JPS60153020A - Light beam deflecting mirror - Google Patents

Light beam deflecting mirror

Info

Publication number
JPS60153020A
JPS60153020A JP717284A JP717284A JPS60153020A JP S60153020 A JPS60153020 A JP S60153020A JP 717284 A JP717284 A JP 717284A JP 717284 A JP717284 A JP 717284A JP S60153020 A JPS60153020 A JP S60153020A
Authority
JP
Japan
Prior art keywords
movable body
coil
light beam
deflection mirror
beam deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP717284A
Other languages
Japanese (ja)
Other versions
JPH0349409B2 (en
Inventor
Koji Ichikawa
市川 厚司
Noriya Kaneda
金田 徳也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP717284A priority Critical patent/JPS60153020A/en
Publication of JPS60153020A publication Critical patent/JPS60153020A/en
Publication of JPH0349409B2 publication Critical patent/JPH0349409B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To reduce external influence of temperature, an external magnetic field, etc., by forming a long hole in both side end parts of a movable body, and fitting a driving coil to one-side opening parts of both long holes. CONSTITUTION:The movable body 12 made of aluminum is supported elastically on a base 26 with a spring 27 which is energized by a thin plate made of stainless steel. A movable body 22, on the other hand, has a mirror 21 mounted at its top surface center part and is provided with short coils 23a and 23b and rectangular long holes 24a and 24b at both sides. Then, driving coils 25a and 25b are attached in one-side opening parts of the long holes 24a and 24b and yokes 29a and 29b of magnetic circuits 28a and 28b provided outside of both sides of the movable body 22 are inserted into the long hole 24a and driving coil 25b. Consequently, external influence of temperature and an external magnetic field is reduced.

Description

【発明の詳細な説明】 〔発明の利用分野、〕 本発明は光デイスク装置などにおける光スポットの精密
位置制御に用いられる光ビーム偏量ミラーに関するもの
でろる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a light beam deflection mirror used for precise position control of a light spot in an optical disk device or the like.

〔発明の背景〕[Background of the invention]

従来の一般的なこの種ミラーは第1図に示すように、ミ
ラー1をゴム製の弾性支持体2を介してベース5に固定
し、前記ミラー1およびベース5に磁石3およびコイル
4をそれぞれ固定した構造からなり、前記磁石3とコイ
ル4との間に作用する゛成磁力により回動される。
As shown in FIG. 1, a conventional general mirror of this type has a mirror 1 fixed to a base 5 via an elastic support 2 made of rubber, and a magnet 3 and a coil 4 attached to the mirror 1 and the base 5, respectively. It has a fixed structure and is rotated by the magnetic force acting between the magnet 3 and the coil 4.

上記弾性支持体2に使用されるゴムは、振動減衰効果が
大きく、かつ剛性および振動減衰効果の温度による変化
も大きい時性を有する。このため偏向ミラーは、その主
共振周波数foおよび振動減衣比この温度による変化が
大きいので、高精度位置決めのたのに開発さnた2段サ
ーボ制御系に使用すること刀工できない欠点がある。そ
の詳nm +は第22回S ICE字術膳演予禍果の)
’P541〜542、扁3210に記述さルているから
省略する。
The rubber used for the elastic support 2 has a large vibration damping effect, and has a property that the rigidity and vibration damping effect change greatly depending on temperature. For this reason, the deflection mirror has the disadvantage that it cannot be used in a two-stage servo control system developed for high-precision positioning because its main resonance frequency fo and vibration reduction ratio change greatly with temperature. The details (nm + are from the 22nd SICE Jijutsu Zen Performance)
'P541-542, it is described in 3210, so it will be omitted.

