JPS60153924A - Treatment of exhaust gas - Google Patents

Treatment of exhaust gas

Info

Publication number
JPS60153924A
JPS60153924A JP59010219A JP1021984A JPS60153924A JP S60153924 A JPS60153924 A JP S60153924A JP 59010219 A JP59010219 A JP 59010219A JP 1021984 A JP1021984 A JP 1021984A JP S60153924 A JPS60153924 A JP S60153924A
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
hcl
ions
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59010219A
Other languages
Japanese (ja)
Inventor
Naoharu Shinoda
篠田 直晴
Atsushi Tatani
多谷 淳
Masakazu Onizuka
鬼塚 雅和
Setsuo Omoto
節男 大本
Susumu Okino
進 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59010219A priority Critical patent/JPS60153924A/en
Priority to DE19843408705 priority patent/DE3408705A1/en
Priority to US06/587,188 priority patent/US4675167A/en
Priority to GB08405994A priority patent/GB2137973B/en
Publication of JPS60153924A publication Critical patent/JPS60153924A/en
Priority to GB08611080A priority patent/GB2174083B/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent the lowering in desulfurization capacity, in treating exhaust gas containing SO2, HCl and HF, by attaining the coexistence of a Ca-compound as a SO2-absorbent, a Mg-compound in an amount corresponding to the stoichiometric amount of HCl and a specific concn. of a Mn-ion. CONSTITUTION:After the amounts of SO2, HCl and HF in exhaust gas 1 from a coal burning boiler are detected by a detection apparatus 3, said exhaust gas 1 is guided to an exhaust gas treatment tower 2 where an absorbing solution is sprinkled to absorb SO2, HCl and HF while the treated gas is exhausted as purified gas 6. CaCO3 is supplied from a line 7 in correspondence with the SO2-absorbing amount and Mg(OH)2 corresponding to the stoichiometric amount of HCl is supplied from a line 8. In addition, MgSO2 is added so as to adjust the Mn-ion concn. in the absorbing solution to 10-400mg/l. By allowing the Mn-ion to coexist, the dissolution of CaCO3 is not inhibited even if the additional amount of the Mg-compound is made smaller than stoichiometric amounts of HCl and HF, and desulfurization capacity is not lowered.

Description

【発明の詳細な説明】 C本発明の技術分野) 本発明は排ガスの処理方法に関し、特に石炭燃焼排ガス
のようなso2とHClとHF を含む排ガスの湿式処
理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for treating exhaust gas, and particularly to a wet treatment method for exhaust gas containing SO2, HCl, and HF, such as coal combustion exhaust gas.

(従来技術の説明) 一般に知られてφる湿式石炭法による排煙脱硫法を実施
する場合、排ガス中には有害成分として5OxO外にH
CtとIF が含まれる場合がある。石炭燃焼排ガス中
に存在する各成分の一例を示すと、Boxが約I O0
0ppm 、 HCLが約60ppm、HF が約40
 ppmである0このような排ガスをCacO3をso
2 吸収剤として湿式排ガス処理塔で処理すると、次の
ような反応が生ずる。
(Description of the prior art) When carrying out the flue gas desulfurization method using the generally known wet coal method, H
Ct and IF may be included. To give an example of each component present in coal combustion exhaust gas, Box is approximately I O0
0ppm, HCL about 60ppm, HF about 40
ppm is 0 such exhaust gas as CacO3
2 When treated as an absorbent in a wet exhaust gas treatment tower, the following reactions occur.

CaCO3+ 802 →Ca803 + CO2’ 
(1)CaCO3+ 2 HCl4 CaC42+ C
O2+ H2O(2)CaCO3+2HF −+CaF
2 +CO2+H20(3ンところが、(2)式の反応
が優先して生成し、該反応によって生成するCaCl2
に起因するca2+の存在によりCa、CO3の溶解が
阻害され、この結果(1)式の反応を妨害するようにな
多、BO2吸収性能の低下や排ガス処理塔内で脱硫反応
に伴なって生成するCa 804・2H20が装置材料
表面にスケールとして固着し排ガス処理装置の運転を妨
害するようになる。
CaCO3+ 802 →Ca803 + CO2'
(1) CaCO3+ 2 HCl4 CaC42+ C
O2+ H2O(2)CaCO3+2HF −+CaF
2 + CO2 + H20 (3) However, the reaction of formula (2) is preferentially produced, and CaCl2 produced by this reaction
The presence of Ca2+ caused by oxidation inhibits the dissolution of Ca and CO3, and as a result, the reaction of equation (1) is hindered, resulting in a decrease in BO2 absorption performance and the formation of BO2 in the exhaust gas treatment tower as a result of the desulfurization reaction. Ca 804.2H20 adheres to the surface of the equipment material as scale and interferes with the operation of the exhaust gas treatment equipment.

この不具合を防止する為には、BO1量に見合ってマグ
ネシウム塩を添加し、次の反応を利用してCaC42を
転化する方法が有効でCaC62+ M、pX −+ 
MyCL2 + CaX (4)(ここでXはCt基以
外アニオンを示す。)あることが、特開昭53−’ 1
7.565号公報に示されている。
In order to prevent this problem, it is effective to add magnesium salt in proportion to the amount of BO1 and convert CaC42 using the following reaction.CaC62+ M, pX -+
MyCL2 + CaX (4) (here, X represents an anion other than the Ct group).
No. 7.565.

