JPS60153943A - Metal component-carbon fiber composite - Google Patents

Metal component-carbon fiber composite

Info

Publication number
JPS60153943A
JPS60153943A JP59008412A JP841284A JPS60153943A JP S60153943 A JPS60153943 A JP S60153943A JP 59008412 A JP59008412 A JP 59008412A JP 841284 A JP841284 A JP 841284A JP S60153943 A JPS60153943 A JP S60153943A
Authority
JP
Japan
Prior art keywords
metal component
carbon fiber
metal
fiber
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008412A
Other languages
Japanese (ja)
Inventor
Kenzo Fukuda
福田 健三
Shoji Yamane
山根 祥司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toray Industries Inc
Original Assignee
Agency of Industrial Science and Technology
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toray Industries Inc filed Critical Agency of Industrial Science and Technology
Priority to JP59008412A priority Critical patent/JPS60153943A/en
Publication of JPS60153943A publication Critical patent/JPS60153943A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To enhance the reproducibility or life of a catalyst, by supporting a metal component by a carbon fiber in an uniformly dispersed state. CONSTITUTION:A metal compound being a stock material of a metal component is dissolved in a spinning stock solution of an acrylic fiber and said spinning stock solution is subsequently spun. The fiber having the metal component deposited thereto is heated in an oxidative atmosphere such as air to be converted to an oxidized fiber. This oxidized fiber is heated to a high temp. in an inert atmosphere such as N2, Ar or He and carbonized.

Description

【発明の詳細な説明】 本発明は金属成分を炭素繊維に担持させてなる複合体に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite body in which a metal component is supported on carbon fibers.

従来、炭素繊維に金属成分を担持させた複合体としては
、例えば炭素繊維に触媒能を有する金属成分を含浸、付
着させ、得られた繊維を触媒として使用することが知ら
れており、このような活性炭素繊維の製造法も、例えば
特公昭54−2297 、特公昭55−104910お
よび特開昭56−50107号公報により公知である。
Conventionally, as a composite material in which a metal component is supported on carbon fiber, it is known that, for example, carbon fiber is impregnated with a metal component having catalytic ability and then adhered thereto, and the resulting fiber is used as a catalyst. Methods for producing activated carbon fibers are also known, for example, from Japanese Patent Publication No. 54-2297, Japanese Patent Publication No. 55-104910 and Japanese Patent Application Laid-Open No. 56-50107.

しかしながら、かかる従来の方法で製造された複合体は
、活性成分を担体に均一に分散させることが困難であり
、また担体の製造条件や活性成分の担持条件等が厳しく
、従って得られた複合体触媒の再現性や寿命等に問題が
あった。
However, in the composites produced by such conventional methods, it is difficult to uniformly disperse the active ingredient in the carrier, and the manufacturing conditions for the carrier and the conditions for supporting the active ingredient are strict, so the composites obtained There were problems with the reproducibility and lifespan of the catalyst.

ところで、CO+H2混合ガスから炭化水素を製造する
方法としては、フィッシャー、トロプシュ合成法が知ら
れており、現在南ア共和国で工業的規模で操業されてい
る。
Incidentally, the Fischer-Tropsch synthesis method is known as a method for producing hydrocarbons from a CO+H2 mixed gas, and is currently being operated on an industrial scale in the Republic of South Africa.

そして、かかる混合ガスから低級オレフィンの製造を目
的にする場合の触媒としては、代表的には西ドイツ、ル
ールヒエミー社(Ru l+ r c h e m1e
)の鉄合金触媒、例えばFe −V −ZnO−に20
等があり、エチレン、プロピレン等低級オレフィンが高
い選択性で得られている。しかしながら、この触媒は再
現性に問題があり、かならずしも定常的な結果が得られ
にくい問題点が有った。
Catalysts for producing lower olefins from such mixed gases are typically produced by Ruhrchemy in West Germany.
) iron alloy catalyst, e.g. Fe-V-ZnO-20
etc., and lower olefins such as ethylene and propylene are obtained with high selectivity. However, this catalyst has a problem in reproducibility, and it is difficult to obtain consistent results.