上記王共懺周阪数f、を安定化でせるには、弾性支持体
2を笠鳥などの温度の影響を受け難い材料に変更すれば
よいが、これらの材料は振動減衰効果が小さいため、別
個に振動減衰部を設ける必要がある。そこで、温度の影
響を受け難い振動減衰法として、電磁誘導の応用が行わ
れておシ、その−例を第2図および第3図に示す。
In order to stabilize the above-mentioned frequency f, the elastic support 2 should be changed to a material that is not easily affected by temperature, such as Kasadori, but since these materials have a small vibration damping effect, It is necessary to provide a separate vibration damping section. Therefore, electromagnetic induction has been applied as a vibration damping method that is not easily affected by temperature, and examples thereof are shown in FIGS. 2 and 3.

第2図は速度フィードバック用のレンズアクチュエータ
を示したもので、このレンズアクチュエータは、弾性支
持体8により支持され、かつレンズ6の取付けられた鏡
筒7に、速度検出用コイル9および駆動用コイル10を
取付けた構造からなり、その他に磁石、全体支狩部およ
び自動焦点方向w、動部が設けられているが、これらは
図示されていない。この例の詳細はシャープ技術、21
号、p、33〜40に記述されているから省略する。
FIG. 2 shows a lens actuator for velocity feedback. This lens actuator is supported by an elastic support 8, and a lens barrel 7 to which a lens 6 is attached has a velocity detection coil 9 and a drive coil. 10, and is also provided with a magnet, an overall support section, an automatic focusing direction w, and a moving section, but these are not shown. Details of this example can be found in Sharp Technology, 21
Since it is described in No., p. 33-40, it will be omitted here.

上記のようなレンズアクチュエータを用いる速度フィー
ドバック法では、駆動用コイル10を流れる電流による
誘導電流が速度検出用コイル9に流れるのを阻止するた
め、二つのコイル10.9を離して設置するのが一般的
である。したがって、磁石を二個にするか、または大型
にする必要があるので、コイルの数も2個必要となるか
らコストが大幅に増加する。また、前記のように速度検
出用コイル9を駆動用コイル10から離すためには、可
!11IJ部を太きくしなければならないから重量も増
加する欠点があった。
In the speed feedback method using the lens actuator as described above, in order to prevent the induced current caused by the current flowing through the drive coil 10 from flowing to the speed detection coil 9, it is recommended to install the two coils 10.9 apart. Common. Therefore, it is necessary to use two magnets or to make them larger, which requires two coils, resulting in a significant increase in cost. Also, as mentioned above, it is possible to separate the speed detection coil 9 from the drive coil 10! Since the 11IJ portion had to be made thicker, the weight also increased.

一方、電磁誘導応用の他の一つの方法はショートリング
方式でちり、その例(特開昭56−14874’1号公
報)の概要を第3図に示す。同図の偏向ミラーは、ショ
ートコイル(図示せず)を内蔵する良導電性材料製の可
動体12の上、下面にミラー11および平面状の)J7
1動コイル15をそれぞれ取付け、この可動体12をベ
ース16に取付けた支持体13により弾性的に支持する
と共に、ペース16に取付けた磁石14を前記ショート
コイルおよび駆動コイル15と対向するように設けた構
造からなる。
On the other hand, another method for applying electromagnetic induction is the short ring method, an example of which is shown in FIG. The deflection mirror shown in the figure includes a mirror 11 on the upper and lower surfaces of a movable body 12 made of a highly conductive material that has a built-in short coil (not shown), and a planar) J7.
A movable body 12 is elastically supported by a support 13 attached to a base 16, and a magnet 14 attached to a pace 16 is provided so as to face the short coil and drive coil 15. It consists of a structure.

このように構成された偏向ミラーでは、第4図に示すよ
うに磁束密度Bの空間を導電体(可動体)12が、角速
度ωで回動した場合に発生するうす電流i、の経路の電
気抵抗をRとすると、下記(1)式で表わされる制動ト
ルクTが発生して角MLωf:g少させることかできる
In the deflection mirror configured in this way, as shown in FIG. When the resistance is R, a braking torque T expressed by the following equation (1) is generated, and the angle MLωf:g can be reduced.

