JPS60153001A - Optical fiber for infrared rays - Google Patents

Optical fiber for infrared rays

Info

Publication number
JPS60153001A
JPS60153001A JP59008708A JP870884A JPS60153001A JP S60153001 A JPS60153001 A JP S60153001A JP 59008708 A JP59008708 A JP 59008708A JP 870884 A JP870884 A JP 870884A JP S60153001 A JPS60153001 A JP S60153001A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
infrared
wavelengths
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008708A
Other languages
Japanese (ja)
Inventor
Toshi Ikedo
池戸 才
Masabumi Watari
渡 正文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59008708A priority Critical patent/JPS60153001A/en
Publication of JPS60153001A publication Critical patent/JPS60153001A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To enable accurate measurement at a low temp. with no noise signal and high accuracy by adding a compound having specified infrared-ray absorbing characteristics so as to manufacture an optical fiber for infrared rays transmitting well light of a specified wavelength or above. CONSTITUTION:Several wt% additive such as SiO2, NaNO2 or NaPO4 is added to a principal starting material for an optical fiber for infrared rays such as CsBr, AsCl, AgBr, TlBr or KRS-5, and an optical fiber is manufactured. This optical fiber transmits well light of >=5mum wavelengths at a low temp. such as 200 deg.C, so accurate measurement can be carried out at room temp. with no noise signal. For example, when NaNO2 is added to a mixture consisting of 42wt% TlBr, 57wt% TlI and 1wt% SiO2, a fiber transmitting well light of 10-15mum wavelengths, absorbing light of other wavelengths, and having the function of a band pass filter is obtd. The fiber 2 is combined with an infrared sensor 3 and a temp. indicator 4 which doubles as a control circuit to enable the noncontact measurement of a low temp. body 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非接触低温測定、ガス分析、プラスチックの
膜厚測定などに用いられる赤外線計測用の光ファイバに
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical fiber for infrared measurement used in non-contact low temperature measurement, gas analysis, plastic film thickness measurement, and the like.

従来例の構成とその問題点 最近、赤外線を使った計測分野の進展は、めざましいも
のがある。それに伴ない、赤外線を透すファイバの開発
も活発に行なわれている。赤外線の中でも近赤外域であ
る2μm付近までは、石英ファイバが使用できることか
ら、200°C以上の高温測定用ファイバとして用いら
れている。
Conventional configuration and its problems Recently, there has been remarkable progress in the field of measurement using infrared rays. Along with this trend, development of fibers that transmit infrared rays is also actively underway. Since quartz fibers can be used in the near-infrared region of infrared light up to around 2 μm, they are used as fibers for high-temperature measurements of 200° C. or higher.

すなわち、非接触式温度計としては、200’C以下の
低い温度は、6μm以上の波長を透すファイバが必要で
あり、第1図の黒体放射温度曲線よシこの必要性が判る
That is, for a non-contact type thermometer, a fiber that transmits wavelengths of 6 μm or more is required for low temperatures of 200'C or less, and the necessity of this can be seen from the blackbody radiation temperature curve in FIG.

これらの赤外用光ファイバに要求されることは、5μm
以上の波長を良く透すことである。現在、主に開発され
ている長波長伝送可能なファイバ材料を第1表に示す。
What is required for these infrared optical fibers is 5 μm
This means that wavelengths of the above wavelengths can be passed through well. Table 1 shows the currently developed fiber materials capable of transmitting long wavelengths.

以下余白 これらの材料は、ファインく化することにより、かなり
の長波長域の光を伝送することができる。
By making these materials finer, they can transmit light in a fairly long wavelength range.