そこで本発明はかかる現状に鑑みてなされたものであり
、製造方法が簡単であり、かつ一体の複合系として製造
されるので、金属成分の分散を均一化することができ、
また金属成分の分散度や粒子径の制御も容易であり、金
属成分として、例えば触媒能を有する金属を用いた場合
には、触媒の再現性や寿命等の問題点を根本的に解決す
ることができ、かつCO+H2混合ガスからエチレン、
プロピレン等の低級オレフィンを高選択率で得ることが
できると共に、メタンの生成率を低水準に保つことがで
きる等の特長を有するものである。
Therefore, the present invention was made in view of the current situation, and since the manufacturing method is simple and it is manufactured as an integrated composite system, the dispersion of metal components can be made uniform.
In addition, it is easy to control the degree of dispersion and particle size of the metal component, and when a metal with catalytic ability is used as the metal component, problems such as reproducibility and life of the catalyst can be fundamentally solved. and ethylene from CO+H2 mixed gas,
It has the advantage of being able to obtain lower olefins such as propylene with high selectivity, and also being able to keep the production rate of methane at a low level.

すなわち、本発明の金属成分−炭素繊維複合体は、金属
成分を炭素繊維に複合、一体化させ、かつ金属成分を炭
素繊維の内外層全体に均一に分散させたことを特徴とす
るものである。
That is, the metal component-carbon fiber composite of the present invention is characterized in that the metal component is composited and integrated with the carbon fiber, and the metal component is uniformly dispersed throughout the inner and outer layers of the carbon fiber. .

本発明の複合体は、炭素繊維上に金属成分が分散され、
担持されている。
The composite of the present invention has a metal component dispersed on carbon fibers,
It is carried.

本発明において用いる金属成分としては、例えば従来、
上記混合ガスからの炭化水素製造に用いた触媒成分を総
て用いることができ、鉄、コバルト、ニッケル、ロジウ
ム、パラジウム、白金、チタン、ジルコニウム、バナジ
ウム、モリブデン等を挙げることができる。金属成分の
含有率は、後述する本発明の複合体の用途や、その製造
方法に依存し、例えば後述する金属成分の原料となる金
属化合物の微粒子をアクリル繊維の紡糸原液中に分散さ
せる製造方法を採用すれば、金属化合物のアクリル繊維
紡糸原液への分散可能な範囲に応じて、決定することが
できる。
As the metal component used in the present invention, for example, conventionally,
All of the catalyst components used for producing hydrocarbons from the above-mentioned mixed gas can be used, and include iron, cobalt, nickel, rhodium, palladium, platinum, titanium, zirconium, vanadium, molybdenum, and the like. The content of the metal component depends on the use of the composite of the present invention, which will be described later, and the manufacturing method thereof. For example, the manufacturing method in which fine particles of a metal compound, which will be a raw material for the metal component, are dispersed in an acrylic fiber spinning dope, which will be described later. If adopted, it can be determined depending on the dispersibility range of the metal compound into the acrylic fiber spinning dope.

また、アクリル繊維の紡糸原液に、金属成分の原料とな
る金属化合物を溶解させる製造方法を採用すれば、金属
化合物の溶解度の範囲内において金属成分の含有率を適
宜選択することができる。
Furthermore, if a manufacturing method is adopted in which a metal compound serving as a raw material for the metal component is dissolved in the acrylic fiber spinning dope, the content of the metal component can be appropriately selected within the solubility range of the metal compound.

あるいは、炭素繊維の原料として、アクリル系共重合体
の共重合成分として金属成分がイオン結合、錯塩、錯体
などの形で結合された化合物を用いたアクリル系繊維を
用いる場合には、該共重合成分の含有量に応じて、金属
成分の含有率を適宜、選択することができる。
Alternatively, when using an acrylic fiber containing a compound in which a metal component is bonded in the form of an ionic bond, a complex salt, a complex, etc. as a copolymerization component of an acrylic copolymer as a raw material for carbon fiber, the copolymer The content rate of the metal component can be appropriately selected depending on the content of the component.

本発明の金属成分−炭素繊維複合体は、下記のようにし
て製造される。
The metal component-carbon fiber composite of the present invention is manufactured as follows.

(1)アクリル繊維の紡糸原液に、金属成分の原料とな
る金属化合物を熔解させたのち、該紡糸原液を紡糸して
得られる、金属化合物が均一に分散したアクリル繊維を
用いる方法。
(1) A method using acrylic fibers in which a metal compound is uniformly dispersed, which is obtained by melting a metal compound, which is a raw material for a metal component, in a spinning dope for acrylic fibers, and then spinning the spinning dope.

(2)アクリル繊維の紡糸原液に、金属化合物を分散さ
せたのち、該紡糸原液を紡糸して得られる、金属化合物
が均一に分散したアクリル繊維を用いる方法。
(2) A method using acrylic fibers in which metal compounds are uniformly dispersed, which is obtained by dispersing a metal compound in a spinning solution for acrylic fibers and then spinning the spinning solution.