ただし、L、γ:可動体12の幅および長さところが、
磁石14を開放状態で使用すると、磁束f!i度Bは犬
とならず、制動トルクTも小さい。
However, L, γ: width and length of the movable body 12;
When the magnet 14 is used in an open state, the magnetic flux f! At i degree B, there is no dog, and the braking torque T is also small.

一方、外部からの磁界の磁束密度B′が変化すると、可
動体12にはこれを打消す方向にうず電流1′。が流れ
る。このうず電流1′。が囲む面積を81発生する外乱
トルクをT′とすれば、うず電流l′。および外乱トル
クT′は下記(21(3)式で表わされる。
On the other hand, when the magnetic flux density B' of the external magnetic field changes, an eddy current 1' occurs in the movable body 12 in a direction that cancels this change. flows. This eddy current 1'. If the disturbance torque generated by 81 is T', then the eddy current l'. and the disturbance torque T' is expressed by the following equation (21(3)).

上記外乱トルクT′を小さくするには、前記面積Sを小
さくすべきであるが、うず電流1′、は可動体12の外
周を流れる性質があるため、第4図に示す形状では面積
Sは大きくなるので、外部磁界の変化の影響を受け易く
なる欠点がある、〔発明の目的〕 本発明は上記にかんがみ温度および外部磁界などの外部
環境の影響を受けに<<、かつ安定な振動特性を発揮す
る光ビーム偏向ミラーを提供することを目的とするもの
である。
In order to reduce the disturbance torque T', the area S should be reduced; however, since the eddy current 1' has a property of flowing around the outer periphery of the movable body 12, the area S is [Objective of the Invention] In view of the above, the present invention provides a vibration characteristic that is resistant to the influence of the external environment such as temperature and external magnetic field, and has stable vibration characteristics. The object of the present invention is to provide a light beam deflection mirror that exhibits the following characteristics.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、ミラー、導電性物
質製のショートコイルおよび駆動コイルを結合部材によ
り結合して構成した可動体と、この可動体を弾性支持す
る支持体と、前記ショートコイルおよび駆動コイルに対
設した磁気回路とからなる光ビーム偏向ミラーにおいて
、前記可動体の両側端部に長孔をそれぞれ設けると共に
、この両投孔の一方側開口部に駆動コイルをそれぞれ取
付け、これらの長孔および駆動コイル内に、前記可動体
の両側にそれぞれ設けた磁気回路のヨークをそれぞれ挿
入し、その両磁気回路の磁化方向を対向させたことを特
徴とするものである。
In order to achieve the above object, the present invention provides a movable body configured by coupling a mirror, a short coil made of a conductive material, and a drive coil with a coupling member, a support body that elastically supports this movable body, and a movable body configured by connecting a mirror, a short coil made of a conductive material, and a drive coil, a support body that elastically supports the movable body, and and a magnetic circuit installed opposite to a drive coil, in which elongated holes are provided at both ends of the movable body, and a drive coil is attached to an opening on one side of both of the holes. The yokes of the magnetic circuits provided on both sides of the movable body are respectively inserted into the elongated hole and the drive coil, and the magnetization directions of both magnetic circuits are made to oppose each other.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第5図および第6図において、アルミ製の可動体22は
、ステンレス製薄板により形成された十字状ばね27に
よりベース26上に弾性的に支持されている。また、可
動体22は、その上面中央部にミラー21が装着され、
かつ両側にショートコイル23a、23bおよび長方形
の長孔24a。
In FIGS. 5 and 6, a movable body 22 made of aluminum is elastically supported on a base 26 by a cross-shaped spring 27 formed of a thin plate made of stainless steel. Further, the movable body 22 is equipped with a mirror 21 at the center of its upper surface.
Short coils 23a, 23b and a rectangular long hole 24a are provided on both sides.