更に、HF は(6)式に示す溶解度の小さなCaF2
 として固定されず、排ガス中のダストに含まれるAn
成分を溶解させ、このAεイオンとFイオンの相互作用
で石灰石の溶解が阻害されるので、塩基性ナトリウム塩
を添加して不具合を防止する方法が特開昭55−167
0’23号公報に示さJlている。
Furthermore, HF is CaF2 with low solubility as shown in equation (6).
An, which is not fixed as
Since the dissolution of limestone is inhibited by the interaction between Aε ions and F ions, a method of adding a basic sodium salt to prevent the problem is disclosed in Japanese Patent Application Laid-Open No. 55-167.
Jl is shown in Japanese Patent No. 0'23.

(先願発明の説明) 従って、so2とHctとHF を含む排ガスを処理す
るに当シ、BO1量に見合ってマグネシウム塩を添加し
、更に塩基性ナトリウム塩を添加してやればCaCl2
やMイオンとFイオンに起因する不具合のない排ガス処
理方法として有効であることが伺い知れる。ところが、
本発明者等は、この方法について実験を進めている途中
に、塩基性ナトリウム塩を添加せずとも、HFmとHC
l量に相当するM、化合物を添カロすれば、後述する(
5)、(6)の反応が同時に進行し、so2吸収性能の
低下と、CaSO4・2H20によるスクール付着と、
CaCO3の溶解阻害の不具合が一挙に解決できるiと
を先に見い出し、so2とHC/=と甘とを含む排ガス
を処理するに当り、排ガス中のHCl量とHF 量を検
知して排ガス処理塔にて少なくともMyCL2及びMg
F2 となる化学量論量に相当する量のMl 化合物と
so2吸収剤としてのCa 化合物とを排ガス処理塔に
供給することを特徴とするso2とHClとHF とを
含む排ガスの処理方法を提案した(%願昭58−358
61号)。
(Explanation of the prior invention) Therefore, when treating exhaust gas containing SO2, Hct, and HF, magnesium salt is added in proportion to the amount of BO1, and basic sodium salt is further added to CaCl2.
It can be seen that this method is effective as an exhaust gas treatment method that does not cause problems caused by F ions, M ions, and F ions. However,
While conducting experiments on this method, the present inventors discovered that HFm and HC could be combined without adding basic sodium salt.
If M and the compound are added in an amount corresponding to 1, it will be described later (
The reactions of 5) and (6) proceed simultaneously, resulting in a decrease in SO2 absorption performance and school adhesion due to CaSO4/2H20.
We first discovered a method that can solve the problem of dissolution inhibition of CaCO3 at once, and when treating exhaust gas containing SO2, HC/=, and sweet, we detected the amount of HCl and HF in the exhaust gas and installed it in the exhaust gas treatment tower. at least MyCL2 and Mg
We proposed a method for treating exhaust gas containing SO2, HCl, and HF, which is characterized by supplying an amount of Ml compound corresponding to the stoichiometric amount of F2 and a Ca compound as an SO2 absorbent to an exhaust gas treatment tower. (% Gansho 58-358
No. 61).

先ず、上記先願発明方法を詳細に説明する。First, the method of the invention of the prior application will be explained in detail.

先ず、My 化合物としてMy (OH)2 を使用し
た場合の反応を次に示すが、焼成ドロマイトやMyO、
My SO4,などMgF2 及びMy C10を生成
するMy 化合物であれば効果は大差ないOMy (O
H)2 +2 HF −) M、F2 + 2H20(
5)M、 (OH)2 + 2 Hoシ → M≦装C
12+ 2H20(6ン(6)式Vこよって生成するM
y C10は溶解度か大きく、Mf イオン濃度が犬と
なる為、(5)式で生成する溶解度の小さなM、F’2
 か析出し、(:aCO3の溶解が回復する。
First, the reaction when My (OH)2 is used as the My compound is shown below.
OMy (O
H) 2 + 2 HF -) M, F2 + 2H20 (
5) M, (OH)2 + 2 Hosi → M≦C
12+ 2H20 (6n (6) Equation V
y C10 has a large solubility and Mf ion concentration is small, so M and F'2 with small solubility are generated by equation (5).
(: The dissolution of aCO3 is restored.

このMgF2 析出によるFイオンの固定は、HCl量
にす合って供給するMy 化合物とHctか反応し゛て
生成するMyCL2の吸収液中での濃度が高くなる程、
一層促進される。すなわち、Mf イオンとFイオンの
溶解度積CMt” ) CF−]2= Kの相関式から
共通イオンであるMl イオンが増大するとFイオンが
小さくなる訳であるOMy 化合物を添加しない場合は
、当然のこと乍ら、溶解度の大きなCaC22が生成す
るので、Ca イオン濃度の増加と共に溶解度の小さな
CaFz が析出してFイオン濃度は減少するか、前述
の通りCaCLz Kよって門2吸収性能が低下し、C
aSO4・2H20のスケール付着が顕著となる不具合
Fiまぬがれない〇 一方、塩基性ナトリウム塩だけを添加した場合、Fイオ
ンはNaFとして中和されるか、NaFの溶解度が大き
く、Fイオンの濃度は低くならない0従って、Fイオン
の減少には、S02吸収剤であるCaCO3とFイオン
とが反応してCaF2が析出する作用を利用することI
/Cなるが、NaFが溶解性1ある為、My (OH)
2を添加してMgF2として析出固定する場合に比べる
とFイオン濃度の低下は少ない。
The fixation of F ions by this MgF2 precipitation increases as the concentration of MyCL2, which is generated by the reaction between Hct and the My compound supplied in proportion to the amount of HCl, in the absorption liquid increases.
This will be further promoted. In other words, from the correlation equation of the solubility product of Mf ion and F ion CMt'') CF-]2=K, as the common ion Ml ion increases, the F ion becomes smaller. However, since CaC22 with high solubility is generated, as the Ca ion concentration increases, CaFz with low solubility precipitates and the F ion concentration decreases, or as mentioned above, the absorption performance of gate 2 decreases due to CaCLz K and C
On the other hand, when only basic sodium salt is added, F ions are neutralized as NaF, or the solubility of NaF is high, and the concentration of F ions is Therefore, in order to reduce F ions, it is necessary to utilize the action of CaCO3, which is an S02 absorbent, and F ions reacting to precipitate CaF2.
/C, but since NaF has a solubility of 1, My (OH)
Compared to the case where F2 is added and precipitated and fixed as MgF2, the decrease in F ion concentration is small.