(3)アクリル系共重合体の共重合成分として金属成分
が、イオン結合、錯塩、錯体などの形で結合された化合
物を用い、この化合物を共重合したアクリル系共重合体
からなる繊維を用いる方法。
(3) A compound in which a metal component is bound in the form of an ionic bond, a complex salt, a complex, etc. is used as a copolymerization component of the acrylic copolymer, and a fiber made of an acrylic copolymer that is copolymerized with this compound is used. Method.

(1)の方法を金属化合物が鉄化合物の場合を例にとり
説明すれば、アクリル繊維の紡糸原液中にトリスアセチ
ルアセトナト鉄(III)Fe(CII3COCHCO
CH3)3 を熔解さセテ均一のン容液を製造する。
To explain method (1) using an example in which the metal compound is an iron compound, trisacetylacetonatoiron(III)Fe (CII3COCHCO) is added to the spinning dope for acrylic fiber.
CH3)3 is melted to produce a homogeneous solution.

この溶液を通禽のアクリル繊維の紡糸方法、すなわち湿
式、乾式および乾・湿式紡糸方法に従って凝固浴中で紡
糸し、トリスアセチルアセトナト鉄が均一に分散したア
クリル繊維を製造する。 トリスアセチルアセトナト鉄
(、l[[)は、凝固浴中で下記反応により水酸化鉄(
III)として繊維中に沈着される。
This solution is spun in a coagulation bath according to the methods for spinning acrylic fibers, ie, wet, dry, and dry/wet spinning methods, to produce acrylic fibers in which iron trisacetylacetonate is uniformly dispersed. Trisacetylacetonatoiron (, l [[) is converted into iron hydroxide (iron hydroxide (
III) is deposited in the fiber.

Fe(CH3COCHCOCH3)3 + 3NaOH
→Fe (OH)3 + 3CH3COCHCOCH3
Naついで、この水酸化鉄(I[[)が沈着した繊維を
通常の炭素繊維の製造方法に従い、前記繊維を空気等の
酸化性雰囲気中で加熱して、該繊維を酸化繊維に転換し
、iMられた酸化繊維を窒素アルゴン、ヘリウム等の不
活性雰囲気中でより高温に加熱して炭化すると、金属成
分(通常では金属の酸化物)が炭素繊維に複合、一体化
された本発明の金属成分−炭素繊維複合体が得られる。
Fe(CH3COCHCOCH3)3 + 3NaOH
→Fe (OH)3 + 3CH3COCHCOCH3
Next, the fibers on which the iron hydroxide (I [ When the iM oxidized fibers are heated to a higher temperature and carbonized in an inert atmosphere such as nitrogen, argon, helium, etc., the metal of the present invention is formed in which the metal component (usually a metal oxide) is composited and integrated with the carbon fiber. A component-carbon fiber composite is obtained.

さらに、前記金属成分−炭素繊維複合体は、公知の活性
炭素繊維の製造法に従って、水蒸気や炭酸ガス中で処理
して該複合体を賦活処理してもよく、この場合、複合体
の表面積が著しく増大するので、例えば触媒としての性
能を大きくすることができる。
Furthermore, the metal component-carbon fiber composite may be activated by treating it in water vapor or carbon dioxide according to a known method for producing activated carbon fibers. In this case, the surface area of the composite may be Since the amount increases significantly, the performance as a catalyst can be increased, for example.

炭化温度は特に限定されるものではなく、通常の炭素繊
維の炭化条件をそのまま採用することができ、たとえば
1000℃である。
The carbonization temperature is not particularly limited, and ordinary carbonization conditions for carbon fibers can be used as they are, for example, 1000°C.

この炭化により、水酸化鉄(III)はFe2O3に変
化し、このFe2O3が金属成分として炭素繊維に分散
していると考えられる。
Due to this carbonization, iron (III) hydroxide changes to Fe2O3, and it is thought that this Fe2O3 is dispersed in the carbon fiber as a metal component.

金属化合物がアクリル繊維の紡糸原液に不溶の場合には
、前記(2)の方法により、本発明の複合体を製造する
ことができる。
When the metal compound is insoluble in the spinning dope for acrylic fibers, the composite of the present invention can be produced by the method (2) above.