24bがそれぞれ設けられている。その長孔24a。24b are provided respectively. Its long hole 24a.

24bの一方側(図では下面)開口部には、駆動コイル
25a、25bがそれぞれ装着されており、また前d己
長孔24aと駆動コイル25aおよび長孔24bと駆動
コイル25bには可動体220両側外部に設けた磁気回
路28a、28bのヨーク29a、29bがそれぞれ挿
入されている。
Drive coils 25a and 25b are attached to the opening on one side (lower side in the figure) of 24b, respectively, and a movable body 220 is attached to the front long hole 24a and the drive coil 25a, and between the long hole 24b and the drive coil 25b. Yokes 29a and 29b of magnetic circuits 28a and 28b provided outside on both sides are inserted, respectively.

上記のように可動体22ケアルミニウムで製作した理由
は下記のと2りでめる。
The reason why the movable body was made of 22-core aluminum as mentioned above is summarized in the following two points.

一般にショートリング方式の偏向ミラーを光デイスク装
置に使用する場合、偏向ミラーの主共振周波数foを5
0H2程度に設定することが多い。
Generally, when using a short ring type deflection mirror in an optical disk device, the main resonant frequency fo of the deflection mirror is set to 5.
It is often set to about 0H2.

いま、可動体の慣性モーメントをJ1弾性支持部のはね
定数をに1粘性制動係数をCとしたとき、主共振周波数
f、と振動減衰比ζは下記(4)(5)式で表わされる
Now, when the moment of inertia of the movable body is J1, the spring constant of the elastic support part is J1, and the viscous damping coefficient is C, the main resonance frequency f and the vibration damping ratio ζ are expressed by the following equations (4) and (5). .

ショートリング方式では、前記(1)式に示す制動B2
z2γ2 トルクの係数(2〜−□)が上記Cに相当するから、(
5)式は下記(6)式で表わされる。
In the short ring method, the braking B2 shown in the above equation (1)
z2γ2 Since the torque coefficient (2~-□) corresponds to the above C, (
Equation 5) is expressed by Equation (6) below.

2 B” t” r” ζ=□ ・・・・・・・・・(6) 2v’JKR すなわちfo′ffニ一定にしてζをできるだけ太きく
することが必要となるが、そのためには(6)式よF)
J、Kを一定の比で小さくシ、かつRを小さくすると共
に、B、t、γを大きくすればよい。これを満足させる
には、密度が小さく、かつ比抵抗の小さい金属、例えば
アルミニウムが適当であるので、可動体22をアルミニ
ウムにより製作した。
2 B” t” r” ζ=□ ・・・・・・・・・(6) 2v'JKR In other words, it is necessary to keep fo'ff constant and make ζ as thick as possible, but in order to do so ( 6) Formula F)
It is sufficient to reduce J and K by a certain ratio, and to reduce R, while increasing B, t, and γ. To satisfy this requirement, a metal with low density and low specific resistance, such as aluminum, is suitable, so the movable body 22 was made of aluminum.

前記磁気回路28a、28bの磁界の方向Ba。Direction Ba of the magnetic field of the magnetic circuits 28a, 28b.

Bbは、第7図に示すように互に逆向き、すなわち相対
向しており、駆動コイル25a、25bは、磁気ギャッ
プ中の電流14a、ldl+が同一方向になるように接
続されているつしたがって、駆動コイル25a、25b
に駆動電流14m、ldbがそれぞれ流れると、両コイ
ル25a、25bには反対向きの力が発生し、可動体2
2に回転トルクを付加する。
Bb are in opposite directions, that is, facing each other, as shown in FIG. 7, and the drive coils 25a and 25b are connected so that the currents 14a and ldl+ in the magnetic gap are in the same direction. , drive coils 25a, 25b
When driving currents 14m and ldb flow through the coils 25a and 25b, opposite forces are generated in the movable body 2.
Add rotational torque to 2.