Fイオンが固体として固定されずに液体中VC溶解して
いる濃度が高いと、一時的に酸とアルカリのバランスが
くずれて吸収液の酸性が強くなる0酸性が強くなってし
まうと、ただちにCa Cogの溶解が阻害される不具
合を生じる。また、吸収液の一部を排水する場合も厳し
いF排水規制に対処する為に特にF対策を有した排水処
理が必要であるが、排水中のFイオン低減の為には設備
が複雑になる欠点がある。
If the concentration of F ions dissolved in VC in the liquid without being fixed as a solid is high, the balance between acid and alkali will be temporarily disrupted and the acidity of the absorption liquid will become stronger. This causes a problem in which the dissolution of Cog is inhibited. Additionally, when discharging a portion of the absorption liquid, wastewater treatment with special F countermeasures is required in order to comply with strict F wastewater regulations, but the equipment becomes complex in order to reduce F ions in the wastewater. There are drawbacks.

上記に対し、先願発明方法によれば、Hcl、量に見合
って添加したMy 化合物がMgCl2となって溶解蓄
積するので、脱硫によって副生する石・野や亜価酸カル
シウムの結晶を分離して得られる液を循環使用して排液
を少なくすれば、それだけMy イオン濃度が高くなシ
、一層FイオンがMyFz として固定されやすくなシ
、吸収液中のFイオン嬢度を低くできるのである。
In contrast to the above, according to the method of the prior invention, the My compound added in proportion to the amount of HCl dissolves and accumulates as MgCl2, so stones, fields, and calcium suboxide crystals produced by desulfurization can be separated. By circulating and using the liquid obtained in the absorption liquid to reduce the waste liquid, the My ion concentration will be higher, F ions will be more easily fixed as MyFz, and the F ion loss in the absorption liquid can be lowered. .

My 化合物をact IfzとHF’ 量に相当する
だけ添加しない場合は、前述の通、!1lCaCθや屑
イオン、Fイオンが溶存するので、CaC0a を吸収
剤としたso2吸収性能が不良となる。即ち、CaCl
2の生成は溶存Ca イオンの増加を伴い、脱硫及び酸
化反応に伴って生成するCaSO4・2 H2O(石膏
)の溶解度を減少させ、これが石膏スケールの成長を促
し、また、CaC62が含まれる吸収液はso2分圧が
大きくなる為、BO2吸収性能が低下する(すなわち(
:’a C12が含まれる吸収液ではCa2+イオン濃
度が増大し、〔Ca” ) [SO32−〕=KsPの
溶解平衡式から分るように5032− の溶解度が低下
する0so2ガスの溶解成分であるBO32−が低下す
ることは、S02ガスの溶解度が低下することを意味す
る。換言すれば、so2ガスの吸収によって生成した5
032− が直ちに飽和濃度に達する為、S02分圧が
高くなυ易い液となるのである0逆に、MgCl2 と
して溶存すれば、5Oa2−の飽和濃度も高くなシ、換
言すれば溶解度の大きな吸収液となって、S02分圧の
低い液が維持されるようになる)。更にMイオンとFイ
オンの溶存量が多くなると、caco3 (QA解が阻
害され、脱硫装置の正常な運用が妨けらハ、脱硫装置か
らの排液中のFイオン濃度が晶く排水による2次公害防
止の為にF除去対策が必要となる。
If My compound is not added in an amount corresponding to the amount of act Ifz and HF', as described above,! Since 1lCaCθ, waste ions, and F ions are dissolved, the SO2 absorption performance using CaC0a as an absorbent becomes poor. That is, CaCl
The production of 2 is accompanied by an increase in dissolved Ca ions, which reduces the solubility of CaSO4.2H2O (gypsum) produced with desulfurization and oxidation reactions, which promotes the growth of gypsum scale, and also increases the absorption liquid containing CaC62. Because the SO2 partial pressure increases, the BO2 absorption performance decreases (i.e. (
:'a In the absorption liquid containing C12, the concentration of Ca2+ ions increases, and as can be seen from the dissolution equilibrium equation of [Ca'') [SO32-]=KsP, the solubility of 5032- decreases.It is a dissolved component of 0so2 gas. A decrease in BO32- means a decrease in the solubility of S02 gas.In other words, 5 produced by absorption of SO2 gas
Since 032- immediately reaches the saturation concentration, the S02 partial pressure is high and the liquid becomes easy to move.On the other hand, if it is dissolved as MgCl2, the saturation concentration of 5Oa2- is also high.In other words, it becomes an absorbent with high solubility. (The liquid becomes a liquid, and the liquid with a low S02 partial pressure is maintained.) Furthermore, when the amount of dissolved M ions and F ions increases, the caco3 (QA) solution is inhibited and the normal operation of the desulfurization equipment is hindered. F removal measures are required to prevent pollution.