すなわち、原料の金属化合物を0.5μ以下の微粒子に
粉砕し、これを紡糸下原液に均一に分散1u濁させた後
に紡糸し、ついでこれを(1〉の方法と同様にして炭化
すれば本発明の複合体を得ることができる。
That is, if the metal compound as a raw material is pulverized into fine particles of 0.5μ or less, and this is uniformly dispersed in the spinning stock solution to make it cloudy, it is spun, and then this is carbonized in the same manner as in method (1). An inventive complex can be obtained.

この場合にも金属化合物は金属酸化物に変化して炭素繊
維に担持されていると考えられる。
In this case as well, it is thought that the metal compound is changed into a metal oxide and supported on the carbon fibers.

このようにして製造された本発明の金属成分−炭素繊維
複合体は、炭素繊維に金属成分が均一に分散、担持され
た繊維状であり、使用に際しては繊維状のままで用いて
もよいし、クロス状、フェルト状、その他自在に加工し
た形状で使用することもできる。
The metal component-carbon fiber composite of the present invention produced in this way is in the form of a fiber in which the metal component is uniformly dispersed and supported on the carbon fibers, and may be used as it is in the form of a fiber. It can also be used in shapes such as cross, felt, and other freely processed shapes.

以上述べたように、本発明の金属成分−炭素繊維複合体
は、製造に際して炭素繊維製造用の原料繊維の更に原料
となる繊維紡糸原液中に原料金属化合物を溶解、或いは
分散させたのらに紡糸し、あるいは金属成分がイオン結
合、錯塩錯体等の形で結合された共重合成分を共重合さ
せたアクリロニトリル系共重合体繊維を原料とするので
、金属成分の分散を容易に均一化することができる。
As described above, the metal component-carbon fiber composite of the present invention can be produced by dissolving or dispersing the raw metal compound in the fiber spinning dope, which is the raw material for the raw material fiber for producing carbon fibers. Since the raw material is acrylonitrile copolymer fibers that are spun or copolymerized with copolymerized components in which metal components are bound in the form of ionic bonds, complex salt complexes, etc., the dispersion of metal components can be easily uniformized. I can do it.

また、従来のアクリル繊維の製造条件や炭素繊維の製造
条件に従い、紡糸条件や原料繊維の炭素化条件を制御す
ることにより、金属成分の分散度や炭素繊維に担持され
る金属成分の粒子径を容易に制御することができる。
In addition, by controlling the spinning conditions and carbonization conditions of raw material fibers according to conventional acrylic fiber manufacturing conditions and carbon fiber manufacturing conditions, we can control the degree of dispersion of metal components and the particle size of metal components supported on carbon fibers. Can be easily controlled.

そして本発明によれば、炭素繊維製造用原糸紡糸原液中
に均一に溶解もしくは分散することができる総ての金属
化合物で、適当な炭化条件下で揮発、逸散することなく
、最終的に炭素繊維マトリックス中に分散、残留するこ
とができるものは本発明にかかる複合体が可能である。
According to the present invention, all the metal compounds that can be uniformly dissolved or dispersed in the raw fiber spinning dope for carbon fiber production, without volatilizing or escaping under appropriate carbonization conditions, can finally be dissolved or dispersed. The composite according to the present invention can be made of materials that can be dispersed and remain in the carbon fiber matrix.

従って本発明の複合体は、例えば触媒として用いたとき
には従来の触媒にみられた再現性や寿命の問題を容易に
解決することができる。
Therefore, when the composite of the present invention is used, for example, as a catalyst, it can easily solve the problems of reproducibility and lifespan seen in conventional catalysts.

更に本発明の複合体は、上記のようにその製造方法が簡
単であり、特別に厳しい製造条件上の制限もなく、複合
体製造の経済性を極めて有利にすることができる。
Furthermore, the composite of the present invention can be manufactured by a simple method as described above, and there are no particularly severe restrictions on manufacturing conditions, making the composite manufacturing economically advantageous.

以下に本発明の複合体の用途を述べる。The uses of the composite of the present invention will be described below.

A6金金属分が鉄系の場合には、CO+H2混合ガスか
らの炭化水素製造に、好適に使用することができ、02
〜C4オレフィン類の生成を高めメタンの生成量を低下
させることができ、02〜C4オレフィン類の製造用触
媒として好適である。
When the A6 gold metal content is iron-based, it can be suitably used for hydrocarbon production from CO + H2 mixed gas, and 02
It can increase the production of ~C4 olefins and reduce the amount of methane produced, and is suitable as a catalyst for producing 02~C4 olefins.

