measure the liquid level).
By covering the liquid level measuring device that can be
The objective is to improve ease of maintenance a3 and reliability.

[発明の概要] 上記目的を達成するため、本発明は、液槽に収納された
液体の実際液位を、検出した液位に関し当該液体の苦瓜
変化分に基づき補正J−ることで測定リ−る液位測定装
置において、液槽J底面付近の液圧を高11側に導入す
る差圧計と、当該差圧計の低圧側に接続され、当該低圧
側に大気を導入して前記差圧V’lに液位検出を行なわ
ば、あるいは当該低圧側にシ14圧側に比して前記液体
の液面に近い液位の液圧を尋人して前記差圧計に密度検
出を行なりぼる検出切換制御手段とをイ1りる構成とり
”ることにより、密1徒泪を不要としたことを凹旨とす
る。
[Summary of the Invention] In order to achieve the above object, the present invention corrects the actual liquid level of the liquid stored in the liquid tank based on the bitter melon variation of the liquid with respect to the detected liquid level. - In a liquid level measuring device, a differential pressure gauge is connected to the low pressure side of the differential pressure gauge, which introduces the liquid pressure near the bottom of the liquid tank J to the high pressure side, and atmospheric air is introduced into the low pressure side, and the differential pressure V If the liquid level is detected on the low pressure side, or the liquid pressure at a level nearer to the liquid level is detected on the low pressure side than on the 14 pressure side, the density is detected on the differential pressure gauge. By adopting a unique configuration for the switching control means, it is advantageous to eliminate the need for close calls.

し発明の実施例j 第2図【、1本発明による液位測定装置の一実施例を示
り(1が成田(ある。
Embodiment of the Invention FIG. 2 shows an embodiment of the liquid level measuring device according to the present invention (1 is located in Narita).

図に(13いて、10は液4F11c 、その中には密
度変化をI’l′<Cう液体′11が入れられている。
In the figure (13), 10 is a liquid 4F11c, in which is placed a liquid '11 whose density changes I'l'<C.

液槽10の底面イ」近には液体11による液j土をη入
りるための配色12が設りられでおり、この配管12に
差圧側133のII圧側が接続され−Cいる。差圧計1
3の低圧側(ま配管141を通して三方電磁弁15に接
続されている。この三方電磁弁15は、差圧J113の
低圧側に大気を導入するか又は配管16を通して高圧側
より液体11の液面に近い液位の油圧を導入するかの切
換えを行なうもので、通電状態で低圧側を大気に開放し
て差圧計13から液位信号を出力させ、非通電状態で低
圧側と配管16とを接続して差圧計13から両者の差圧
として取得される密度信号を出力させる。そのため、配
管16の他端は、配管12よりも所定距離11だ【ノ高
い位置の液圧を導入するように、液槽10に接続1され
ている。差圧側13の出力は、選択スイッチ20の選択
状態に応じて、当該選択スイッチを介して前記液・位信
号用のボールド回路21あるいは前記密度信号用のホー
ルド回路22に接続されている。さらに、当該ホールド
回路21.22の出力は実際液位を算出−4る演算回路
23に接続されている。すなわち、演算回路23とし−
くは、ホールド回路21および22でホールドされた差
圧計130検出されたそれぞれ液位信号および密度信号
を入力して実際液位を所定の式に基づいC締出する。
Near the bottom of the liquid tank 10, a color scheme 12 is provided for introducing liquid soil from the liquid 11, and the II pressure side of the differential pressure side 133 is connected to this pipe 12. Differential pressure gauge 1
The low pressure side of the liquid 11 is connected to the three-way solenoid valve 15 through a pipe 141.This three-way solenoid valve 15 either introduces the atmosphere into the low pressure side of the differential pressure J113 or controls the level of the liquid 11 from the high pressure side through the pipe 16. This system switches whether to introduce hydraulic pressure at a liquid level close to The connection is made to output a density signal obtained as the differential pressure between the two from the differential pressure gauge 13.Therefore, the other end of the piping 16 is placed at a predetermined distance 11 from the piping 12. , is connected to the liquid tank 10.The output of the differential pressure side 13 is connected to the bold circuit 21 for the liquid/level signal or the density signal via the selection switch 20, depending on the selection state of the selection switch 20. It is connected to a hold circuit 22.Furthermore, the outputs of the hold circuits 21 and 22 are connected to an arithmetic circuit 23 that calculates the actual liquid level.
Specifically, the liquid level signal and density signal detected by the differential pressure gauge 130 held by the hold circuits 21 and 22 are inputted, and the actual liquid level is determined based on a predetermined formula.