以上の先願発明の説明から明らかなように、排ガス中の
HCl量とHF fを検知して、排ガス処理塔にて少な
くともMfC12及びMpF2 となる化学量論蓋に相
当する量のMy 化合物をso2吸収剤としてのCa 
化合物と共に排ガス処理塔に供給する本発明方法によれ
ば、HCtとHF’ に起因するso2吸収性能の低下
、CaSO4# 2 ’H20析出によるスケールトラ
ブル、so2吸収剤の溶解阻害の各不具合を解消できる
すぐれた効果が得ら)゛するのである。
As is clear from the above description of the prior invention, the amount of HCl and HF f in the exhaust gas is detected, and the amount of My compound corresponding to the stoichiometric cap, which is at least MfC12 and MpF2, is generated in the exhaust gas treatment tower. Ca as an absorbent
According to the method of the present invention, which is supplied to the exhaust gas treatment tower together with the compound, it is possible to eliminate the problems of a decline in SO2 absorption performance caused by HCt and HF', scale troubles due to CaSO4#2'H20 precipitation, and inhibition of dissolution of the SO2 absorbent. This will give you excellent results).

(先願発明の実施例) 第1図の装置により先願発明方法を実施した。(Example of the invention of the prior application) The method of the invention of the prior application was carried out using the apparatus shown in FIG.

第1図において、石炭焚きボイラからの排ガスが脱硝装
置史には電気集じん装置及び熱交換器(いずれも図面に
は省略した)を経由した後、排ガス1として排ガス処理
塔2に導かれる。
In FIG. 1, exhaust gas from a coal-fired boiler passes through an electrostatic precipitator and a heat exchanger (both omitted in the drawing) during the denitrification process, and then is led to an exhaust gas treatment tower 2 as exhaust gas 1.

排ガス処理塔2の入口には検知装@3が設けられ、SO
□約1000 ppmとHCt約60 ppmとHF 
約4 Q ppmとを含む排ガスが約400ON???
 / h で導入されていることを検知した。
A detection device @3 is installed at the entrance of the exhaust gas treatment tower 2, and the SO
□Approx. 1000 ppm and HCt approx. 60 ppm and HF
Exhaust gas containing about 4 Q ppm is about 400ON? ? ?
/h was detected to be installed.

排ガス処理塔2の内部にはグリッドが充填してあり、吸
収液循環ポンプ4を介して塔頂から吸収液がbowl/
b で散布されているが、ここで排ガス中のS02とH
ClとHF が吸収されミストエリミネータ−5を通っ
て浄化ガス6として排出される。
The inside of the exhaust gas treatment tower 2 is filled with a grid, and the absorption liquid is supplied from the top of the tower via the absorption liquid circulation pump 4 to the bowl/
b, but here S02 and H in the exhaust gas
Cl and HF are absorbed and discharged as purified gas 6 through the mist eliminator 5.

浄化ガス6にId 802が約50ppm検出されたが
、HCLとHF は共に検出下限値である1 ppmよ
シ少なかった。
Approximately 50 ppm of Id 802 was detected in the purified gas 6, but both HCL and HF were below the lower detection limit of 1 ppm.

S02の吸収量に見合ってライン7からCaCO3を約
17 kg/ h で供給し、同時にライン8からMy
 (OH)2をHC/S吸収量とHF 吸収量との化字
諏論量に相当する0、4alcy/h を割らないよう
に供給した。
CaCO3 is supplied from line 7 at a rate of approximately 17 kg/h commensurate with the absorption amount of S02, and at the same time My is supplied from line 8.
(OH)2 was supplied so as not to exceed 0.4 alcy/h, which corresponds to the stoichiometric amount of the HC/S absorption amount and the HF absorption amount.

排ガス処理塔2の下部のタンク9には、802を吸収し
て生成した亜硫酸塩を酸化して硫酸塩となすべく空気ノ
ズル10がら空気を約2ON−/hで吹き込んた。
Air was blown into the tank 9 at the lower part of the exhaust gas treatment tower 2 at a rate of about 2 ON-/h through an air nozzle 10 in order to oxidize the sulfite produced by absorbing 802 into sulfate.

タンク9内の吸収液はCa5Oi・2H20結晶と若干
のCaCO3粉を含む懸濁液となっておシ、約18重量
係のスラリー濃度になるように水を補給して水バランス
を調整した。
The absorption liquid in the tank 9 was a suspension containing Ca5Oi.2H20 crystals and some CaCO3 powder, and water was replenished to adjust the water balance so that the slurry concentration was about 18% by weight.

SO−!の吸収にバランスしてCaSO3・2H20結
晶(石膏)を系外へ取勺出す為に、ポンプ11を介して
分離機12へ吸収液の一部を導き、石膏13を副生品と
して回収する一方、涙液はライン14より、一部は排水
し、残部は排ガス処理塔2へ戻した。
SO-! In order to balance the absorption of CaSO3 and 2H20 crystals (gypsum) and remove them from the system, a part of the absorbed liquid is guided to the separator 12 via the pump 11, and the gypsum 13 is recovered as a by-product. A part of the lachrymal fluid was drained through the line 14, and the remainder was returned to the exhaust gas treatment tower 2.

定常状態で運転を続行した時の吸収液中にはct イ万
ンが約280mmol/ l 溶存しておル、これに対
してMt イオンはCt イオンの当量である14o 
mmot/lを下まわって検出されることはなかった。
Approximately 280 mmol/l of ct ions are dissolved in the absorption liquid when the operation is continued in steady state, whereas Mt ions are equivalent to 140 mmol/l of Ct ions.
It was never detected below mmot/l.