又、金属成分が白金属金属であれば、有機化合物の不飽
和結合の水素化、或いは飽和炭化水素の脱水素用触媒と
して使用でき、ニッケル系複合体はカルボニル化合物、
フェノール、ニトリル等の水素化触媒として、硫化ニッ
ケル系複合体は硫黄化合物の水素化分解触媒や、ジオレ
フィンのモノオレフィンへの部分水素化触媒等として使
用することができる。
In addition, if the metal component is a platinum metal, it can be used as a catalyst for hydrogenation of unsaturated bonds in organic compounds or dehydrogenation of saturated hydrocarbons.
As a hydrogenation catalyst for phenol, nitrile, etc., the nickel sulfide-based composite can be used as a catalyst for hydrogenolysis of sulfur compounds, a catalyst for partial hydrogenation of diolefins to monoolefins, and the like.

B9本発明の複合体は、有機電極反応用の電極材として
使用することができる。
B9 The composite of the present invention can be used as an electrode material for organic electrode reactions.

例えば、下記のような電極還元反応に用いることができ
る。
For example, it can be used in the following electrode reduction reaction.

合液を用い、カソード(還元反応側電極)に本発明の白
金複合体が用いられる。
A mixed solution is used, and the platinum complex of the present invention is used for the cathode (reduction reaction side electrode).

アノード室とカソード室間をグラスフィルター等の角膜
で仕切り、カソード室にp−ニトロソアニリン誘導体を
供給し、適当な電解条件下で反応させると、p−フェニ
レンジアミン誘導体を得ることができる。
A p-phenylenediamine derivative can be obtained by partitioning an anode chamber and a cathode chamber with a cornea such as a glass filter, supplying a p-nitrosoaniline derivative to the cathode chamber, and allowing the reaction to occur under appropriate electrolytic conditions.

得られたp−フェニレンジアミン誘導体は、感光剤の原
料として利用できる。
The obtained p-phenylenediamine derivative can be used as a raw material for a photosensitizer.

C8また、電解酸化反応の電極としても利用できる。C8 can also be used as an electrode for electrolytic oxidation reactions.

に本発明にかかる、例えば白金−炭素繊維複合体を用い
る。
For example, a platinum-carbon fiber composite according to the present invention is used.

以上、B、およびC0のように、有機電極反応用電極材
として金属成分−炭素繊維複合体を用いることの利点は
、通常の炭素材を担体として含浸等の方法により金属成
分を担持せしめた電極に比べて、金属成分が炭素繊維中
に均一に分散しているため、金属成分が炭素繊維に強く
固定されていて、電解質溶液中へ溶解、損耗しにくい点
にある。更には、電流効率等、電極反応上の条件を最適
化するための電極を得るに当って複合体自体の調整条件
を巾広く制御するごとにより、金属成分の分散度、粒径
等を巾広く制御することができ、最適電極材を容易に見
出すことができる。
As mentioned above, as shown in B and C0, the advantage of using a metal component-carbon fiber composite as an electrode material for organic electrode reaction is that the metal component can be supported on the electrode by a method such as impregnation using a normal carbon material as a carrier. Compared to carbon fibers, the metal components are uniformly dispersed in the carbon fibers, so the metal components are strongly fixed to the carbon fibers and are less likely to be dissolved in the electrolyte solution or worn out. Furthermore, by widely controlling the adjustment conditions of the composite itself to obtain an electrode to optimize conditions for electrode reactions such as current efficiency, it is possible to widely control the degree of dispersion of metal components, particle size, etc. control, and the optimum electrode material can be easily found.

D、センサー用素材への応用 表面反応型ガスセンサーは、例えばFe O焼結体を素
子とした場合、次のように検知ガス中の還元性ガスとF
e Oとの表面反応を利用し、焼結体の電気伝導度、或
いは磁性変化(インダクタンス変化で検出)を検出して
、対象とする還元性ガス(−酸化炭素、メタン、プロパ
ン等)濃度を検知する。
D. Application to sensor materials For example, when a surface reaction type gas sensor uses a FeO sintered body as an element, the reducing gas in the detection gas and F
e Utilizing the surface reaction with O, the electrical conductivity or magnetic change (detected by inductance change) of the sintered body is detected, and the target reducing gas (-carbon oxide, methane, propane, etc.) concentration can be determined. Detect.

又、表面吸着型センサーでは、5n02、ZnO等を素
子として、電子給与性ガスの吸着による電気伝導度の変
化の検出を原理としている。
In addition, the surface adsorption type sensor uses 5n02, ZnO, etc. as an element and detects a change in electrical conductivity due to adsorption of an electron-donating gas.