可動体22が第6図に示すように、十字はね27の交点
Xを中心として矢印P方向に回転振動するとき、振動減
衰比は前記(6)式で表わされるが、主共振周波数fo
を一定にすると、K−(2πfo)”rで表わされるか
ら前記(6)式は下記(7)式のようになる。
As shown in FIG. 6, when the movable body 22 rotates and vibrates in the direction of arrow P centering on the intersection point
When is constant, it is expressed as K-(2πfo)''r, so the above equation (6) becomes the following equation (7).

第3図に示す従来例のように磁気回路14を開放にする
場合と、本実施例のように磁気回路28a。
In the case where the magnetic circuit 14 is open as in the conventional example shown in FIG. 3, and in the case where the magnetic circuit 28a is opened as in the present embodiment.

28bを開閉路で用いる場合とを比較すると、72の値
は大体同一値になるので、磁気回路28a。
Comparing the case where 28b is used in an open/closed circuit, the value of 72 is approximately the same value, so the magnetic circuit 28a.

28bを開閉路とした方が、磁気ギャップ内の磁束密度
Ba、Bbの大きくなる分たけ振動減衰比ζを大きくす
るのに有利でおる。前記長孔24a。
Making 28b an open/closed circuit is advantageous in increasing the vibration damping ratio ζ by increasing the magnetic flux densities Ba and Bb in the magnetic gap. The long hole 24a.

24bの形状と寸法、例えば第8図に示すように幅aを
小さくすると、外部磁界の影響も小さくなり、かつ駆動
コイル25a、25bにより可動体22に発生する変形
を小さくすることができる。
By reducing the shape and dimensions of 24b, for example, the width a as shown in FIG. 8, the influence of the external magnetic field is reduced, and the deformation that occurs in movable body 22 due to drive coils 25a and 25b can be reduced.

一方、長孔24a、24bと可動体22の前後面との間
の寸法dは、可動体22の変形を小さく抑制する見地か
らある程度大きくする必要がある。
On the other hand, the dimension d between the elongated holes 24a, 24b and the front and rear surfaces of the movable body 22 needs to be increased to some extent from the viewpoint of suppressing deformation of the movable body 22 to a small extent.

また、前記ショートコイル部23a、23bの断面積は
、前記(方式の抵抗Rを小さくするために、ある程度大
きくする必要がある。しかし、前記ショートコイル部2
3a、23bの端部の幅すを犬きくすると、磁気ギャッ
プg(第6図)が太きくなり、磁束密度Ba、Bbは低
下するた゛め、前記幅すを小さくしておく必要があるの
で、可動体22の厚さhを幅すよりも大きくして断面績
を確保する。これは駆動コイル25a、25bで発生す
る力が可動体22の厚さ方向の力であるので、可動体2
2の変形を抑制するために有効である。
Further, the cross-sectional area of the short coil portions 23a and 23b needs to be increased to some extent in order to reduce the resistance R of the method.
If the width of the ends of 3a and 23b is increased, the magnetic gap g (Fig. 6) becomes thicker and the magnetic flux densities Ba and Bb decrease, so it is necessary to keep the width smaller. The thickness h of the movable body 22 is made larger than the width to ensure a cross-sectional area. This is because the force generated by the drive coils 25a and 25b is a force in the thickness direction of the movable body 22.
This is effective for suppressing the deformation of 2.

前記磁気ギャップgの長さt(5図)は、大きいほど振
動減衰比ζを大きくする点では望ましいが、可動体22
のショートコイル部23a、23bの即1性が、その許
容最低限以下となるような長さにまで長さtを大きくす
ることはでき夕い。
The longer the length t (Fig. 5) of the magnetic gap g is, the more desirable it is in terms of increasing the vibration damping ratio ζ.
It is not possible to increase the length t to such a length that the elasticity of the short coil portions 23a and 23b is below the minimum allowable value.