一方、上述した構成における三方電磁弁15の弁切換え
、選択スイッチ20の選択切換、ホールド回路21.2
2における信号水−ルドの制御は、測定制御部24によ
って行なわれる。当該測定制御部24は、前記三方電磁
弁15の弁切換を行なう電磁弁切換回路17と、電磁弁
切換回路17への弁切換信号、選択スイッチ20への選
択信号、ボールド回路21および22へのボールド信号
の出力制御を行なうリレー′19と、リレー19による
前。述した各信号の出力制御のタイミングを与えるタイ
マ回路18とを右する。リレー19は、オン時には電磁
弁切換回路17に弁切換信号を出力して前記三方電磁弁
15を導通状態として差圧計13から液位信号を出ツノ
信号を出力させると共に、選択スイッチ20に選択信号
を出力して可動接点をホールド回路21側に接続さぜ当
該液位信号が小−ルド回路21に入力するようにする。
On the other hand, in the configuration described above, the valve switching of the three-way solenoid valve 15, the selection switching of the selection switch 20, and the hold circuit 21.2
The control of the signal water field in step 2 is performed by the measurement control section 24. The measurement control unit 24 includes a solenoid valve switching circuit 17 that switches the three-way solenoid valve 15, a valve switching signal to the solenoid valve switching circuit 17, a selection signal to the selection switch 20, and a selection signal to the bold circuits 21 and 22. Relay '19 which controls the output of the bold signal, and the front by relay '19. The timer circuit 18 provides timing for controlling the output of each of the signals described above. When on, the relay 19 outputs a valve switching signal to the solenoid valve switching circuit 17 to make the three-way solenoid valve 15 conductive, outputting a liquid level signal from the differential pressure gauge 13 and outputting a horn signal, and transmitting a selection signal to the selection switch 20. is output and the movable contact is connected to the hold circuit 21 side so that the liquid level signal is input to the small hold circuit 21.

そして、リレー19は、オン状態からオフ状態に変わる
時には、ホールド回路21にホールド信号を出力してそ
の時点での液位信号をホールドさじる。−h、リレー1
9は、オフ時には、電磁弁切換回路17に弁切換信号を
出力して前記三方電磁弁15を非導通状態として差圧計
13から密度信号を出力させると共に、選択スイッチ2
0に選択信号を出力して可動接点をホールド回路22側
に接続させ前記密度信号がボールド回路22に入力する
ようにする。そして、リレー19は、オフ状態からオフ
状態に変わる時には、ホールド回路22に小−ルド信号
を出力してその時点(゛の密度信号を小−ルドさせる。
When the relay 19 changes from the on state to the off state, it outputs a hold signal to the hold circuit 21 to hold the liquid level signal at that time. -h, relay 1
When OFF, 9 outputs a valve switching signal to the solenoid valve switching circuit 17 to turn the three-way solenoid valve 15 into a non-conducting state and output a density signal from the differential pressure gauge 13, and also outputs a density signal from the differential pressure gauge 13.
0 to connect the movable contact to the hold circuit 22 side so that the density signal is input to the bold circuit 22. When the relay 19 changes from the OFF state to the OFF state, it outputs a small hold signal to the hold circuit 22 to suppress the density signal at that point in time.

演算回路23は、第1図の演算回路と同様の機能を有し
、測定制御部24によって上述した如くボールドされた
液位信号]]と密度信号ρを用いて、演算式、 HO−ρ /ρ o × 11 ( にしたがい、現在密度における実際の液位信号1」oを
出力するようになっている。 1以上のごとき構成で、
−回の液位測定は差圧計13から液位信号Hと密度信号
ρを得ることで行なわれる。
The arithmetic circuit 23 has the same function as the arithmetic circuit shown in FIG. According to ρ o × 11 ( , the actual liquid level signal 1” o at the current density is output.
- times of liquid level measurements are performed by obtaining a liquid level signal H and a density signal ρ from the differential pressure gauge 13.

