JPS601534A - Method for checking penetration of air vent in complicated structure - Google Patents
Method for checking penetration of air vent in complicated structureInfo
- Publication number
- JPS601534A JPS601534A JP10885583A JP10885583A JPS601534A JP S601534 A JPS601534 A JP S601534A JP 10885583 A JP10885583 A JP 10885583A JP 10885583 A JP10885583 A JP 10885583A JP S601534 A JPS601534 A JP S601534A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic fluid
- magnet
- air vent
- penetration
- turbine blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Testing Of Engines (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本考案は複雑構造物の内部通気孔貫通検査方法に係り、
特にタービンの冷却通気孔の貫通の可否を検査するのに
好適な貫通検食方法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for inspecting internal ventilation holes of a complex structure.
In particular, the present invention relates to a penetration inspection method suitable for inspecting whether or not a cooling vent of a turbine can penetrate.
一般に、ガスタービン翼は翼内部に冷却機能をもたせる
/こめに冷却空気通路が形成されている。Generally, a gas turbine blade has a cooling function inside the blade, and a cooling air passage is formed therein.
冷却空気通路の構造例を第1〜2図、に示ず。即ち、翼
本体10の基部に空気導入口12を形成し、中央部の主
通路14の前後には隔壁16.18を設けている。前縁
側の隔壁16には複数の通気孔20が穿設されて前部空
間22と連通され、前部空間22は前縁に開口する吐出
孔24を介して外部に連なっている。また、後縁側の隔
壁18は上縁内壁との間に連通路26を形成し、主通路
14と後部空間28とが連通されている。そして、後部
空間28は翼本体10の後縁に穿設した複数の吐出孔3
0によって外部に連通されている。Examples of the structure of the cooling air passage are not shown in FIGS. That is, an air inlet 12 is formed at the base of the wing body 10, and partition walls 16, 18 are provided before and after the main passage 14 in the center. A plurality of ventilation holes 20 are formed in the partition wall 16 on the front edge side and communicate with a front space 22, and the front space 22 is connected to the outside via a discharge hole 24 opening at the front edge. Further, the partition wall 18 on the rear edge side forms a communication passage 26 with the inner wall of the upper edge, and the main passage 14 and the rear space 28 are communicated with each other. The rear space 28 has a plurality of discharge holes 3 bored at the trailing edge of the wing body 10.
0 communicates with the outside.
ところで、このような複雑構造をしたガスタービン翼は
精密鋳造法により製造されるが、上記構造の冷却空気通
路は設計通りに貫通形成されていなければ異常に加熱さ
れて不測の危険性をもたらす。このため、従来では翼本
体10の上縁や後縁に形成された吐出孔24.30に対
しては目視確認ができるものの、内部の隔壁16に穿設
された通気孔20の目視確認ができないため、X線投影
による貫通検査が行われていた。By the way, gas turbine blades having such a complicated structure are manufactured by a precision casting method, but if the cooling air passages in the structure are not formed to penetrate as designed, they will be abnormally heated and pose an unexpected danger. For this reason, conventionally, although it is possible to visually check the discharge holes 24 and 30 formed on the upper edge and trailing edge of the wing body 10, it is not possible to visually check the ventilation holes 20 formed in the internal partition wall 16. Therefore, penetration inspection using X-ray projection was performed.
しかしながら、前記通気孔20の鋳型となる中子に微小
なりラックが生じ、薄い箔状の鋳ばりが形成されて通気
孔20が塞がれている場合には、従来の検査法によって
は検出できないという問題があった。この問題点はガス
タービン具に限らず、内部に通気孔を有する複雑((°
4造物に共通のものである。However, if a minute rack occurs in the core that serves as the mold for the vent hole 20, and a thin foil-like flash is formed and the vent hole 20 is blocked, it cannot be detected by conventional inspection methods. There was a problem. This problem is not limited to gas turbine equipment, but also complex equipment with internal ventilation holes ((°
This is common to all four created things.
本発明は、上記従来の問題点に層目し、目視確認できな
い暗部に通気孔を有するタービン翼などの複雑構造物の
上記通気孔の貫通の有無を確実に検査することのできる
内部通気孔貫通検査方法を提供することを目的とする。The present invention addresses the above-mentioned conventional problems, and provides an internal ventilation hole penetration system that can reliably inspect the presence or absence of the ventilation hole penetration of a complex structure such as a turbine blade, which has ventilation holes in dark areas that cannot be visually confirmed. The purpose is to provide an inspection method.
上記目的を達成するために、本発明は、タービン翼など
内部に隔壁を有し、この隔壁に通気孔を穿設してなる複
雑4が遺物の内部通気孔貫通検査方法において、前記構
造物内に磁性流体を導入し、この磁性流体を外部の磁石
により前記隔壁の前後に移動させ、X線投影などにより
磁性流体の通流可否を確認して貫通検査を行うようにt
fQ成した。In order to achieve the above object, the present invention provides a method for inspecting the internal ventilation hole of a complex 4 artifact, which has a partition wall inside the structure, such as a turbine blade, and a ventilation hole is bored in the partition wall. A magnetic fluid is introduced into the partition wall, the magnetic fluid is moved forward and backward of the partition wall using an external magnet, and penetration inspection is performed by confirming whether or not the magnetic fluid can flow by using an X-ray projection or the like.
fQ was completed.
上記構成によシ、磁性流体が通気孔を通流するか否かを
X線写真あるいは直接的に確認でき、目づまシ状態が判
別可能となるのである。With the above configuration, it is possible to confirm whether or not the magnetic fluid flows through the ventilation hole by using an X-ray photograph or directly, and it becomes possible to determine the state of blindness.
以下に本発明に係る複雑構造物の内部通気孔貫通検査方
法の具体的実施例をガスタービン翼に適用した場合につ
き詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the method for inspecting internal ventilation holes in a complex structure according to the present invention will be described in detail below when applied to a gas turbine blade.
第1〜2図に示されるガスタービン翼は前述したように
主通路14に接する前縁側の隔壁16に通気孔20が形
成され、この通気孔20の目視検査ができない。そこで
、翼本体10の基部に設けられた空気導入口12から磁
性流体を矢印Aの如く導入する。この磁性流体は市販さ
れているものでよく、主通路14内で通気孔20が形成
された範囲に亘って充填し得る少量で足りる。As described above, in the gas turbine blade shown in FIGS. 1 and 2, the ventilation hole 20 is formed in the partition wall 16 on the leading edge side in contact with the main passage 14, and the ventilation hole 20 cannot be visually inspected. Therefore, magnetic fluid is introduced as shown by arrow A from the air introduction port 12 provided at the base of the wing body 10. This magnetic fluid may be commercially available, and only a small amount that can fill the area in which the vent hole 20 is formed in the main passage 14 is sufficient.
また、磁性流体を予め主通路141111に保持してお
くために、第2図に示す如く、外部に磁石32を配置す
る。この磁石32は隔壁16の長さに相当する長さを有
するものであればよい。Further, in order to hold the magnetic fluid in the main passage 141111 in advance, a magnet 32 is placed outside as shown in FIG. The magnet 32 may have a length corresponding to the length of the partition wall 16.
この準備作業の後、前記磁石32を翼本体10の前縁側
に矢印Bの如く移動させるのである。磁石32の移動に
より、主通路14内の磁性流体は磁石32に追従して通
気孔20を通流し、矢印Cの如く前部空間22内に流出
する。通気孔20が箔膜状の鋳ばりによυ完全に塞がれ
、あるいは不完全閉塞状態であれば、磁性流体は通流し
ないか流量が極度に低下した状態で通流する。この磁石
32の隔壁16の前後移動と同時に、当該タービン翼を
X線投影し、直接あるいは写真により磁石32の移動前
後の通気孔20に対する磁性流体の通流状態を確認する
ことで貫通状態を判別できる。After this preparatory work, the magnet 32 is moved toward the leading edge of the wing body 10 as shown by arrow B. Due to the movement of the magnet 32, the magnetic fluid in the main passage 14 follows the magnet 32, flows through the ventilation hole 20, and flows out into the front space 22 as shown by arrow C. If the vent hole 20 is completely or incompletely blocked by the foil film-like casting flash, the magnetic fluid will not flow or will flow at an extremely reduced flow rate. At the same time as the magnet 32 moves back and forth in the partition wall 16, the turbine blade is X-ray projected and the state of flow of the magnetic fluid to the vent hole 20 before and after the magnet 32 is moved is confirmed directly or photographed to determine the penetration state. can.
前記投影はX線のみならず、磁性流体の通流を示すこと
ができるものであればよく、超音波によるものなど非破
壊検査手段を用いることができる。The projection can be performed not only by X-rays but also by any other method as long as it can show the flow of magnetic fluid, and non-destructive testing means such as ultrasound can be used.
このような実施例に係る検査方法によれば、内部通気孔
20の貫通検査を直接的に確認でき、箔膜状の閉塞鋳ば
シの存在も確認できる。また、通流量が極端に少ない場
合には閉塞状態に近い鋳ばりが存在していることを示す
ので、許容範囲であるか否かをも容易に判別でき、不測
の危険性を検知できる利点もある。According to the inspection method according to this embodiment, the penetration inspection of the internal ventilation hole 20 can be directly confirmed, and the presence of a foil film-like blockage can also be confirmed. In addition, if the flow rate is extremely low, this indicates the presence of flash that is close to being blocked, so it is easy to determine whether it is within the allowable range or not, and has the advantage of being able to detect unexpected dangers. be.
なお、上記実施例では長尺の磁石32を用いたが小片の
磁石を用いて個々の通気孔20を通fAf、させること
も可能である。また、磁性流体は削部空間22に予め充
填させる方法を採ることもできる。Although the long magnet 32 is used in the above embodiment, it is also possible to use a small piece of magnet to pass through each ventilation hole 20 fAf. Alternatively, a method may be adopted in which the magnetic fluid is filled in the cut space 22 in advance.
以上の如く、本発明によれば、暗部内の通気孔の貫通の
有無を極めて容易に検査できるというすぐれた効果を奏
する。As described above, according to the present invention, it is possible to very easily inspect the presence or absence of penetration of the ventilation hole in the dark area.
【図面の簡単な説明】
第1図はガスタービン翼の縦断面図、第2図は同横断面
図である。
10・・・翼本体、16・・・隔壁、20・・・通気孔
、32・・・磁石。
代理人 弁理士 鵜 沼 辰 之
(ほか1名)
第1図
第2図BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal cross-sectional view of a gas turbine blade, and FIG. 2 is a cross-sectional view thereof. DESCRIPTION OF SYMBOLS 10... Wing body, 16... Partition wall, 20... Ventilation hole, 32... Magnet. Agent Patent attorney Tatsuyuki Unuma (and 1 other person) Figure 1 Figure 2
Claims (1)
通気孔を穿設してなる複)s、構造物の内部通気孔貫通
検査方法において、前記構造物内に磁性流体を導入し、
この磁性流体を外部の磁石によシ前記隔壁の前後に移動
させ、X線投影などによシ磁性流体の通流可否を確1は
して貫通検査を行うことを特徴とする′fJi雑構造物
の内部通気孔貫通検査方法。(1) In a method for inspecting the penetration of an internal ventilation hole of a structure in which a turbine blade or the like has a partition wall inside and a ventilation hole is bored in the partition wall, a magnetic fluid is introduced into the structure;
A 'fJi miscellaneous structure characterized in that the magnetic fluid is moved back and forth between the partition walls using an external magnet, and the penetration inspection is performed by confirming whether or not the magnetic fluid can flow through X-ray projection or the like. A method for inspecting internal ventilation holes of objects.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10885583A JPS601534A (en) | 1983-06-17 | 1983-06-17 | Method for checking penetration of air vent in complicated structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10885583A JPS601534A (en) | 1983-06-17 | 1983-06-17 | Method for checking penetration of air vent in complicated structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS601534A true JPS601534A (en) | 1985-01-07 |
Family
ID=14495302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10885583A Pending JPS601534A (en) | 1983-06-17 | 1983-06-17 | Method for checking penetration of air vent in complicated structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS601534A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013535000A (en) * | 2010-03-17 | 2013-09-09 | サーマル・ウェーブ・イメージング、インク | Thermographic detection of internal communication passage blockage |
-
1983
- 1983-06-17 JP JP10885583A patent/JPS601534A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013535000A (en) * | 2010-03-17 | 2013-09-09 | サーマル・ウェーブ・イメージング、インク | Thermographic detection of internal communication passage blockage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1189625A (en) | Method and apparatus for electronic leak testing | |
US3888111A (en) | Sealed beam headlamp unit leak detection system | |
O'hern | An experimental investigation of turbulent shear flow cavitation | |
BR102014003882A2 (en) | METHOD FOR DRILLING AT LEAST A HOLE IN A WORKPIECE | |
US6450012B1 (en) | Multi-port gas leakage measurement fixture | |
DE102015217943A1 (en) | Ultrasonic testing device and ultrasonic testing method | |
JPS601534A (en) | Method for checking penetration of air vent in complicated structure | |
US20210108994A1 (en) | Method and composition for staining and sample processing | |
US5242007A (en) | X-ray detection of residual ceramic material inside hollow metal articles | |
Yamauchi et al. | Flow measurements of an isolated model tilt rotor | |
JPH0215026B2 (en) | ||
Riemer et al. | Cavitation damage experiments for mercury spallation targets at the LANSCE–WNR in 2008 | |
CN108894860A (en) | A kind of Vehicular exhaust detection device and detection method | |
US3791207A (en) | Wind tunnel model and method | |
TWI798692B (en) | Machining station for machining platelike workpieces and method for controlling or identifying platelike workpieces in machining station | |
JPH04160334A (en) | Inspecting apparatus for airtightness with image sensor | |
JPS62175639A (en) | Method and apparatus for calibrating leak of leak detector | |
JPS5937205A (en) | Sealing device of turbine casing | |
JP2002139397A (en) | Leak detector | |
JPH11281593A (en) | Non-destructive inspection method of concrete product | |
JP3349655B2 (en) | Method and apparatus for inspecting leak position of thin tube | |
JPH08114523A (en) | Airtightness inspection device for connecting pipe for city water | |
JPS56126760A (en) | Detecting method for open part of embedded pipe | |
CN110208379A (en) | Steel-casting standard groove harmless inspecting method | |
MASSON et al. | A new nondestructive testing technique- Acoustic emission detection |