一方、外部から一様に磁界が加わplその磁界が変化す
る場合、ショートコイル部23a、23bに反対方向の
電流が流れるため、ショートコイル部23a、23bに
は同一方向の力が発生し、可動体22をその厚さ方向に
並進運動させようとするが、可動体22は十字状はね2
7に対し左右対称であるから回転運動は発生しない。ま
た、十字状はね27の並進方向への剛性が十分に高いの
で、並進運動の移動量を十分に小さく抑制でさるから、
閘題を生いな■。
On the other hand, when a magnetic field is uniformly applied from the outside and the magnetic field changes, currents in opposite directions flow through the short coil parts 23a and 23b, so forces in the same direction are generated in the short coil parts 23a and 23b, making them movable. An attempt is made to translate the body 22 in its thickness direction, but the movable body 22 is moved by the cross-shaped spring 2.
Since it is symmetrical with respect to 7, no rotational movement occurs. In addition, since the rigidity of the cross-shaped spring 27 in the translational direction is sufficiently high, the amount of translational movement can be suppressed to a sufficiently small value.
Don't worry about the issue■.

本実施例では第6図に示すように、駆動コイル25a、
25bが接着する可動体22の部分に座繰り加工を施し
、この加工部に駆動コイル25a。
In this embodiment, as shown in FIG. 6, drive coils 25a,
The portion of the movable body 22 to which the movable body 25b is attached is counterboreed, and the drive coil 25a is attached to this processed portion.

25bが接着されている。このため駆動コイル25a、
25bに発生する力に対して、接着強度の強いせん断面
を確保すると共に、そのコイル25a、25bの位置決
めを容易にすることができる。
25b is glued. For this reason, the drive coil 25a,
A sheared surface with strong adhesive strength can be secured against the force generated in the coils 25b, and the positioning of the coils 25a and 25b can be facilitated.

また、十字状はね27の交点Xを可動体22の厚み方向
の重心に合致させたため、左右対称に形成されたミラー
21、可動体22および駆動コイル25a、2・5bか
らなる可動部の回転中心を重心と一致させることができ
る。
In addition, since the intersection point X of the cross-shaped spring 27 coincides with the center of gravity of the movable body 22 in the thickness direction, the movable part consisting of the mirror 21, the movable body 22, and the drive coils 25a, 2 and 5b, which are formed symmetrically, rotates. The center can be aligned with the center of gravity.

上述した本実施例は第8図に示すように、光デイスク装
置用ヘッド30に搭載され、対物レンズ31に入射する
光ビーム32をミラー21により光ビーム32aに偏向
させるが、前記ヘッド30が移動することにより偏向ミ
ラーのベース26に加速度が加わっても、前記のように
回転中心と可動部の重心が一致しているため、偏向ミラ
ーには回転トルクが付加されないからミラー21の角度
は変化しない。
As shown in FIG. 8, this embodiment described above is mounted on a head 30 for an optical disk device, and a light beam 32 incident on an objective lens 31 is deflected by a mirror 21 into a light beam 32a. As a result, even if acceleration is applied to the base 26 of the deflection mirror, the angle of the mirror 21 does not change because no rotational torque is applied to the deflection mirror because the center of rotation and the center of gravity of the movable part coincide as described above. .

この場合、駆動コイル25a、25bのループの囲む面
積が大きくなると、ショートリング部との相互インダク
タンスが大きくなり、駆動電流に対する変位の位相遅れ
も大きくなるため、ループ面積を極力小さくする。
In this case, if the area surrounded by the loop of the drive coils 25a, 25b increases, the mutual inductance with the short ring portion will increase, and the phase delay of displacement with respect to the drive current will also increase, so the loop area is made as small as possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、温度および外部
磁界などの外部環境の影響が小さく、かつ安定した撮動
特性を発揮させることができる。
As described above, according to the present invention, it is possible to exhibit stable imaging characteristics with less influence from the external environment such as temperature and external magnetic field.