すなわち、液位信号ト1は、三方電磁弁15を通電し差
圧6113の低圧側に大気を尋人覆ることによって差圧
5+ 13から取出され、選択スイッチ20を介してボ
ールド回路21に与えられる。ボールド回路21は、三
方電磁弁15に対する通電が切れる前に前記液位信号H
をホールドする。三方電磁弁1!5に対する通電が切れ
ることによって、差圧計13の低圧側は配管16を通し
だだ番プ高位置の液圧を受りるので、差圧3113の高
圧側にはl」oρの圧力が、低圧側には(1−1o −
Fl )ρの圧力が人々加わり、差圧信号としで[1ρ
の出力が与えられる。[)は一定であるからこの信号を
そのまま密1良信gとして用いることができ、選択スイ
ッチ20を介してホールド回路22に与えられる。
That is, the liquid level signal T1 is extracted from the differential pressure 5+13 by energizing the three-way solenoid valve 15 to cover the low pressure side of the differential pressure 6113 with the atmosphere, and is given to the bold circuit 21 via the selection switch 20. . The bold circuit 21 receives the liquid level signal H before the energization to the three-way solenoid valve 15 is cut off.
hold. When the power to the three-way solenoid valve 1!5 is cut off, the low pressure side of the differential pressure gauge 13 receives the liquid pressure at the high position across the pipe 16, so that the high pressure side of the differential pressure 3113 has l'oρ. The pressure on the low pressure side is (1-1o -
Fl) ρ pressure is applied, and the differential pressure signal is [1ρ
The output of is given. Since [) is constant, this signal can be used as it is as the signal g, and is applied to the hold circuit 22 via the selection switch 20.

ホールド回路22は液位信号1−1のホールド回路21
と同様に通電が開始される前の密度信号ρをホールドす
る。この結果、演0回路23には、単一の差11泪13
から液位信号1−1と当該液位信号が与えられたときの
液体2の密度信号ρとが入力され、前述の演算式に従っ
て実際の液位信号1−10が出力される。
The hold circuit 22 is the hold circuit 21 for the liquid level signal 1-1.
Similarly, the density signal ρ before energization is started is held. As a result, the performance circuit 23 has a single difference 11 tears 13
The liquid level signal 1-1 and the density signal ρ of the liquid 2 when the liquid level signal is given are inputted from the liquid level signal 1-1, and an actual liquid level signal 1-10 is outputted according to the above-mentioned arithmetic expression.

なお、少なくともタイマ回路18、リレー19、選択ス
イッチ20、ホールド回路21.22および演算回路2
3は、差圧副13の筐体内に収納することか可能であり
、きわめてコンバク1〜に構成することができる。
Note that at least the timer circuit 18, relay 19, selection switch 20, hold circuit 21, 22, and arithmetic circuit 2
3 can be housed in the housing of the differential pressure sub-unit 13, and can be configured to be quite compact.

上記実施例にd3いてはタイマ回路18によって電磁弁
切換回路17およびリレー19を時限制御して液位を測
定づるものについて説明したが、タイマ回路18を設番
プることなく手動にJ、り電磁弁切換回路17およびリ
レー19を操作Jるように構成してもにい。
In the above embodiment, the timer circuit 18 controls the solenoid valve switching circuit 17 and the relay 19 to measure the liquid level. It is also possible to configure solenoid valve switching circuit 17 and relay 19 to be operated.

ざらに、本実施例では液槽を聞方4t’lとしたが、密
閉槽でもよいことは茜うまでもない。
Roughly speaking, in this embodiment, the liquid tank is 4 t'l in size, but it goes without saying that a closed tank may also be used.

[発明の効果コ 以上説明しlごように本発明によれば、油槽に収納され
た液体の実際液位を、検出した液位に関し当該液体の密
度変化分に基づき補正りることe測定する液位測定装置
において、差圧計を用いて密疫d′3よび液体の液位を
測定JるようにしIこので、従来のように密度計を用い
る必要がなく、メインテナンスの容易性および測定の信
頼性の向上を図ることかできる。
[Effects of the Invention] As explained above, according to the present invention, the actual liquid level of the liquid stored in the oil tank is corrected based on the density change of the liquid with respect to the detected liquid level. The liquid level measuring device uses a differential pressure gauge to measure the density and the liquid level.This eliminates the need to use a density meter as in the past, making maintenance easier and easier to measure. It is possible to improve reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は液位測定の従来例を示ず構成図、第2図は本発
明による液位測定装置の一実施例を示−リ47、>成因
である。 10・・・液槽 11・・・液体 13・・・差圧計 15・・・三方電磁弁17・・・電
磁弁切換回路 18・・・タイマ回路 19・・・リレー 20・・・選択スイッチ21.22
・・・ホールド回路 23・・・演算回路 2/I・・・測定制御部 代理人 弁理士 ヨ 好 保 男 第1図
FIG. 1 is a block diagram showing a conventional example of liquid level measurement, and FIG. 2 shows an embodiment of a liquid level measuring device according to the present invention. 10...Liquid tank 11...Liquid 13...Differential pressure gauge 15...Three-way solenoid valve 17...Solenoid valve switching circuit 18...Timer circuit 19...Relay 20...Selection switch 21 .22
...Hold circuit 23...Arithmetic circuit 2/I...Measurement control section agent Patent attorney Yasuo Yoshitaka Figure 1