また吸収液中の溶存Fイオンは2 mmoz/ tを越
えて検出されず、MgF2 の固体として系外へ排出さ
れていた。
Further, dissolved F ions in the absorption liquid were not detected in excess of 2 mmoz/t, and were discharged from the system as solid MgF2.

HC4吸収量とHF 吸収量とに満だない範囲でMy 
(OH)2を供給すると、脱硫性能の低下p、シ吸収液
pHの低下現象が認められSO2吸収剤であるCa C
O3の供給蛋をJ!加しても性能は回復しなかった。更
に、My (OH)2の供給を停止すれば、著しい脱硫
性能低下と共にCa CO3の溶解が妨害され、石′F
1スケールが顕著になった。
My within the range of HC4 absorption and HF absorption
When (OH)2 was supplied, a decrease in desulfurization performance and a decrease in the pH of the absorption liquid were observed.
J! O3 supply protein! However, the performance did not recover. Furthermore, if the supply of My(OH)2 is stopped, the desulfurization performance will be significantly reduced and the dissolution of CaCO3 will be hindered, causing the stone 'F
1 scale became prominent.

なお、先願発明方法において、添加するMf化合物はM
t(OH)2に限らすHCt、HF と反応してMgC
l2、M、F2を生成するものであれば良く、 1通常
入手できる化学薬品が使用できる。
In addition, in the method of the prior invention, the Mf compound to be added is M
HCt, limited to t(OH)2, reacts with HF to form MgC
Any chemical that produces l2, M, or F2 may be used, and any commonly available chemicals can be used.

また、My 化合物はMt(On)2や焼成ドロマイト
あるいはMyoを使用した場合、ハロゲンとの反応速度
が速いので吸収液pHを検出し乍らの添加調整が容易で
あった。
Furthermore, when Mt(On)2, calcined dolomite, or Myo was used as the My compound, the reaction rate with halogen was fast, so it was easy to adjust the addition while detecting the pH of the absorption liquid.

(本発明の基礎的知見) 本発明者らは、先願発明の前述した実施例に於いて、吸
収液にMn S04 を添加し吸収液中でのMn イオ
ンを徐々に増やして行く実験を実施した所、大変興味あ
る結果が得られた。即ち、吸収液中のMn イオン濃度
が増えると・Ml 化合物の添加量をHCt量とHF 
量との化多遣論量より少なくしても% CaCO3の溶
解妨害は認められず脱硫性能が向上したのである〇 (本発明の構成) 上記知見に基づいて本発明は完成したものであって、本
発明はSO,とHClとHF とを含む排ガスを処理す
るに当量、排ガス中のHCt量を検知して排ガス処理塔
にて少なくともMgCl2となる化学量論量に相当する
量のMt 化合物とSO2吸収剤としてのCa 化合物
とを排ガス処理塔に供給し、前記排ガスと接触する吸収
液中にMnイオンを10〜400〃り/l 共存させる
ことを特徴とするso2とHClとHF とを含む排ガ
スの処理方法に関するものである。
(Basic knowledge of the present invention) In the above-mentioned embodiment of the prior invention, the present inventors conducted an experiment in which Mn S04 was added to the absorption liquid and Mn ions in the absorption liquid were gradually increased. As a result, very interesting results were obtained. That is, when the Mn ion concentration in the absorption liquid increases, the amount of Ml compound added is reduced by the amount of HCt and HF.
Even if the amount was reduced from the theoretical amount, no interference with the dissolution of CaCO3 was observed and the desulfurization performance was improved (Constitution of the present invention) The present invention was completed based on the above findings. , the present invention detects the amount of HCt in the exhaust gas to treat exhaust gas containing SO, HCl, and HF, and detects the amount of Mt compound in the exhaust gas treatment tower in an amount equivalent to the stoichiometric amount of at least MgCl2. A method containing SO2, HCl, and HF, characterized in that a Ca compound as an SO2 absorbent is supplied to an exhaust gas treatment tower, and Mn ions are made to coexist at 10 to 400 ri/l in the absorption liquid that comes into contact with the exhaust gas. The present invention relates to a method for treating exhaust gas.

そして、更に上記方法を実施する際、吸収液中に空気を
吹込むこと、特に吸収液中の亜硫酸塩濃度を検知し、そ
の濃度が10 mmot/を以下となるように空気量を
調整して空気を吹込むことを、好ましい実施態様とする
ものである。
Furthermore, when carrying out the above method, air is blown into the absorption liquid, in particular, the sulfite concentration in the absorption liquid is detected, and the amount of air is adjusted so that the concentration is 10 mmot/or less. Blowing air is a preferred embodiment.

(本発明の詳細な説明) 第1図のフローにおいて吸収液中のMn イオン濃度を
0から400 my/l 程度になるまで段階的にMn
5O<を添加調整した時の浄化ガス6に含まれる802
 F1度の変化をM2図に示した。第2図の実験はMt
 化合物の供給を減らし、HC1% vこ相当する化学
量論量だけ供給した場合のデ一りを示すものであシ、吸
収液中にはFイオンが200可/l 程度まで溶存して
いた。このように吸収液中にFイオンが溶存していても
、吸収液中のMn イオン濃度が増加して行くとCaC
O3の溶解妨害が認められなくなシ、脱硫性能が向上す
ることが明らかとなった。
(Detailed description of the present invention) In the flow shown in Fig. 1, the Mn ion concentration in the absorption liquid is gradually increased from 0 to about 400 my/l.
802 contained in purified gas 6 when adjusting the addition of 5O<
The change in F1 degree is shown in the M2 diagram. The experiment in Figure 2 is Mt
This shows the result when the supply of the compound was reduced and only a stoichiometric amount equivalent to 1% V of HC was supplied, and F ions were dissolved in the absorption liquid up to about 200 mol/l. Even though F ions are dissolved in the absorption liquid, as the Mn ion concentration in the absorption liquid increases, CaC
It became clear that no interference with O3 dissolution was observed and that the desulfurization performance was improved.