しかし、実際に低温温度測定する場合において、室温以
下の温度を測定すると、ファイン(自体の温度の上昇か
ら出る赤外線が伝送されることにより、ファイバ自体の
温度以下の測定物体から発せられる赤外線波長は長いだ
め、測定される信号は雑信号に消されてしまうことにな
る。このような問題を解決するために、2色部度謂とか
、フィルターを入れた構造のものが考えられているが、
構成」−複雑になシ、また、高精度なものが得られてい
ないO 発明の目的 本発明は、赤外用光ファイ・2において、特定の赤外吸
収をもつ化合物元素を添加することにより、バンドパス
フィルター機能を有する赤外用光ファイバを提供するこ
とを目的とする。
However, when actually measuring low-temperature temperatures, when measuring a temperature below room temperature, fine (infrared rays emitted from the temperature of the fiber itself increase) are transmitted, and the infrared wavelength emitted from the measuring object at a temperature below the temperature of the fiber itself is If the length is too long, the measured signal will be erased by noise signals.To solve this problem, two-color filters or structures with filters are being considered.
Object of the Invention The present invention provides an infrared optical fiber 2 in which a compound element having a specific infrared absorption is added. The purpose of the present invention is to provide an infrared optical fiber having a bandpass filter function.

発明の構成 赤外用光ファイバの短波長領域の赤外線を通さないファ
イバにすれば、高温側の範囲は限定烙れ低温から発せら
れる長波長の光のみを伝送することのできる元ファイバ
となシ、室温以下の低温の温度測定が可能になる。
Structure of the Invention If the infrared optical fiber is made of a fiber that does not transmit infrared rays in the short wavelength region, the high temperature range will be limited, and the original fiber will be able to transmit only the long wavelength light emitted from the low temperature. It becomes possible to measure temperatures at low temperatures below room temperature.

すなわち、本来、6μm以上で、良好な透過率を示す赤
外用光ファイバに特定の吸収をもつ化合物を添加するこ
とによシ、必要な波長域のみを伝送し、それ以外の波長
はファイバ自身で吸収し、伝送しない機能を有するファ
イバである。
In other words, by adding a compound with a specific absorption to an infrared optical fiber that originally shows good transmittance at wavelengths of 6 μm or more, it can transmit only the necessary wavelength range, and the other wavelengths can be transmitted by the fiber itself. It is a fiber that has the function of absorbing and not transmitting.

実施例の説明 赤外用光ファイバの製法について述べる。第1表よシ、
KBrはヘキ開性を有しておシ、温間押出し法を用いて
ファイバ化することにより、多結晶状態のファイバがで
きるが、これは比較的、機械的強度が弱い。CsBr 
、AqCn 、 TIl、Br 、 KH2−6は、ヘ
キ開性がなく、ファイバ化は、温間押出し法を用いて作
ることができる。ファイバの結晶形は多結晶であるが強
度は大きい0また別の製法として、キャピラリーなどを
用いて溶融結晶成長させ、単結晶ファイバにする作法も
行なわれる。
Description of Examples A method for manufacturing an infrared optical fiber will be described. Table 1,
KBr has cleavage properties and can be made into a fiber by warm extrusion to produce a polycrystalline fiber, but this fiber has relatively low mechanical strength. CsBr
, AqCn, TIl, Br, KH2-6 are non-cleavable and can be made into fibers using warm extrusion. The crystal form of the fiber is polycrystalline, but its strength is high.Another manufacturing method is to use a capillary or the like to grow a melted crystal to form a single crystal fiber.

第2図に、KH2−6の7フイノ<)2〜2211mの
波長域の分光透過率を示しているが、4〜22μmまで
の波長に対する透過率は7シソ!・であり、分光透過特
性の優れた赤外用光ファイバである。
Figure 2 shows the spectral transmittance of KH2-6 in the wavelength range of 7 fino<)2 to 2211 m, and the transmittance for wavelengths of 4 to 22 μm is 7 shiso!・It is an infrared optical fiber with excellent spectral transmission characteristics.