Claims (1)

【特許請求の範囲】[Claims] 液槽に収納された液体の実液位を、検出した液位に関し
当該液体の密度変化分に基づき補正することで測定Jる
装置にJ3いて、液槽底面(=J近の液圧を高圧側に尋
人する差圧計と、この差圧計の低圧側に接続され、当該
低圧側に大気を導入して前記差圧ム1に水位検出を行な
わせ、あるいは当該低圧側に高圧側に比し゛C前記液体
の液面に近い液位の液圧を導入して前記差圧g1に密度
検出を行なわゼる検出切換制御手段とを有°りることを
特徴とする液位81す定装置fff)。
The actual liquid level of the liquid stored in the liquid tank is corrected based on the density change of the liquid with respect to the detected liquid level. A differential pressure gauge mounted on the side is connected to the low pressure side of this differential pressure gauge, and atmospheric air is introduced into the low pressure side to allow the differential pressure gauge 1 to detect the water level, or the low pressure side is compared to the high pressure side. (C) a detection switching control means for introducing a liquid pressure at a level close to the surface of the liquid and performing density detection on the differential pressure g1; ).
JP940784A 1984-01-24 1984-01-24 Liquid level measuring device Pending JPS60154119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP940784A JPS60154119A (en) 1984-01-24 1984-01-24 Liquid level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP940784A JPS60154119A (en) 1984-01-24 1984-01-24 Liquid level measuring device

Publications (1)

Publication Number Publication Date
JPS60154119A true JPS60154119A (en) 1985-08-13

Family

ID=11719552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP940784A Pending JPS60154119A (en) 1984-01-24 1984-01-24 Liquid level measuring device

Country Status (1)

Country Link
JP (1) JPS60154119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147320A1 (en) * 2008-06-06 2009-12-10 Sita France Device for monitoring the fuel level in a tank of a vehicle
CN103808449A (en) * 2012-11-13 2014-05-21 北京华德创业环保设备有限公司 Mechanism for measuring micro differential pressure of pressure generation system and protecting micro differential pressure sampling measuring instrument
CN103837208A (en) * 2014-03-25 2014-06-04 曹爔瑜 High-position pool water level measuring device and automatic water pumping system
CN105299462A (en) * 2015-11-24 2016-02-03 安徽万瑞冷电科技有限公司 High-precision liquid nitrogen liquid-level measurement system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147320A1 (en) * 2008-06-06 2009-12-10 Sita France Device for monitoring the fuel level in a tank of a vehicle
CN103808449A (en) * 2012-11-13 2014-05-21 北京华德创业环保设备有限公司 Mechanism for measuring micro differential pressure of pressure generation system and protecting micro differential pressure sampling measuring instrument
CN103837208A (en) * 2014-03-25 2014-06-04 曹爔瑜 High-position pool water level measuring device and automatic water pumping system
CN105299462A (en) * 2015-11-24 2016-02-03 安徽万瑞冷电科技有限公司 High-precision liquid nitrogen liquid-level measurement system

Similar Documents

Publication Publication Date Title
US3509767A (en) Manometric apparatus
US6391169B1 (en) Production system of electrolyzed water
JPS5535181A (en) Air fuel ratio control device
US7481094B2 (en) Gas sensor control unit
JPS60154119A (en) Liquid level measuring device
US4204422A (en) Pressure measuring device
US3765436A (en) Control device for two metallic salt components in electroplating baths
KR970707430A (en) Vehicle load measuring device
JPS6311827A (en) Zero point corrector for differential manometer
JP7308732B2 (en) Submerged recovery device and submerged recovery method
JPS6331044B2 (en)
SU954832A1 (en) Device for detecting leakage of gas from an article
JPS5721100A (en) X-ray generator
JPH08219119A (en) Equipment operation monitor
US3150525A (en) Pressure indicating device
KR200211002Y1 (en) Automatic control device with bubble level clogging prevention function
SU569887A1 (en) Pressure gauge
SU1024359A1 (en) Apparatus for measuring draught
JPH0222666Y2 (en)
RU2092795C1 (en) Gear for oil metering
JPH03242515A (en) Differential pressure transmitting apparatus
SU445868A1 (en) Installation for calibration of pressure alarms
SU1100579A1 (en) Device for measuring and checking resistance of electric network insulation
SU789322A1 (en) Device for checking protection of ships from electro-erosion
SU845012A1 (en) Electromagnetic flowmeter