なお第2図の実験は、第1図のフローの空気ノズル10
がら空気吹込みをせずに行ったものである。この第2図
からMy イオン濃度は微量(約10ツ/1 ) から
効果を発揮し、400q/lとなるとその効果は飽和す
ることが明らかである。
The experiment shown in Figure 2 was conducted using the air nozzle 10 with the flow shown in Figure 1.
This was done without blowing air. It is clear from FIG. 2 that the My ion concentration exerts its effect even at a very small amount (approximately 10 q/l), and that the effect is saturated when it reaches 400 q/l.

次に空気吹込みを行い、その空気吹込み量を徐々に低減
した場合の実験データを第3図に示した。第3図にはM
n イオンの有無と1、My (OH)2の添加量をパ
ラメーターにして区別して示しである。すなわち、第3
図において、・印はMnイオン601ダ/l 添加、M
y(OH)2をHCt量の化学量論量だけ添加した場合
(本発明)、○印はMn イオン無添加、My (OH
)2をHctとHF量の化学量論量添加した場合(先願
発明)及びΔ印はMn イオン無添加、M9(OH)2
をHCl ftの化学量論量だけ添カロした場合のデー
タである。
Next, air was blown, and the experimental data obtained when the amount of air blown was gradually reduced is shown in FIG. In Figure 3, M
The table shows the presence or absence of n ions and the amount of 1 and My(OH)2 added as parameters. That is, the third
In the figure, the mark indicates Mn ion addition of 601 da/l, M
When y(OH)2 is added in the stoichiometric amount of HCt (in the present invention), ○ indicates no addition of Mn ions, My(OH)
) 2 is added in stoichiometric amounts of Hct and HF (prior invention) and Δ indicates no addition of Mn ions, M9(OH)2
This is the data when a stoichiometric amount of HCl ft is added.

空気吹込み量を低減してゆくと(空気吹込みに消費する
送風動力が節減できるメリットがある)、どの場合も浄
化ガス中のso2濃度が高くなる傾向にあるが、本発明
におけるようにMnイオンを共存させると、空気吹込み
を停止しても、Mr(OH)2をHC1量と化学量論量
たけ添加しておけは、その高くなる傾向は殆んど無視で
き、(’acO3の溶解妨害は認められず、高い脱硫性
能′が維持されていることがわかる。
As the air blowing amount is reduced (which has the advantage of reducing the blowing power consumed for air blowing), the SO2 concentration in the purified gas tends to increase in any case, but as in the present invention, the Mn When ions are allowed to coexist, even if air blowing is stopped, if Mr(OH)2 is added in a stoichiometric amount to 1 HC, the tendency for the increase in the amount to increase ('acO3) is almost negligible. No dissolution interference was observed, indicating that high desulfurization performance was maintained.

このようにHCl Mに見合う量だけのM) 化合物を
供給してCt イオンがMy C10として溶存してい
るようにし、且つMn イオンを誇2Jpけるか、又は
Mn イオンを添加して更に空気を吹込むと、Fイオン
が溶存していても、換言すればMy F2として析出固
定せずとも脱硫性能は低下しないことを確認した。これ
は、吸収されたso2がMnイオンや空気吹込みによっ
てただちに酸化され硫酸となる為に、強酸性の硫酸と吸
収剤であるCaCO3が反応してしまうことによるもの
と考えられる。即ち、MイオンとFイオンの相互作用に
よってCa COsの溶解が阻害されるのは、見掛上、
亜硫酸が硫酸よシ弱い酸である為であり、Mn イオン
を添加したル、空気吹込みによって亜硫酸を硫酸に酸化
する割合を筒める程、Fイオンが溶存していてもCa 
CO3の溶解反応性が回復し易くなる。その結果、脱硫
性能が向上したものである。
In this way, the amount of M) compound corresponding to HCl M is supplied so that Ct ions are dissolved as MyC10, and Mn ions are added, or Mn ions are added and air is further blown. It was confirmed that the desulfurization performance does not deteriorate even if F ions are dissolved, in other words, even if they are not precipitated and fixed as My F2. This is thought to be due to the fact that the absorbed SO2 is immediately oxidized to sulfuric acid by Mn ions and air blowing, resulting in a reaction between the strongly acidic sulfuric acid and the absorbent CaCO3. That is, the apparent inhibition of CaCOs dissolution due to the interaction between M ions and F ions is due to
This is because sulfite is a weaker acid than sulfuric acid, and when Mn ions are added to the solution, even if F ions are dissolved, Ca
The dissolution reactivity of CO3 becomes easier to recover. As a result, desulfurization performance was improved.

つまり、HF とHClとso2を含む排ガスを処理す
るに当り、HC6量に相当する量のM、化合物を供給し
、soz量に相当する量のC(L 化合物を吸収剤とし
て供給し、更に吸収液中ICMn イオン分第2図から
判別できる様vc t o〜400〜/l の範囲で存
在させ、また吸収液中に空気を吹き込んで亜硫酸を硫酸
に酸化すると、Fイオンが溶存しても脱硫性能が低下し
ないことが確認できた。
In other words, when treating exhaust gas containing HF, HCl, and SO2, an amount of M and compound corresponding to the amount of HC6 is supplied, an amount of C(L) compound corresponding to the amount of SOX is supplied as an absorbent, and further absorption The ICMn ion content in the liquid is present in the range of vc to ~400 ~/l as can be determined from Figure 2, and when air is blown into the absorption liquid to oxidize sulfurous acid to sulfuric acid, desulfurization is achieved even if F ions are dissolved. It was confirmed that the performance did not deteriorate.