これらセンサーの場合、ガスに対する選択性や結晶粒子
の成長等に起因する性能の経時変化などの問題があると
云われている。
In the case of these sensors, it is said that there are problems such as changes in performance over time due to selectivity to gas, growth of crystal particles, etc.

そこで、これら既知センサーに用いられている酸化物半
導体の焼結体の代りに、本発明の複合体を用いることに
より、これらの問題を改善できる可能性がある。
Therefore, it is possible that these problems can be improved by using the composite of the present invention instead of the sintered oxide semiconductor used in these known sensors.

E、イオン交換膜への応用 本発明の金属成分−炭素繊維複合体は、炭素繊維のみか
らなるマトリックスに比べてイオン交換液との新和性が
良好であり、従って安定してイオン交換液を保持するこ
とができる。
E. Application to ion exchange membranes The metal component-carbon fiber composite of the present invention has better compatibility with ion exchange fluids than a matrix consisting only of carbon fibers, and therefore can stably absorb ion exchange fluids. can be retained.

そして、この種のイオン交換膜は、例えば金属成分−炭
素繊維複合体を一定の空隙を有する織布、或いはフェル
ト等の状態に加工し、これに適当なイオン交換液を含浸
、保持させることにより、製作できる。
This type of ion exchange membrane is produced by, for example, processing a metal component-carbon fiber composite into a woven fabric or felt having certain voids, and impregnating and retaining a suitable ion exchange liquid into this. , can be produced.

得られたイオン交換膜は、固体イオン交換膜型イオンセ
ンサーとして応用することができる。
The obtained ion exchange membrane can be applied as a solid ion exchange membrane type ion sensor.

F、その他の用途 炭素繊維中に、磁性材や誘電材となる化合物を含有、分
散させた複合体は、そのまま磁性、或いは誘電特性上、
新規な性能を発揮することが期待できる。
F. Other uses Composites containing and dispersing compounds that serve as magnetic materials or dielectric materials in carbon fibers have magnetic or dielectric properties.
It is expected that new performance will be demonstrated.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

実施例1 トリスアセチルアセトナト鉄(III)4gをジメチル
スルホキシド(以下、DMSOと略記する)45ccに
熔解し、この溶液をアクリル酸1.5モル%を含むアク
リロニトリル系共重合体の紡糸原液(アクリロニトリル
共重合体29g / DNS080cc)に添加して均
一に熔解させた。
Example 1 4 g of trisacetylacetonate iron (III) was dissolved in 45 cc of dimethyl sulfoxide (hereinafter abbreviated as DMSO), and this solution was mixed with a spinning stock solution of an acrylonitrile copolymer containing 1.5 mol% of acrylic acid (acrylonitrile). (29g of copolymer/080cc of DNS) and uniformly melted.

この原液を、通常のアクリル繊維の紡糸方法に従って、
NaOH水溶液凝固浴中で擬態させた。 すると、トリ
スアセチルアセトナト鉄(■)は前記反応式に従って分
解し、Fe (OH)3としてアクリル繊維中に沈着し
た。この繊維を通常の炭素繊維製造条件に従い1000
℃で炭化させて、鉄成分(Fe203と推定させる)−
炭素繊維複合体を得た。得られた金属成分−炭素繊維複
合体の性状の一例を下記に示す。
This stock solution is processed according to the usual acrylic fiber spinning method.
Mimulation was carried out in an aqueous NaOH coagulation bath. Then, iron trisacetylacetonate (■) decomposed according to the above reaction formula and was deposited in the acrylic fiber as Fe (OH)3. This fiber was processed under normal carbon fiber manufacturing conditions.
Carbonized at ℃ to produce iron component (estimated to be Fe203) -
A carbon fiber composite was obtained. An example of the properties of the obtained metal component-carbon fiber composite is shown below.

目付’ 300 mg/ m 5 xi 断面積: 5.3X10 /単糸 フィラメント数: 3200本 強度’ 120 kg/nun2 弾性率: 20ton 7mm2 鉄含有率: 鉄原子として3.8重量%また、鉄成分の
粒度分布を図に示す。
Fabric weight: 300 mg/m 5 xi Cross-sectional area: 5.3X10 / Number of single filaments: 3200 Strength: 120 kg/nun2 Modulus of elasticity: 20 tons 7 mm2 Iron content: 3.8% by weight as iron atoms The particle size distribution is shown in the figure.

