JPS60153914A - Element for electromagnetic filter - Google Patents

Element for electromagnetic filter

Info

Publication number
JPS60153914A
JPS60153914A JP932584A JP932584A JPS60153914A JP S60153914 A JPS60153914 A JP S60153914A JP 932584 A JP932584 A JP 932584A JP 932584 A JP932584 A JP 932584A JP S60153914 A JPS60153914 A JP S60153914A
Authority
JP
Japan
Prior art keywords
wire
thin layer
magnetic
magnetic fine
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP932584A
Other languages
Japanese (ja)
Inventor
Fumitaka Hayata
早田 文隆
Takao Yugawa
湯川 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP932584A priority Critical patent/JPS60153914A/en
Publication of JPS60153914A publication Critical patent/JPS60153914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To make it possible to stably collect even weak magnetic fine particles such as colloidal iron hydroxide particles, by holding both surfaces of a thin layer constituted of a magnetic fine wire between metal nets each constituted of a strand. CONSTITUTION:Both surfaces of a thin layer 10 constituted of a magnetic fine wire having a wire diameter of about 10mum, pref., 5-20mum and comprising ferrite soft steel are held between metal nets 16 each of which is constituted of transverse wires 10 and longitudinal wires 12, both of which are sufficiently thicker than the above mentioned magnetic fine wire, and comprises a ferromagnetic material. Said thin layer 10 and the metal net 16 are laminated in a multi- layered form to constitute an element 4. As a result, weak magnetic fine particles such as colloidal iron hydroxide particles can be stably collected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電磁フィルタのp層部である電磁フィルタ用エ
レメント(以下、単にエレメントという場合もある。)
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an electromagnetic filter element (hereinafter sometimes simply referred to as an element) which is a p-layer part of an electromagnetic filter.
Regarding.

〔背景技術〕[Background technology]

水中に懸濁する微細な磁性粒子を磁気的に捕捉する装置
として電磁フィルタがある。この電磁フィルタは第1図
に示すように、被処理水の人口1と出口2を1liif
えたフィルタ容器3と、このフィルタ容器3の内部に収
納されたエレメント4と、このエレメント4の上下に配
設された多孔性の磁極板5と、前記フィルタ容器3の外
周囲に配置され前記エレメント4を磁化するだめの電磁
コイル6と、電磁コイル6の外部空間において+a東を
収束するリターンフレーム7などによって構成される。
An electromagnetic filter is a device that magnetically captures fine magnetic particles suspended in water. As shown in Figure 1, this electromagnetic filter has a population 1 and an outlet 2 of the water to be treated.
an element 4 housed inside the filter container 3; a porous magnetic pole plate 5 disposed above and below the element 4; and an element disposed around the outer circumference of the filter container 3. 4, and a return frame 7 that converges +a east in the space outside the electromagnetic coil 6.

電磁コイルに通電することにより、磁束を発生させ、こ
の磁束を横切るエレメント4の表面に空間i界を生じさ
せる。このため、エレメントを通過する被処理水中に懸
濁している磁性粒子はエレメント4の表面に磁気的に捕
捉される。粒子の捕捉量が一定値以上に達した段階で、
解磁し、エレメントに洗浄水を通過させ捕捉した粒子を
エレメント4の層から除く洗浄工程を施す。
By energizing the electromagnetic coil, a magnetic flux is generated, and a spatial i-field is generated on the surface of the element 4 that crosses this magnetic flux. Therefore, magnetic particles suspended in the water to be treated passing through the element are magnetically captured on the surface of the element 4. When the amount of captured particles reaches a certain value or more,
After demagnetization, a cleaning step is performed in which the elements are passed through cleaning water to remove captured particles from the layer of the element 4.