このような特性を示すKH2−e;ファイバの原材料に
SiO2もしくはS 102・H2Oのようなケイ酸化
物を、数重量%添加すること(でより、第3図のような
分光透過率を示す赤外用ファイバが得られる○ KH2−5フアイバの製法を詳細に説明する。
KH2-e exhibits such characteristics; by adding several weight percent of a silicic oxide such as SiO2 or S102.H2O to the fiber raw material (by adding a few percent by weight of a silicate such as SiO2 or S102.H2O), The manufacturing method of ○ KH2-5 fiber, which can be used as a fiber for external use, will be explained in detail.

T2Brと12I の原料を120°Cで充分乾燥する
Thoroughly dry the T2Br and 12I raw materials at 120°C.

TIl、flr42重量%、T1157重量%に秤量す
る。
Weigh TIl, flr 42% by weight, T11 57% by weight.

さらにSin21wt%を秤量I−1充分に混合しン後
、横型電気炉で460〜480°Cで溶融し、結晶全体
が同時に固まるように、1時間1Q″C’−F’げるこ
とにより、再結晶化する。300”C以下では、自然冷
却で良い。以上のような方法で作られた結晶を温間加圧
押出装置のダイスに入るように適当な寸法に成形し、押
出し温度を200〜270°Cに設定し、7〜10 t
on/Cmの加圧をすることにより数cm/分のスピー
ドで押出し、ファイバ化した。
Furthermore, after sufficiently mixing 21 wt% of Sin in a weighed amount I-1, melting it at 460 to 480 °C in a horizontal electric furnace and heating it for 1 hour 1Q''C'-F' so that the entire crystal solidifies at the same time. Recrystallize. At temperatures below 300"C, natural cooling is sufficient. The crystals produced by the above method were formed into appropriate dimensions so as to fit into the die of a warm pressure extrusion device, the extrusion temperature was set at 200-270°C, and the crystals were heated at 7-10 t.
It was extruded at a speed of several cm/min by applying a pressure of on/cm to form a fiber.

以上のように押出したファイバの端面は、多結晶状態に
なっているため、研磨が必要である0最初K # 2,
000 ty)サントヘーノ<−と7ルコール磨き、仕
上げを$8,000で磨くことにより、きれいな端面を
作る。
The end face of the fiber extruded as described above is in a polycrystalline state and requires polishing.
000 ty) Santojeno <- and 7 alcohol polishing, and finish by polishing for $8,000 to create a clean end surface.

次に、第4図に示すようにN a No 2のような硝
酸化物を、数束量%添加することにより、10〜16μ
mを透すような、赤外用光ファイノくを作ることができ
る。
Next, as shown in Fig. 4, by adding a few percent of nitrate such as NaNo2,
It is possible to create an infrared optical fiber that can pass through m.

さらに、第5図に示すN a P O4のような、リン
酸化合物を数束量%添加することによシ、6〜9μmを
透過する赤外用光ファイバを製作することができる。
Furthermore, by adding a few percent of a phosphoric acid compound such as N a P O 4 shown in FIG. 5, an infrared optical fiber that transmits wavelengths of 6 to 9 μm can be manufactured.

このようにバンドパスフィルター機能を有スる赤外用光
7フイバは、CsBr,TIBr,AgBr。
The seven infrared fibers that have a bandpass filter function are CsBr, TIBr, and AgBr.

AqCflのような温間押出しで製作できる材料には、
同様な方法で製作することができる。
Materials that can be produced by warm extrusion, such as AqCfl, include:
It can be manufactured in a similar manner.

第6図にバンドパスフィルター機能を有する赤外用光フ
ァイバを用いた放射温度計の概念図を示゛す。1は測定
する物体であり、2は・(ンドノ(スフイルター(Na
NO2添加)赤外用光ファイバ、3は赤外センサー(H
gCdTe,熱電対,InSbなど)、4は制御回路と
温度表示計である。
FIG. 6 shows a conceptual diagram of a radiation thermometer using an infrared optical fiber having a bandpass filter function. 1 is the object to be measured, 2 is the object to be measured, and 2 is the
NO2 addition) infrared optical fiber, 3 is an infrared sensor (H
gCdTe, thermocouple, InSb, etc.), 4 is a control circuit and a temperature display meter.