空気の吹込み量は排ガス量が約4o o o Nyy/
/h、入口S02約1000 ppmの実験例に於いて
5〜110 yi/bの範囲、即ち、排ガス量基準では
約0.125〜2.75%に相当する空気量を吹込んだ
が、人口502g度が冒くなると、酸化すべき亜硫酸量
が増大する訳であるから、亜硫酸量に見合ってを気吹込
与量を調整すれば良い。
The amount of air blown is approximately 4 o o o Nyy/
/h, In the experimental example where the inlet S02 was about 1000 ppm, an air amount in the range of 5 to 110 yi/b, that is, equivalent to about 0.125 to 2.75% based on the exhaust gas amount standard, was blown, but the population was 502 g. As the temperature increases, the amount of sulfite to be oxidized increases, so the amount of air blown should be adjusted in accordance with the amount of sulfite.

本発明で最も便利な空気吹込み量の調整は吸収液中の亜
硫酸塩濃度を連続的に測定し、その濃度が1o mmo
t/を以下が維持される迄酸化することである。このよ
うにするとCaC,03の溶解性が回復していたことを
確認した。即ち、第2図及び第3図に於いて、浄化ガス
中の802 fA度が50 ppm以下の範囲にある実
験に於いて、吸収液中の亜硫酸塩濃度は10 mmoz
/z 以下であった0 従って、空気吹込み量は吸収液中の亜硫酸塩濃度を検知
してその濃度が好ましくは1Q mmol/を以下とな
る迄増量すると良い。もちろん、空気吹込みが無い時に
、Mn イオンの作用によって吸収液中の亜硫酸塩濃度
が1 (I mmoz/z以下にある時は、空気吹込み
を停止したままでもC’aCO3の溶解性が良好に維持
されることは前述した通シである。
The most convenient way to adjust the amount of air blowing in the present invention is to continuously measure the sulfite concentration in the absorption liquid, and check that the concentration is 10 mm
t/ is oxidized until the following is maintained. It was confirmed that by doing this, the solubility of CaC,03 was recovered. That is, in Figures 2 and 3, in experiments where the 802 fA degree in the purified gas was in the range of 50 ppm or less, the sulfite concentration in the absorption liquid was 10 mmoz.
Therefore, the amount of air blown should be increased by detecting the sulfite concentration in the absorption liquid until the concentration becomes preferably 1Q mmol/ or less. Of course, when there is no air blowing and the sulfite concentration in the absorption liquid is below 1 (I mmoz/z) due to the action of Mn ions, the solubility of C'aCO3 is good even with air blowing stopped. It is the same as stated above that this is maintained.

また、添加するMn 化合物は、MnSO4、Mn0O
H,MnO2、MnCl2 が有効であり、酸化還元反
応を伴って吸収液中K Mn として溶存した濃度で本
発明の効果が得られることが分かったので、Mn 化合
物のアニオンはその形態を特に指定しなくても良い。
In addition, the Mn compounds to be added are MnSO4, Mn0O
It has been found that H, MnO2, and MnCl2 are effective, and that the effects of the present invention can be obtained at concentrations dissolved as KMn in the absorption liquid accompanied by a redox reaction. You don't have to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様図を示す。 1・・・・・排ガス 2 ・・・・・ 排ガス処理塔 3・・・・・検知装置 4 ・・・・・ 吸収液循環ポンプ 5 ・・・・・ ミストエリミネータ−6・・・・・浄
化ガス 7 ・・・・・ Ca化合物供給ライン8 ・・・・・
 M2化合物供給ライン9 ・・・・・ タ ン り 10 ・・・・・ 空気ノズル 11・・・・・ポンプ 12・・・・・分離機 13・・・・・石 膏 14 ・11−1 沖液ライン 第2図は本発明の実施例で得られた実験データであシ、
My(oH)2をHCl量と化学量論量だけ添加し、吸
収液中のMn イオン濃度を400q/L程度Vこなる
まで添加した場合の浄化ガス6に含まれるso2濃度を
示す。 第3図は本発明の実施例で得られた実験データであシ、
吸収液中への空気吹込み量を停止に至らしめるまでの吹
込み量変化と浄化ガス6に含ま#t 7)SO26度の
相関を示す。 復代理人 内 1) 明 復代理人 萩 原 亮 − 范1図 、3 氾2区 吸取液中のM几イオン悲(宏訃ケ) 尾3図 空気吹ぎ込U量(mjA//f、) 第1頁の続き 0発 明 者 沖 野 進 広島市西区観音新町広島研
究所内 4丁目6番n号 三菱重工業株式会社
FIG. 1 shows an embodiment of the present invention. 1...Exhaust gas 2...Exhaust gas treatment tower 3...Detection device 4...Absorption liquid circulation pump 5...Mist eliminator 6...Purification Gas 7... Ca compound supply line 8...
M2 compound supply line 9... Tank 10... Air nozzle 11... Pump 12... Separator 13... Gypsum 14 ・11-1 Offshore The liquid line in Figure 2 is experimental data obtained in an example of the present invention.
The SO2 concentration contained in the purified gas 6 is shown when My(oH)2 is added in a stoichiometric amount with the amount of HCl until the Mn ion concentration in the absorption liquid reaches about 400 q/L. FIG. 3 shows experimental data obtained in an example of the present invention.
The correlation between the change in the amount of air blown into the absorption liquid until it is stopped and #t7) SO26 degrees contained in the purified gas 6 is shown. Sub-agent 1) Mei-Fu agent Ryo Hagiwara - Fan 1 figure, 3 M-ion ion in the blotting liquid in flood 2 area (Hiroshike), tail 3 figure air blown U amount (mjA//f, ) Continued from page 1 0 Inventor Susumu Okino 4-6-n, Kannon Shinmachi Hiroshima Research Institute, Nishi-ku, Hiroshima Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】 (i) so2とHCtとHF とを含む排ガスを処理
するに当シ、排ガス中のHC’4量を検知して排ガス処
理塔にて少なくともMgCl2となる化学量論量に相当
する量のM? 化合物とso2吸収剤としてのCa 化
合物とを排ガス処理塔に供給し、前記排ガスと接触する
吸収液中にMn イオンを10〜4QOmy/l共存さ
せることを特徴とするS02とHClとHF とを含む
排ガスの処理方法 (2) 吸収液中に空気を吹き込むことを特徴とする特
許請求の範囲(1)記載の排ガスの処理方法 (3)吸収液中の亜硫酸塩濃度を検知し、その濃度が1
0 mmot/を以下となるように空気量を調整するこ
と全%徴とする特許請求の範囲(2)記載の排ガスの処
理力法
[Claims] (i) When treating exhaust gas containing SO2, HCt, and HF, the amount of HC'4 in the exhaust gas is detected and the amount of HC'4 is reduced to a stoichiometric amount of at least MgCl2 in the exhaust gas treatment tower. Equivalent amount of M? A method containing S02, HCl, and HF characterized in that the compound and a Ca compound as an SO2 absorbent are supplied to an exhaust gas treatment tower, and 10 to 4 QOmy/l of Mn ions are allowed to coexist in the absorption liquid that comes into contact with the exhaust gas. Exhaust gas treatment method (2) Exhaust gas treatment method according to claim (1), characterized by blowing air into the absorption liquid (3) Detecting the concentration of sulfite in the absorption liquid, and detecting that the concentration is 1
The exhaust gas processing power method according to claim (2), wherein the total percentage is to adjust the air amount so that 0 mmot/ is below.
JP59010219A 1983-03-07 1984-01-25 Treatment of exhaust gas Pending JPS60153924A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59010219A JPS60153924A (en) 1984-01-25 1984-01-25 Treatment of exhaust gas
DE19843408705 DE3408705A1 (en) 1983-03-07 1984-03-07 METHOD FOR TREATING EXHAUST GAS
US06/587,188 US4675167A (en) 1983-03-07 1984-03-07 Method of treating exhaust gases
GB08405994A GB2137973B (en) 1983-03-07 1984-03-07 Method of treating exhaust gases
GB08611080A GB2174083B (en) 1983-03-07 1986-05-07 Method of treating exhaust gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010219A JPS60153924A (en) 1984-01-25 1984-01-25 Treatment of exhaust gas

Publications (1)

Publication Number Publication Date
JPS60153924A true JPS60153924A (en) 1985-08-13

Family

ID=11744159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010219A Pending JPS60153924A (en) 1983-03-07 1984-01-25 Treatment of exhaust gas

Country Status (1)

Country Link
JP (1) JPS60153924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258727A (en) * 1986-05-06 1987-11-11 Chiyoda Chem Eng & Constr Co Ltd Method for desulfurization and dust removal from waste gas
US10919016B2 (en) 2017-02-15 2021-02-16 General Electric Technology Gmbh Oxidation control for improved flue gas desulfurization performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258727A (en) * 1986-05-06 1987-11-11 Chiyoda Chem Eng & Constr Co Ltd Method for desulfurization and dust removal from waste gas
US10919016B2 (en) 2017-02-15 2021-02-16 General Electric Technology Gmbh Oxidation control for improved flue gas desulfurization performance

Similar Documents

Publication Publication Date Title
EP0405619B1 (en) A process for treating a chlorine-containing effluent and and apparatus therefor
EP1106237B1 (en) Method of treating waste waters from a flue gas desulphuriser
US4337230A (en) Method of absorbing sulfur oxides from flue gases in seawater
WO2017201484A1 (en) Sulfate reduction in flue gas desulfurization system by barium precipitation
US4696805A (en) Method for desulfurizing exhaust gas
US4675167A (en) Method of treating exhaust gases
PL111056B1 (en) Method of treating exhaust gases
US4539190A (en) Method for the treatment of exhaust gases
US4231995A (en) Ammonia double-alkali process for removing sulfur oxides from stack gases
DK175015B1 (en) Process for the treatment of waste gas containing SO2, HF and A1
US3961021A (en) Method for removing sulfur dioxide from combustion exhaust gas
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
JPS60153924A (en) Treatment of exhaust gas
JPS6115719A (en) Treatment of exhaust gas
JP3174665B2 (en) Flue gas desulfurization method
US4178348A (en) Process for removing sulfur oxides in exhaust gases
JP4869294B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CA1100122A (en) Removal of noxious contaminants from gas
JP2678212B2 (en) Wet desulfurization method and apparatus
JPS618115A (en) Desulfurization treatment of waste gas by liquid
JPS6121690B2 (en)
JPS59228926A (en) Exhaust gas desulphurization process
JPS62258727A (en) Method for desulfurization and dust removal from waste gas
JPS59186633A (en) Treatment of waste gas
JPS6232995B2 (en)