実施例2 Rho(GO>+eはDMSOおよび水に難溶なので、
これを0.5μ以下に微粉砕してアクリル繊維の紡糸原
液中に分散さゼ、十分に混合した後に凝固浴中で紡糸し
、次いで通電の炭素繊維製造方法に従って炭化した。
Example 2 Rho(GO>+e is poorly soluble in DMSO and water, so
This was finely pulverized to 0.5μ or less, dispersed in a spinning dope for acrylic fibers, thoroughly mixed, spun in a coagulation bath, and then carbonized according to the carbon fiber production method using electricity.

この結果、実施例1とほぼ同様な性状を有するロジウム
成分−炭素繊維複合体を得た。
As a result, a rhodium component-carbon fiber composite having properties substantially similar to those of Example 1 was obtained.

実施例3 実施例1で得られた鉄成分−炭素繊維複合体を用いてC
O+ H2混合ガスからの02〜C4オレフィン製造を
行った。
Example 3 Using the iron component-carbon fiber composite obtained in Example 1, C
O2-C4 olefin production from O+H2 mixed gas was carried out.

まず、触媒として前記複合体を1.30 g耐熱性ガラ
ス管中に充填し、500℃で一気圧の水素を100m1
7分の割合で流しなかから、15時間、還元処理を行っ
た。次に下記の条件でCO十H2混合ガスを、調整した
触媒層に順次温度を高めながら通した。
First, 1.30 g of the above composite as a catalyst was filled into a heat-resistant glass tube, and 100 ml of hydrogen at 1 atm was heated at 500°C.
Reduction treatment was carried out for 15 hours while the water was running at a rate of 7 minutes. Next, a CO+H2 mixed gas was passed through the prepared catalyst layer under the following conditions while increasing the temperature one after another.

反応温度、反応ガス流通時間=250℃、6h300℃
、7h 350℃、7 k+ 反応圧力 : 10Kg/cm2 混合ガス空間速度: GH3V = 10000 hr
−’結果を下記表に示す。
Reaction temperature, reaction gas flow time = 250℃, 6h300℃
, 7h 350℃, 7k+ Reaction pressure: 10Kg/cm2 Mixed gas space velocity: GH3V = 10000 hr
-'The results are shown in the table below.

この表から明らかなように、反応温度を順次250℃か
ら300℃、350℃と高めるにつれてエチレンへの転
化率が向上した。
As is clear from this table, as the reaction temperature was increased sequentially from 250°C to 300°C and 350°C, the conversion rate to ethylene improved.

また、プロピレンは反応温度250℃では生成がみられ
なかったが、300℃では著しい生成が認められ、35
0℃では更に転化率が向上した。
In addition, no formation of propylene was observed at a reaction temperature of 250°C, but significant formation was observed at 300°C.
At 0°C, the conversion rate was further improved.

ブチレンも同様に反応温度の上昇と共に転化率が向上し
ている。
Similarly, the conversion rate of butylene also increases as the reaction temperature increases.

一方、メタンへの転化率も反応温度の上昇につれて多く
なるが、前記他のオレフィン成分に比較して、反応温度
の上昇に伴う上昇度は低かつた。
On the other hand, although the conversion rate to methane also increases as the reaction temperature rises, the degree of increase with the rise in reaction temperature was low compared to the other olefin components.

【図面の簡単な説明】[Brief explanation of drawings]

図は炭素繊維中に分散した鉄成分の粒度分布を示す図で
ある。 工業技術院長の復代理人 東し株式会社の代理人 弁理士 小 川 信 − 弁理士 野 口 賢 照 弁理士 斎 下 和 彦 0 4080120160200240280320粒
子径(人)
The figure shows the particle size distribution of iron components dispersed in carbon fibers. Sub-agent of the Director of the Agency of Industrial Science and Technology Shin Ogawa, patent attorney of Toshi Co., Ltd. - Patent attorney Ken Noguchi Teru Patent attorney Kazuhiko Saishita 0 4080120160200240280320 Particle size (people)

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維に金属成分が均一に分散−担持されており、か
つ炭素繊維と金属成分とが複合、一体化されてなる金属
成分−炭素繊維複合体。
A metal component-carbon fiber composite in which a metal component is uniformly dispersed and supported on carbon fibers, and the carbon fibers and the metal component are composited and integrated.
JP59008412A 1984-01-23 1984-01-23 Metal component-carbon fiber composite Pending JPS60153943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008412A JPS60153943A (en) 1984-01-23 1984-01-23 Metal component-carbon fiber composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008412A JPS60153943A (en) 1984-01-23 1984-01-23 Metal component-carbon fiber composite

Publications (1)

Publication Number Publication Date
JPS60153943A true JPS60153943A (en) 1985-08-13

Family

ID=11692426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008412A Pending JPS60153943A (en) 1984-01-23 1984-01-23 Metal component-carbon fiber composite

Country Status (1)

Country Link
JP (1) JPS60153943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673953B2 (en) 2001-12-10 2004-01-06 The United States Of America As Represented By The Secretary Of The Navy Polymeric and carbon compositions with metal nanoparticles
JP2004503359A (en) * 2000-06-12 2004-02-05 サソール テクノロジー(プロプライエタリー)リミテッド Cobalt catalyst
US6884861B2 (en) 2001-12-10 2005-04-26 The United States Of America As Represented By The Secretary Of The Navy Metal nanoparticle thermoset and carbon compositions from mixtures of metallocene-aromatic-acetylene compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541809A (en) * 1977-06-07 1979-01-09 Citizen Watch Co Ltd Rotor magnetic and its manufacture
JPS55104910A (en) * 1979-02-02 1980-08-11 Toho Rayon Co Ltd Manufacture of fibrous activated carbon
JPS5650107A (en) * 1979-09-28 1981-05-07 Toho Rayon Co Ltd Manufacture of fibrous activated carbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541809A (en) * 1977-06-07 1979-01-09 Citizen Watch Co Ltd Rotor magnetic and its manufacture
JPS55104910A (en) * 1979-02-02 1980-08-11 Toho Rayon Co Ltd Manufacture of fibrous activated carbon
JPS5650107A (en) * 1979-09-28 1981-05-07 Toho Rayon Co Ltd Manufacture of fibrous activated carbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503359A (en) * 2000-06-12 2004-02-05 サソール テクノロジー(プロプライエタリー)リミテッド Cobalt catalyst
JP4920858B2 (en) * 2000-06-12 2012-04-18 サソール テクノロジー(プロプライエタリー)リミテッド Cobalt catalyst
US6673953B2 (en) 2001-12-10 2004-01-06 The United States Of America As Represented By The Secretary Of The Navy Polymeric and carbon compositions with metal nanoparticles
US6884861B2 (en) 2001-12-10 2005-04-26 The United States Of America As Represented By The Secretary Of The Navy Metal nanoparticle thermoset and carbon compositions from mixtures of metallocene-aromatic-acetylene compounds

Similar Documents

Publication Publication Date Title
CA1284857C (en) Carbon fibrils, produced by contacting metal containing particles with carbonaceous gas
KR900004784B1 (en) Novel carbon fibrils method for producing it and compositions containing same
EP0433507B1 (en) Producing isotropically reinforced net-shape microcomposites
Zhang et al. Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction
KR100247557B1 (en) Preparation of composite membranes for separation of hydrogen
JP3655208B2 (en) FUEL CELL, ELECTRODE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JPS6249363B2 (en)
US20100167053A1 (en) Catalyst composition for preparing carbon nanotube
JPH01210035A (en) Platinum catalyst and its manufacture method
JP2004079244A (en) Catalyst for fuel cell and fuel cell
US11384219B2 (en) Carbon supports for oxygen reduction catalysts
US4970123A (en) Isotropically reinforced net-shape microcomposites
Song et al. Progress and perspective of single‐atom catalysts for membrane electrode assembly of fuel cells
JPS60153943A (en) Metal component-carbon fiber composite
KR100343826B1 (en) Process for improving the adhesion of metal particles to a carbon substrate
CN114318406A (en) Catalyst for preparing ethylene by reducing carbon dioxide, catalytic electrode and preparation method
CN114481167B (en) Preparation method and application of O-Ni SAC/MWCNTs composite catalyst
KR20170028116A (en) Catalyst, catalyst layer comprising the same for fuel cell electrode and method preparing the catalyst
CN116764629B (en) Cyclohexene ruthenium-based catalyst prepared by benzene partial hydrogenation and preparation method thereof
KR20140004310A (en) Direct synthesis method of carbon nanotube using intermetallic nano-catalysts formed on surface of various metal substrates and the structure thereof
JP2670040B2 (en) Hollow carbon fiber by fluidized vapor deposition
WO2019218128A1 (en) Small-size metal oxide, composite material thereof and preparation method therefor
JPH0227624A (en) Electric contact and manufacture thereof
Machida et al. Preparation of chemically modified electrodes by attachment of platinum carbonyl clusters, and their efficient electrocatalytic action in anodic oxidation of methanol
JP3269256B2 (en) Method for simultaneous production of epoxy compound and phenol compound