このような測定系を使うことにより、今まで、室温以下
の温度を非接触な方法で、しかも、視界が直線上にない
部分の温度を正確に測定することが可能になった。
By using such a measurement system, it has now become possible to accurately measure temperatures below room temperature in a non-contact manner and in areas where the field of vision is not in a straight line.

また、第6図に示すようなN a P O 4を添加し
た赤外ファイバは、4〜9μmを通すことにより、ガス
分析用ファイバとして有用である。
Further, an infrared fiber doped with NaP O 4 as shown in FIG. 6 is useful as a fiber for gas analysis by allowing the fiber to pass through the fiber at a wavelength of 4 to 9 μm.

COO20吸収は4.5μm付近にあり、CH4ガスは
8μ21m 、 N20ガスは8μmであシ、これらの
特定波長のみの波長を伝送することができるため、雑信
号を排除でき、高精度測定が可能となる。
COO20 absorption is around 4.5μm, CH4 gas is 8μ21m, and N20 gas is 8μm.Since only these specific wavelengths can be transmitted, noise signals can be eliminated and highly accurate measurements can be made. Become.

また、プラスチックの膜厚測定にも、ノリスチック特有
の吸収スペクトルを使用することから、バンドパスフィ
ルター機能蒙赤外ファイバーは有用である。
In addition, band-pass filter-functional Mongolian infrared fibers are also useful for measuring the film thickness of plastics, as the unique absorption spectrum of Noristic is used.

発明の効果 以上のように本発明は、特定の赤外吸収をもつ化合物元
素を赤外用光ファイバに添加することにより、バンドパ
スフィルター機能を有したファイバが得られ、低温温度
測定をする場合でも雑音信号をなくして高精度な測定が
行なえる。
Effects of the Invention As described above, in the present invention, by adding a compound element having a specific infrared absorption to an infrared optical fiber, a fiber having a bandpass filter function can be obtained, which can be used even when measuring low temperature. Highly accurate measurements can be performed by eliminating noise signals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は物体の黒体放射強度曲線を示す特性図、第2図
はKRS−5フアイバの分光透過率を示す特性図、第3
図,第4図,第5図は本発明の各実施例における赤外用
光ファイバの分光透過率を示す特性図、第6図は非接触
型温度計の概念図である。 1・・・・・・被測定物体、2・・・・・・赤外用光フ
ァイバ、3・・・・・・赤外センサー、4・・・・・・
回路系と表示計。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 う良長 しμm) (入) 第2図 う支 丑 (μm) 第3図 う!l イ% <、μr1ノ 第4図 破 丑 (μ飢9
Figure 1 is a characteristic diagram showing the blackbody radiation intensity curve of an object, Figure 2 is a characteristic diagram showing the spectral transmittance of KRS-5 fiber, and Figure 3 is a characteristic diagram showing the spectral transmittance of the KRS-5 fiber.
4 and 5 are characteristic diagrams showing the spectral transmittance of the infrared optical fiber in each embodiment of the present invention, and FIG. 6 is a conceptual diagram of a non-contact type thermometer. 1...Object to be measured, 2...Infrared optical fiber, 3...Infrared sensor, 4...
Circuit system and display meter. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
(μm) Figure 2 (μm) Figure 3 (μm) Figure 3! l % <,μr1のFigure 4 Break ox (μstarvation 9

Claims (2)