また、2段サーボ制御系に必要な振動減衰比ζ(≧0.
2)を満足する偏向を実現できたので、2段サーボ制御
系により光デイスク装置の光スポツト位置決め精度の向
上および高密度化をはかることが可能となった。
In addition, the vibration damping ratio ζ (≧0.
Since the deflection that satisfies 2) has been achieved, it has become possible to improve the optical spot positioning accuracy and increase the density of the optical disk device using a two-stage servo control system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は元ビーム偏向ミラーの各従来例を示す
斜視図、第4図はショートリング方式の説明図、第5図
および第6図は不発明の光ビーム偏向ミラーの一実施例
を示す斜視図および側面図、第7図は同実施例の可動部
の裏面図、第8図は本実施例の使用状態の説明図である
。 21・・・ミラー、22・・・可動体、23a、23b
・・・ショートコイル、24a、24b・−・長孔、2
5a。 25b・・・駆動コイル、27・・・十字状ばね、28
a。 28b・・・磁気回路、29a、29b・・・ヨーク。 第 1 閏 華2国 ′!J3図 事40 穿 5 口 1 凹 26 17L f 7閏 第 g口
Figures 1 to 3 are perspective views showing conventional examples of original beam deflection mirrors, Figure 4 is an explanatory diagram of the short ring system, and Figures 5 and 6 are examples of an uninvented light beam deflection mirror. A perspective view and a side view showing an example, FIG. 7 is a back view of the movable part of the same embodiment, and FIG. 8 is an explanatory diagram of the usage state of the present embodiment. 21...Mirror, 22...Movable body, 23a, 23b
... Short coil, 24a, 24b --- Long hole, 2
5a. 25b... Drive coil, 27... Cruciform spring, 28
a. 28b...Magnetic circuit, 29a, 29b...Yoke. Part 1: Two countries'! J3 drawing 40 hole 5 mouth 1 concave 26 17L f 7th leap g mouth

Claims (1)

【特許請求の範囲】 1、ミラー、導電性物質製のショートコイルおよび駆動
コイルを結合部材によりi合して構成した可動体と、こ
の可動体を弾性支持する支持体と、前記ショートコイル
および駆動コイルに対設した磁気回路とからなる光ビー
ム偏量ミラーにおいて、前記可動体の内側端部に長孔を
それぞれ設けると共に、この両投孔の一万側開口部に駆
動コイルをそれぞれ取付け、これらの長孔および駆動コ
イル内に、前記可動体の両側にそれぞれ設けた磁気回路
のヨークをそれぞれ挿入し、その両磁気回路の磁化方向
を対向させたことを特徴とする元ビーム偏向ミラー。 2、上記可動体およびショートコイルを低密度で、かつ
4電性の高い物質からなることを特徴とする特許請求の
範囲第1項記載の光ビーム偏向ミラー。 3、上記ショートコイル部を閉磁気回路の磁気≠ギャッ
プ内に設け、前記ショートコイル部の断面の磁界方向の
寸法を、この磁界方向に直角方法の寸法より小に形成し
たことを特徴とする特許請求の範囲第1項記載の光ビー
ム偏向ミラー〇 4、上記可動体を金属板製十字状ばねにより弾性的に支
持し、その十字状ばねの回転中心近傍に可動体の回転中
心を設けたことを特徴とする特許請求の範囲第1項記載
の光ビーム偏向ミラ、0
[Claims] 1. A movable body configured by combining a mirror, a short coil made of a conductive material, and a drive coil with a coupling member, a support that elastically supports this movable body, and the short coil and drive coil. In a light beam deflection mirror consisting of a coil and a magnetic circuit installed opposite to each other, elongated holes are provided at the inner ends of the movable body, and driving coils are respectively attached to the openings on the 10,000 side of both of the holes. An original beam deflection mirror characterized in that yokes of magnetic circuits provided on both sides of the movable body are respectively inserted into the elongated hole and the drive coil, and the magnetization directions of the two magnetic circuits are opposed to each other. 2. The light beam deflection mirror according to claim 1, wherein the movable body and the short coil are made of a material with low density and high tetraelectricity. 3. A patent characterized in that the short coil portion is provided within the magnetic gap of the closed magnetic circuit, and the dimension of the cross section of the short coil portion in the direction of the magnetic field is smaller than the dimension in the direction perpendicular to the direction of the magnetic field. The light beam deflection mirror 04 according to claim 1, wherein the movable body is elastically supported by a cross-shaped spring made of a metal plate, and the rotation center of the movable body is provided near the rotation center of the cross-shaped spring. The light beam deflection mirror according to claim 1, characterized in that:
JP717284A 1984-01-20 1984-01-20 Light beam deflecting mirror Granted JPS60153020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP717284A JPS60153020A (en) 1984-01-20 1984-01-20 Light beam deflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP717284A JPS60153020A (en) 1984-01-20 1984-01-20 Light beam deflecting mirror