エレメントは一般に強磁性体である金属細線を充填した
ものが使われるが、このエレメントの構成が電磁フィル
タの性能と密接に関係する。金属細線の線径が細いほど
、細線の表面に生ずる磁界の勾配が大きくなり、磁性粒
子の捕捉効率が高まる。また、充填率を大きくすると捕
捉効率が向上する。しかしながら、線径が細すぎると、
エレメントの機械的強度が低下し、圧密化しやすいとい
う問題がある。エレメントの圧密化によって9通水抵抗
が増大し、これがさらに圧密化を促挽させるという弊害
が生じ、終いにはエレメントが閉塞するという事態が生
じる。この傾向は沢過時間が長くなり、エレメントの表
面に捕捉粒子が蓄、@すると、より一層助長される。ま
た、細線の充填率を大きくすると、前記と同様にエレメ
ントの通水抵抗が増大し、圧密fヒの傾向は著しく大き
くなる。
The element is generally filled with thin ferromagnetic metal wires, and the configuration of this element is closely related to the performance of the electromagnetic filter. As the wire diameter of the thin metal wire becomes smaller, the gradient of the magnetic field generated on the surface of the thin wire becomes larger, and the efficiency of capturing magnetic particles increases. Furthermore, increasing the filling rate improves the capture efficiency. However, if the wire diameter is too small,
There is a problem that the mechanical strength of the element decreases and it is easily consolidated. Consolidation of the element increases water flow resistance, which has the disadvantage of further accelerating consolidation, and eventually causes the element to become clogged. This tendency is further promoted as the flow time becomes longer and trapped particles accumulate on the surface of the element. Furthermore, when the filling rate of the thin wires is increased, the water flow resistance of the element increases in the same manner as described above, and the tendency for consolidation becomes significantly large.

このため、従来の電磁フィルタにおいては、エレメント
金構成する金属細線の線径は10μmが!l(W−とさ
れ、この値以下の線径のものは1機械的強度の点から、
実用されていなかった。
For this reason, in conventional electromagnetic filters, the wire diameter of the thin metal wire that makes up the element gold is 10 μm! l(W-), and wire diameters less than this value are 1. From the point of view of mechanical strength,
It had not been put into practice.

−万、火力または原子力発電所の復水処理の外野では、
復水中のクラッドを除去する必要がある。
- In the field of condensate treatment at thermal or nuclear power plants,
It is necessary to remove the crud in the condensate.

クラッドの主成分は磁性粒子とされているので。The main component of cladding is considered to be magnetic particles.

本発明者らは、上記クラッドの1@去に電磁フィルタの
適用を検討した。その結果、上記復水中のクラッドの除
去に対し7ては従来技術に係る電磁フィルタでは、除去
性能が思わしくないことが判明した。そして、この原因
として、復水中には9粒径0.5μmn以下のコロイド
状水酸化鉄が相当量含まれていること、この水酸化鉄か
弱磁性であるため。
The present inventors investigated the application of an electromagnetic filter to the above-mentioned cladding. As a result, it was found that the electromagnetic filter according to the prior art had an unsatisfactory removal performance in removing the crud in the condensate. The reason for this is that the condensate contains a considerable amount of colloidal iron hydroxide with a particle size of 0.5 μm or less, and this iron hydroxide is weakly magnetic.

電磁フィルタでは捕捉しに<<、クラッドの除去率を低
下させる結果を招いていることが判明した。
It has been found that the electromagnetic filter does not capture the cladding, resulting in a decrease in the cladding removal rate.

第2図に実験結果の一例を示す。本実験は線径の異なる
磁性細線をそれぞれ充填率5%、P層高150閣で構成
したエレメントに磁束密度5KGを付与し、クラッドの
舗度が10〜50 ppbの抽水k 600 m /ん
の条件で通水し、各エレメントのクラッド除去率を比較
したものである。第2図から明らかなように、エレメン
トを構成する磁性細線の線径が太い程、クラッド除去率
が低下しており、クラッド除去率を90%以上にするた
めには、磁性細線の、線径を10μm程度にする必要が
ある。
Figure 2 shows an example of the experimental results. In this experiment, a magnetic flux density of 5 KG was applied to an element composed of magnetic fine wires with different wire diameters with a filling rate of 5% and a P layer height of 150 mm. The comparison shows the crud removal rate of each element under various conditions. As is clear from Fig. 2, the crud removal rate decreases as the wire diameter of the magnetic fine wire constituting the element increases. It is necessary to make it approximately 10 μm.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来技術の問題点に鑑み。 The object of the present invention is to solve the problems of the prior art described above.

線径が10μ711程度の磁性細線で構成したエレメン
トを用いても圧密fヒの程度が小さく、シたがって、コ
ロイド状水酸化鉄などの弱磁性の微細粒子をも安定して
捕捉することができる電磁フィルタ用エレメントを提供
することにある。
Even when an element made of magnetic fine wire with a wire diameter of about 10μ711 is used, the degree of compaction is small, and therefore even weakly magnetic fine particles such as colloidal iron hydroxide can be stably captured. An object of the present invention is to provide an element for an electromagnetic filter.

〔発IJjのi既製〕[I ready-made from IJJ]

本発明の1程磁フイルタ用エレメントは、線径が10 
tzm イ♀度の磁性細線で構成した薄層の両面を前記
磁性細線よりも十分に太い素線で構成した金網によって
J夾むようにしたことをt時機とする。
The magnetic filter element of the present invention has a wire diameter of 10
tzm It is assumed that both sides of a thin layer made of a magnetic thin wire of ♀ degree are covered with a wire mesh made of a wire that is sufficiently thicker than the magnetic thin wire.

本究明に係る磁性細線は1強磁性の金属細線が好捷しく
、+&!Iえばフェライト系の軟鋼やステンレスが用い
られる。その線径は5〜20μ〃Lであることが好まし
い。51tm以下では薄層の製造が困・印であるととも
に、11j1食性1機械的強度に難点が生じ実用的では
ない。また、20μmル以上では。
The magnetic wire according to this research is preferably a ferromagnetic metal wire, +&! For example, ferritic mild steel or stainless steel is used. The wire diameter is preferably 5 to 20 μL. If the thickness is less than 51 tm, it is difficult to manufacture a thin layer, and problems occur in 11j1 erodibility and mechanical strength, making it impractical. Also, if it is 20 μm or more.

弱磁性の微細粒子の捕捉効果が小さく1本発明の目的を
達成することが難しい。前記薄層は、磁性細線を適当な
手段によって均一に充填して構成するが、その充填率は
3〜10%であることが好ましい。3%以下では機械的
強度が小さくなり、エレメントの変形が生じ易いととも
に、@性粒子の捕捉効果が低下する。10%以上では1
通水抵抗が大きく、磁性粒子を捕捉することによって1
通水抵抗が増大し、圧密化を助長する。薄層の厚さは1
〜5 mmが好ましい。1111111以−ドでは、薄
層1枚、当りの磁性細線の絶交」量が不足する。このた
め。
The effect of trapping weakly magnetic fine particles is small, making it difficult to achieve the object of the present invention. The thin layer is formed by uniformly filling magnetic thin wires by appropriate means, and the filling rate is preferably 3 to 10%. If it is less than 3%, the mechanical strength becomes small, the element is likely to be deformed, and the effect of trapping @ particles is reduced. 1 for 10% or more
1 by capturing magnetic particles with high water flow resistance.
Water flow resistance increases, promoting compaction. The thickness of the thin layer is 1
~5 mm is preferred. In the case of 1111111 and above, the amount of discontinuous magnetic wires per thin layer is insufficient. For this reason.

H[望の除去率を得るためには、多数枚の薄層を積層す
る必要が生じ実用的でない。・5鴫以上で6J、後述す
る本発明の作用効果を得にくい。
H [In order to obtain the desired removal rate, it is necessary to laminate many thin layers, which is impractical. - If it is 5J or more, it is difficult to obtain the effects of the present invention described below.

本発明に係る金網を構成する素線は9強磁性の材質であ
ることが好1しく、これによって磁性粒子の捕捉作用を
期待できる。しかしなから9本発明における金網は磁性
粒子の捕捉を主たる目的とするものではなく、その形状
および強度が前記磁性細線の薄層と相乗して所定の作用
効宋ヲ発揮するものであるから、必ずしも強磁性の材質
を必須とするものではない。素線の太さは前記磁性細線
の線径よりも十分に大きいことが必要であり、好ましく
は100〜1000μmとされる。100μ7厚以下で
は金網の機械的強度が小さくなシ、エレメントの剛性を
向上させるという金網の作用効果が期待しにくくなる。
The wires constituting the wire mesh according to the present invention are preferably made of a ferromagnetic material, which can be expected to have an effect of trapping magnetic particles. However, the main purpose of the wire mesh in the present invention is not to capture magnetic particles, but because its shape and strength work together with the thin layer of magnetic fine wires to exert a predetermined function and effect. A ferromagnetic material is not necessarily required. The thickness of the wire needs to be sufficiently larger than the wire diameter of the magnetic thin wire, and is preferably 100 to 1000 μm. If the thickness is less than 100 μ7, the mechanical strength of the wire mesh is low, and it becomes difficult to expect the effect of the wire mesh to improve the rigidity of the element.

1000μm以上では。At 1000 μm or more.

金、114の凹凸の度合が疎となり、前記薄層を両面か
ら挾んで薄層を補強するという金網の他の作用効果を小
さくする。金網は、断面が円状また角状の素1腺を1編
んだものが普通に用いられる。しかしこれに限るもので
はなく9例えば、薄板に多数の1;J) 、iΔみ金入
れ、これを一方向から拡張して製造したエキスバンド金
網でもよい。エキスバンド金網は、素線の断面が鋭いエ
ツジ部を有する矩形状に構成されるので、相性が強(直
性の材料である場合には、磁束が集中し、磁性粒子の捕
捉作用が十分に1υjイ、′fできる。
The degree of unevenness of the gold 114 becomes sparse, which reduces the other effect of the wire mesh, which is to sandwich the thin layer from both sides and reinforce the thin layer. Wire mesh is usually made by knitting a single piece of wire with a circular or square cross section. However, the invention is not limited to this, and for example, a thin plate with a large number of 1; Expanded wire mesh has a rectangular cross-section with sharp edges, so it is highly compatible (if it is a straight material, the magnetic flux will concentrate and the magnetic particle trapping effect will be sufficient). 1υji, ′f can be done.

本)6明に係るエレメントは、薄層の両面を金1網で挾
んだものを基本単位とするものであるが、必要に応じて
上記の基本単位のものを多層に積層するか、もしくは、
薄層と金網とf:1枚づつ交互に積層して構成する。エ
レメントの機械的強度を大きくするために、薄層は金属
細線を拡故接合法に ゛より相互に接合させることが好
ましい。また、油層と金網とを同様に拡散拡合すれば、
エレメントが一体化して機械的強度がさらに向上する。
The basic unit of the element according to 6 Ming is a thin layer sandwiched between two wire meshes, but if necessary, the above basic units may be laminated in multiple layers, or ,
Thin layer, wire mesh, and f: Constructed by laminating one layer at a time alternately. In order to increase the mechanical strength of the element, the thin layers are preferably made by joining thin metal wires to each other by expansion joining. Also, if the oil layer and the wire mesh are diffused and expanded in the same way,
The elements are integrated to further improve mechanical strength.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第3図および第4図に基づい、て説明
する。
An embodiment of the present invention will be described based on FIGS. 3 and 4.

図中、磁性細線で構成した薄層1oの両面は。In the figure, both sides of the thin layer 1o made of magnetic thin wires are shown.

横線10および縦線12によって構成した金網16に挾
まれており、この薄層10と金網16とが多層に積層さ
れてエレメント4を構成する。第4図は、被処理水を一
定時間通水した際のエレメントの変形状態をモデル化し
て示したものである。
The thin layer 10 and the wire mesh 16 are stacked in multiple layers to form the element 4. FIG. 4 shows a model of the deformation state of the element when water to be treated is passed through the element for a certain period of time.

同図(イ)は、薄層10が両側の金網16によって部分
的に圧密化した状態を示す。すなわち、〆1す層10は
、上下の金網が最も近接した部分Aで圧°に比し、他の
部分Bでは圧密化されず、積層した初期の厚さをほぼ維
持できる。したがって、圧密化した部分Aが・円面的に
数点散在することによって。
Figure (a) shows a state in which the thin layer 10 is partially consolidated by the wire meshes 16 on both sides. That is, the final layer 10 has a lower pressure at the portion A where the upper and lower wire meshes are closest to each other, and is not consolidated at other portions B, so that the initial layered thickness can be maintained. Therefore, the consolidated parts A are scattered at several points on a circular surface.

これらの部5) A k介してのみ9通水抵抗が金網1
0に伝j′?bする。このため、長時間の運転によって
も、薄層10は圧密化の程度が少ない部分Bを大きな割
合で保持でき、贋水砥抗が増加せず、安定した連転全維
持できる。
These parts 5) A k only through 9 water flow resistance is wire mesh 1
Transmitted to 0? b. Therefore, even during long-time operation, the thin layer 10 can maintain a large proportion of the portion B where the degree of consolidation is low, and the resistance to counterfeit water does not increase, and stable continuous rotation can be maintained.

第4図(ロ)はエレメントの他の変形状態を示す。FIG. 4(b) shows another deformed state of the element.

この場合は、金網16の機械的強度が大きい例であり+
 iJ) !i’410は9通水抵抗によって平均的に
若干圧密比し、上1jif、側の金網16Bの上面と、
薄層10のF向が離間し1間隙gを生ずる。一方、下流
fullの金網16Aの下面と薄層lOの上面は密着す
る。このため1通水抵抗が金網16の各層4σに分割さ
れ、最に層の油層に通水抵抗が累積して作用することが
ない。実際の本発明に係るエレメントは、その構造によ
って、上記第4図で説明したいずれか一方が作用するか
、もしくは双方が関連して作用するかして、 Itシ層
10の1比体的な圧畠化を防止する。このため、磁性粒
子を安定して捕集できる。
In this case, the mechanical strength of the wire mesh 16 is high, and +
iJ)! i'410 has a slight consolidation ratio on average due to 9 water flow resistance, and the upper surface of the wire mesh 16B on the side of the upper 1 jif,
The thin layers 10 are spaced apart in the F direction, creating a gap g. On the other hand, the lower surface of the downstream full wire mesh 16A and the upper surface of the thin layer 10 are in close contact with each other. Therefore, one water flow resistance is divided into 4σ of each layer of the wire mesh 16, and the water flow resistance does not accumulate and act on the oil layer of the last layer. In the actual element according to the present invention, depending on its structure, either one of the elements explained in FIG. Prevent compaction. Therefore, magnetic particles can be collected stably.

本発明に係るエレメントは、上記の作用効果μ外に9次
の作用効果がある。まず第1に、洗浄工程が円滑に行わ
れる。洗浄工程では、エレメントを解磁し1次いで洗浄
水を通常は被処理水の通水方向とは逆の方向から通す。
The element according to the present invention has ninth-order effects in addition to the effects μ described above. First of all, the cleaning process is performed smoothly. In the cleaning process, the element is first demagnetized and then cleaning water is passed through it, usually in the opposite direction to the direction in which the water to be treated is passed.

解磁されているので。Because it has been demagnetized.

エレメントに捕捉された磁性粒子は、洗浄水の水流によ
ってエレメントから離脱する。本発明においては薄層1
0が金網16によって侠まれでおり。
The magnetic particles captured by the element are removed from the element by the flow of washing water. In the present invention, the thin layer 1
0 is surrounded by wire mesh 16.

薄層10f:構成する磁性細線と、金線16を構成する
素線の太さの相違により、金網16の部分に無数の自由
空間C(第3図参照)を形成する。このため+ 4層1
0から離脱した磁性粒子は、一旦上記自由空間Cを経由
し1次の薄層へ洗浄水とともに移行する。このような自
由空間Cにおいては。
Thin layer 10f: Due to the difference in thickness between the thin magnetic wires and the wires forming the gold wire 16, countless free spaces C (see FIG. 3) are formed in the wire mesh 16. For this reason + 4 layers 1
The magnetic particles that have separated from the magnetic particles pass through the free space C and move to the primary thin layer together with the cleaning water. In such a free space C.

洗浄水は通水抵抗が小さい方向に流れを変えるので、磁
性粒子は洗浄水とともに通水抵抗が小さい薄層の部分子
:ljJ択的に通過する。このため、洗浄下8を迅速か
つ効宋的に行うことができる。上記の作用効果は薄層が
薄いほど大きいが、前記のように実用上の観点から、薄
層の厚さはl mm程度が限界となる。
Since the flow of the cleaning water is changed in the direction of low water flow resistance, the magnetic particles selectively pass through the thin layer of molecules: ljJ with low water flow resistance together with the cleaning water. Therefore, the cleaning step 8 can be performed quickly and efficiently. The above-mentioned effects are greater as the layer is thinner, but as mentioned above, from a practical standpoint, the limit for the thickness of the thin layer is approximately 1 mm.

第2に本発明においては、エレメントに捕捉された磁性
粒子相互の凝集粗大化による弊害が少ない。捕捉された
磁性粒子が物理的または化学的に相互に結合し、粗大化
することはよく知られており、このため、洗浄を行って
もエレメントが抜は出られず、電磁フィルタの性能が除
去に低下するという弊害が生ずる。本発明に係るエレメ
ントはtjiJ記のように油層の前後に自由空間Cがで
きるので、ある程度粗大化した磁性粒子でも比較的容易
にエレメントから抜は出ることができる。したがって、
洗浄を行っても敗は切れずに残留した粗大磁性粒子がさ
らに粗大化するという悪循環を未然に防上できる。
Second, in the present invention, there are fewer adverse effects caused by mutual aggregation and coarsening of the magnetic particles captured in the element. It is well known that captured magnetic particles physically or chemically bond to each other and become coarse, and for this reason, the element cannot be removed even after cleaning, and the performance of the electromagnetic filter is reduced. This results in a negative effect of a drop in performance. Since the element according to the present invention has a free space C before and after the oil layer as described in tjij, even magnetic particles that have become coarse to some extent can be extracted from the element relatively easily. therefore,
This can prevent a vicious cycle in which the remaining coarse magnetic particles become even coarser even after cleaning.

実11会例 線径が)−(/Z ntで、材質がフェライト系ステン
レスである5US430の磁性Il:llI線f:充填
率7%。
Magnetic Il:llI wire f of 5US430 whose material is ferritic stainless steel, where the wire diameter is )-(/Z nt, and the filling rate is 7%.

層高:、:、 h mmになるように構成して薄層とし
た。また、金網として拐)t!1がフェライト系ステン
レスである5O8430で、素線の径が250μm口。
A thin layer was formed so that the layer height was: h mm. It can also be used as a wire mesh) 1 is 5O8430, which is a ferritic stainless steel, and the diameter of the wire is 250 μm.

開口径1.5 tn X 3 +nm、厚さ1mmのも
のを用いた。
The one with an opening diameter of 1.5 tn x 3 +nm and a thickness of 1 mm was used.

上記の油層1枚に対して金@を両面から挾み1合計厚さ
4.5 mmのもの’cMiL位エレメントとした。こ
の単位エレメントを10枚積層して層高45Mのエレメ
ントとした。このエンメントを用いた電磁フィルタに9
粒径05μm以下のコロイド状水酸化鉄10〜50 p
pb含む水を処理流速600フル/hで通水するととも
に、エレメントには磁束密度KG を付与し、水酸化鉄
の除去率およびエレメント前後の差圧の経時変化を61
4べた。その結果を第5図の実線aで示す。
For each of the above oil layers, gold was sandwiched from both sides to form an element with a total thickness of 4.5 mm. Ten of these unit elements were laminated to form an element with a layer height of 45M. 9 in an electromagnetic filter using this enment.
Colloidal iron hydroxide with a particle size of 05 μm or less 10 to 50 p
Water containing PB was passed through the process at a flow rate of 600 full/h, and a magnetic flux density of KG was applied to the element, and the removal rate of iron hydroxide and the change in the differential pressure before and after the element over time were measured at 61
I got 4. The results are shown by solid line a in FIG.

また、#層自体および薄層と金網とを拡散接合加工(柔
性: 10−5mmHg以下、温度1100℃の条件で
1時間熱処理)した以外は前記と同一の条件でエレメン
トを構成し、同一の条f’l=で通水実験した結果を、
第5図の実線すで示す。
In addition, the element was constructed under the same conditions as above, except that the # layer itself, the thin layer, and the wire mesh were processed by diffusion bonding (flexibility: 10-5 mmHg or less, heat treatment at a temperature of 1100°C for 1 hour). The results of the water flow experiment with f'l= are as follows:
This is shown by the solid line in FIG.

さらに、比較のため、従来技術に係るエレメントとして
線径が811nL、材質が5US430の磁性細線を充
填率7%、+、1高25 mmで構成し、他は前記と同
一の条件で通水実験した結果を第5図の破線Cで示す。
Furthermore, for comparison, a water flow experiment was conducted under the same conditions as above, except that an element according to the prior art was composed of a magnetic thin wire with a wire diameter of 811 nL and a material of 5US430 with a filling rate of 7%, +, 1 height 25 mm. The results are shown by broken line C in FIG.

なお、上記各通水実験においては、洗浄工程は実施しな
かった。
Note that in each of the water passage experiments described above, no washing step was performed.

第5図から明らかなように1本発明に係る実線a、実線
すは、長時間の運転によっても、除去率が除々に低下し
、差圧も徐々に上昇する程度に正寸る。一方、従来技術
に係る破線Cは、濾過時間が40肋間程度から急政に圧
密化が進行し、差圧力ー色土f1することを示す。除去
率は圧密化の併行によって一時的に上昇するが、以降は
差圧が過大となつ−C9所定の処理流速(600m /
 h)を確保できない。
As is clear from FIG. 5, the solid lines a and 2 according to the present invention are accurate to such an extent that the removal rate gradually decreases and the differential pressure gradually increases even after long-term operation. On the other hand, the broken line C according to the prior art shows that compaction rapidly progresses from the filtration time of about 40 intercostals, and the differential pressure - color soil f1. The removal rate temporarily increases due to consolidation, but after that the differential pressure becomes excessive.
h) cannot be secured.

〔発明の効果〕〔Effect of the invention〕

以上、1ホべたように9本発明に係る電磁フィルタ用エ
レメントによれば、線径が10μm程度のj磁性細線で
構成したニレメントラ用いても圧密化の程度が小さく、
コロイド状水酸化鉄などの弱磁性の微細f<7. +を
安定して捕捉することができる。
As mentioned above, according to the electromagnetic filter element according to the present invention, the degree of compaction is small even when using a magnetic wire made of thin magnetic wires with a wire diameter of about 10 μm.
Weakly magnetic fine particles such as colloidal iron hydroxide f<7. + can be stably captured.

丑だ、洗浄工程を円滑に行うことができ、捕捉した粒子
相互の凝集粗大化に伴う弊害も怪減できる。
Fortunately, the cleaning process can be carried out smoothly, and the harmful effects of the aggregated particles that have been captured can be greatly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電磁フィルタの主要構成を示す断+7+r 1
図。 第2図はエレメント用金属細線の線径とクラッド除去率
の関係を示すグラフ、第3図は本発明の一実施例を示す
説明図、第4図(イ)、(ロ)は第3図実施例の変形状
態を示す説明図、第5図はIIn水実験の結果のグラフ
である。 3・・・フィルタ6器 4・・・エレメント5・・・4
f1極板 6・・電磁コイル7・・・リターンフレーム
 10・・・薄層16・・・金 網 C・・自由空間。
Figure 1 shows the main structure of the electromagnetic filter.
figure. Fig. 2 is a graph showing the relationship between the wire diameter of the thin metal wire for the element and the crud removal rate, Fig. 3 is an explanatory diagram showing one embodiment of the present invention, and Figs. FIG. 5, which is an explanatory diagram showing the modified state of the example, is a graph of the results of the IIn water experiment. 3...6 filters 4...element 5...4
f1 pole plate 6... Electromagnetic coil 7... Return frame 10... Thin layer 16... Wire mesh C... Free space.

Claims (1)

【特許請求の範囲】[Claims] (1) gA径が10μ〃L程度の磁性細線で構成した
薄層の両面を、前記磁性細線よりも十分に太い素線で構
成した金網によって挾むようにしと前記金網とが交互に
積層されたものであることを特徴とする電磁フィルタ用
エレメント。
(1) Both sides of a thin layer made of thin magnetic wires with a gA diameter of about 10 μ〃L were sandwiched between wire meshes made of wires that were sufficiently thicker than the thin magnetic wires, and the wire meshes were alternately laminated. An electromagnetic filter element characterized by being
JP932584A 1984-01-20 1984-01-20 Element for electromagnetic filter Pending JPS60153914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP932584A JPS60153914A (en) 1984-01-20 1984-01-20 Element for electromagnetic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP932584A JPS60153914A (en) 1984-01-20 1984-01-20 Element for electromagnetic filter

Publications (1)

Publication Number Publication Date
JPS60153914A true JPS60153914A (en) 1985-08-13

Family

ID=11717319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP932584A Pending JPS60153914A (en) 1984-01-20 1984-01-20 Element for electromagnetic filter

Country Status (1)

Country Link
JP (1) JPS60153914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545365Y2 (en) * 1987-11-17 1993-11-19
US5439586A (en) * 1993-09-15 1995-08-08 The Terry Fox Laboratory Of The British Columbia Cancer Agnecy Magnetic filter with ordered wire array
KR100990506B1 (en) 2008-09-25 2010-10-29 형성산업(주) Magnetic filter device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545365Y2 (en) * 1987-11-17 1993-11-19
US5439586A (en) * 1993-09-15 1995-08-08 The Terry Fox Laboratory Of The British Columbia Cancer Agnecy Magnetic filter with ordered wire array
KR100990506B1 (en) 2008-09-25 2010-10-29 형성산업(주) Magnetic filter device

Similar Documents

Publication Publication Date Title
US4769130A (en) High-gradient magnetic separator
JPS6157215A (en) Fine screen and fine screen stacked magazine, production anduse thereof
DE1117810B (en) Magnetic filter for filtering liquids
JPS6048209B2 (en) magnetic separation device
EP0111825B1 (en) Device used in the high gradient magnetic separation technique for separating magnetizable particles
JPS60153914A (en) Element for electromagnetic filter
EP0100965B1 (en) Magnetizable separating device for cleaning fluids
JP2019529892A (en) Fuel assembly
JPS6115923Y2 (en)
DE2929468C2 (en)
KR102002557B1 (en) Filter for fine particle with iron and method for manufacturing the same
JP2728848B2 (en) Magnetic filter
JPS58143814A (en) Magnetic separation apparatus
JPS60100Y2 (en) electromagnetic filter machine
JPS5912721A (en) Filter element for electromagnetic filter and preparation thereof
US4356093A (en) Method of increasing the effectiveness of or the effective production rate of a process by integrated feed
JP2012217880A (en) Magnetic particle recovery apparatus and magnetic particle recovery method
JPS6145857Y2 (en)
JPS60132609A (en) Electromagnetic filter apparatus
JPS5936252Y2 (en) electromagnetic filter
JP3879332B2 (en) Fuel assembly
JPS5935975B2 (en) Method for manufacturing a filter using grinding powder of steel whose surface is replaced with copper
JPH0537308U (en) Filter element
JPH03284311A (en) Sintered wire net filter medium and filter element using the same
DE3247557A1 (en) Device for high-gradient magnetic separation