【特許請求の範囲】[Claims] (1) 特定の赤外吸収をもつ化合物元素が添加さ訂た
材料からなることを特徴とする赤外用光ファイバ0
(1) An infrared optical fiber characterized by being made of a material to which a compound element with specific infrared absorption is added.
(2)赤外用光ファイバの主相料として、CsBr。 AqCQ 、AgBr 、TnBr 、に’R8−5を
用い、添加物として、ケイ酸化物、硝酸化物、リン酸化
合物のうちの少なくとも1つの化合物を用いることを特
徴とする特許請求の範囲第1項記載の赤外用光ファイバ
(2) CsBr as the main phase material of the infrared optical fiber. Claim 1, characterized in that 'R8-5 is used in AqCQ, AgBr, TnBr, and at least one compound selected from silicates, nitrates, and phosphoric acid compounds is used as an additive. infrared optical fiber.
JP59008708A 1984-01-20 1984-01-20 Optical fiber for infrared rays Pending JPS60153001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008708A JPS60153001A (en) 1984-01-20 1984-01-20 Optical fiber for infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008708A JPS60153001A (en) 1984-01-20 1984-01-20 Optical fiber for infrared rays

Publications (1)

Publication Number Publication Date
JPS60153001A true JPS60153001A (en) 1985-08-12

Family

ID=11700436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008708A Pending JPS60153001A (en) 1984-01-20 1984-01-20 Optical fiber for infrared rays

Country Status (1)

Country Link
JP (1) JPS60153001A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474732A (en) * 1977-11-28 1979-06-15 Konishiroku Photo Ind Co Ltd Motor built-in camera
JPS58187080A (en) * 1982-04-26 1983-11-01 Canon Inc Video system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474732A (en) * 1977-11-28 1979-06-15 Konishiroku Photo Ind Co Ltd Motor built-in camera
JPS58187080A (en) * 1982-04-26 1983-11-01 Canon Inc Video system

Similar Documents

Publication Publication Date Title
Kanamori et al. Chalcogenide glass fibers for mid-infrared transmission
Kirby Thermal expansion of rutile from 100 to 700 K
Furukawa et al. Raman spectroscopy of heat‐treated B2O3‐SiO2 glasses
EP0142270B1 (en) Optical fibre thermometer and method of measuring temperature
Velmuzhov et al. Preparation and investigation of the properties of Ge25-xGaxTe75-yIy Glass System (x= 5, 10, 15, y= 0–6)
JPS60153001A (en) Optical fiber for infrared rays
Waseda et al. Thermal Diffusivitites of Continuous Casting Powders for Steel at High Temperature
Anderson et al. Stress-optic coefficient of Ge As Se chalcogenide glasses
Zhu et al. Thermal conductivity of GeO2 SiO2 and TiO2 SiO2 mixed glasses
Dils et al. Measurement of the silver freezing point with an optical fiber thermometer: proof of concept
Klimov et al. On-chip integrated silicon photonic thermometers
Chang et al. Elastic anomaly in fresnoite (Ba2TiSi2O8) single crystal
Shirshnev et al. Specific features of the optical properties of potassium–aluminum borate glasses with copper chloride nanocrystals at high temperatures
Quandt et al. High quality Ba2NaNb5O15 characterization and optical absorption coefficient measurements
Ignat’eva et al. Effect of bismuth trifluoride on the characteristics of fluoroindate glasses: the InF 3-BiF 3-BaF 2 system
JPS6266130A (en) Minute cavity radiator device
JPH0254133A (en) Radiation thermometer
JPS603530A (en) Radiation thermometer
Pettit No. 694. Effect of temperature on the wave length transmission band of the interference polarizing monochromator.
Pettit Effect of Temperature on the Wave Length of a Transmission Band of the Interference Polarizing Monochromator.
Ramachandran Thermo-optic behaviour of solids: VI. Optical glasses
Liu et al. A reliable fiber-optic temperature sensor based on fluorescence intensity ratio technique for real-time human thermal detection
Klimov et al. Chip-packaged silicon photonic nanoscale thermometers
Huang et al. MEASUREMENT OF REFRACTIVE INDICES no, ne AND TEMPERATURE COEFFICIENT OF SELF-FREQUENCY DOUBLING NYAB CRYSTALS
JPS61200506A (en) Multi-purpose optical fiber