Publications (2)

Publication Number Publication Date
JPS60153020A true JPS60153020A (en) 1985-08-12
JPH0349409B2 JPH0349409B2 (en) 1991-07-29

Family

ID=11658659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP717284A Granted JPS60153020A (en) 1984-01-20 1984-01-20 Light beam deflecting mirror

Country Status (1)

Country Link
JP (1) JPS60153020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438715A (en) * 1987-08-05 1989-02-09 Matsushita Electric Works Ltd Scanner for light beam scanning
JPH01265221A (en) * 1988-04-15 1989-10-23 Matsushita Electric Works Ltd Scanner for light beam scanning
JPH03134826A (en) * 1989-10-20 1991-06-07 Toshiba Corp Mirror rotation driving device
DE102016111531A1 (en) * 2016-06-23 2018-01-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical scanner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438715A (en) * 1987-08-05 1989-02-09 Matsushita Electric Works Ltd Scanner for light beam scanning
JPH01265221A (en) * 1988-04-15 1989-10-23 Matsushita Electric Works Ltd Scanner for light beam scanning
JPH03134826A (en) * 1989-10-20 1991-06-07 Toshiba Corp Mirror rotation driving device
DE102016111531A1 (en) * 2016-06-23 2018-01-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical scanner
DE102016111531B4 (en) 2016-06-23 2022-02-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical scanner

Also Published As

Publication number Publication date
JPH0349409B2 (en) 1991-07-29

Similar Documents

Publication Publication Date Title
US20010026528A1 (en) Apparatus for driving a lens for use with a disk player
JP2984526B2 (en) Optical pickup device
KR900004619B1 (en) Operating apparatus of objective lens
US5657172A (en) Objective lens driving device
US4782475A (en) Flexure supported read head
JPS60153020A (en) Light beam deflecting mirror
US6259671B1 (en) Object lens actuator
JPH0817062A (en) Objective lens driving device
JPH0744854U (en) Electro-optical device for electrodynamically controlling the position of the radiation spot
JPS62210418A (en) Light beam deflection mirror
TW200409107A (en) Objective lens driving device
JP3371384B2 (en) Two-axis actuator
JPH0454565Y2 (en)
JPS63223613A (en) Oscillation mirror device
JP3495392B2 (en) Objective lens drive
JP2003257056A (en) Lens actuator
JP3030989B2 (en) Optical storage device and method of adjusting angle of objective lens used for the same
JP2559367B2 (en) Objective lens drive
JPH067451Y2 (en) Optical pickup
JPH0287961A (en) Linear actuator
JP3084053B2 (en) Objective lens support device
JP2601809B2 (en) Objective lens drive
JP2903763B2 (en) Precision angle displacement mechanism of optical recording and reproducing device
JPH034898Y2 (en)
JPS6394442A (en) Focus driving device for objective lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees