JPS60152594A - Desulfurization of residual oil from direct desulphurizer - Google Patents

Desulfurization of residual oil from direct desulphurizer

Info

Publication number
JPS60152594A
JPS60152594A JP969884A JP969884A JPS60152594A JP S60152594 A JPS60152594 A JP S60152594A JP 969884 A JP969884 A JP 969884A JP 969884 A JP969884 A JP 969884A JP S60152594 A JPS60152594 A JP S60152594A
Authority
JP
Japan
Prior art keywords
oil
solvent
content
equipment
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP969884A
Other languages
Japanese (ja)
Other versions
JPH0422200B2 (en
Inventor
Katsuto Asahara
浅原 克仁
Masao Hayashidani
林谷 正雄
Seiji Terada
誠二 寺田
Tadaaki Watahashi
渡橋 忠昭
Hiroshi Tsuji
辻 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP969884A priority Critical patent/JPS60152594A/en
Publication of JPS60152594A publication Critical patent/JPS60152594A/en
Publication of JPH0422200B2 publication Critical patent/JPH0422200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To make it possible to remove sulfur efficiently in the subsequent solvent deasphalting step, by adjusting asphalten or Conradson carbon residue content of residual oil from a direct desulfurizer to a predetermined level in a distillation, vaporization or solvent extraction equipment. CONSTITUTION:Residual oil from a direct desulfurizer 1 is led into a distillation, vaporization or solvent extraction equipment 2 and its asphalten content is adjusted to 6wt% or higher or its Conradson carbon residue content is adjusted to 9wt% or higher. The residual oil is then introduced into a solvent deasphalting equipment 3 to produce light oil and deasphalted oil with a low sulfur content. Deasphalted oil as raw material for fluid catalytic cracking is obtained efficiently with a higher yield and at a higher ratio of desulfurization than in the case with solvent deasphalted residual oils of vacuum or normal pressure distillation.

Description

【発明の詳細な説明】 本発明は、主として重質原油を原料とする常圧蒸留残油
を直接脱硫装置に咄すことにより得られる直接脱硫装置
残渣油を、蒸留装置、蒸発装置または溶剤抽出装置に導
入して直接脱硫装置残渣油中のアスファルテン分(ヘプ
タン不溶分)またはコンラドソン残留1大素分(以下、
OCR分という)を所定の値に調整することにより、次
工程である溶剤脱れき装置において硫黄分を高効率で除
去し、効率的に流動4P触分解装置の原料を得ることが
できる直接脱硫装置残渣油の脱硫方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides direct desulfurization equipment residue oil, which is obtained by directly feeding atmospheric distillation residue oil mainly made from heavy crude oil into a desulfurization equipment, by distillation equipment, evaporation equipment, or solvent extraction. The asphaltene content (heptane insoluble content) or Conradson residual 1 element content (hereinafter referred to as
By adjusting the OCR content to a predetermined value, the sulfur content can be removed with high efficiency in the next step, the solvent deasphalt equipment, and the direct desulfurization equipment can efficiently obtain the raw material for the fluidized 4P catalytic cracker. This invention relates to a method for desulfurizing residual oil.

従来、石油精製業界においては原油の重質化、1団硫黄
化及び環境規制に対応し、さらに製゛品油の寸加l1l
l11直を増す目的で多数の直接脱硫装置が設置されて
きたが、この装置によシ得られる残渣油の性状はアラビ
アンヘビー原油を主体とした原料とした場合、第1表の
例に示すごとくCCR分、金属7十を含み1MC黄分に
ついては0.5%前後あり、これ以上の脱硫効率を期待
するには過酷な運転条件が必要とな9、また触媒寿命も
短くなり経済的ではなかった。
Traditionally, the oil refining industry has responded to heavier crude oil, increased sulfurization, and environmental regulations, and has also increased the size of refined oil.
A large number of direct desulfurization units have been installed for the purpose of increasing the oil yield, but the properties of the residual oil obtained by these units are as shown in the example in Table 1 when Arabian heavy crude oil is used as the main raw material. The CCR content includes 70% of metals, and the 1MC yellow content is around 0.5%, so harsh operating conditions are required to expect higher desulfurization efficiency9, and the catalyst life is shortened, making it uneconomical. Ta.

(以下余白) 第1表 このため従来、直接脱硫装置残渣油は金属分、OCR分
と共に硫黄分が問題とされない重油混合基利として利用
された9、また付加価値を増すだめ流動接触分解装置の
原料とする場合には触媒毒となる金属分及び環境規制か
ら制約される硫醒分を希釈するため、大量の脱硫後の直
留軽油または減圧軽油と混合する必要があった。特に処
理原油が重質化し流動接触分解装置原料が十分に得られ
ない場合は、直接脱硫装置残渣油を接触流動分解装置原
料とすることが強く望まれる。その際、硫黄分について
は環境規制上総量規制を受けるため大きな制約となるの
で、その減量対策が必要とされている。一方、従来超臨
界溶剤脱れき法に代表されル溶剤脱れき法は重質残渣油
のアップグレーディング設備として位置づけをされてい
る。
(Left below) Table 1 For this reason, in the past, residual oil from direct desulfurization equipment was used as a heavy oil mixture base, where sulfur content was not a problem, along with metal content and OCR content9. When used as a raw material, it was necessary to mix it with a large amount of desulfurized direct-run gas oil or vacuum gas oil in order to dilute the metal content that can poison the catalyst and the sulfur content that is restricted by environmental regulations. In particular, when the treated crude oil becomes heavy and sufficient raw material for fluid catalytic cracking cannot be obtained, it is strongly desired to use residual oil from direct desulfurization as raw material for fluid catalytic cracking. At this time, the total amount of sulfur is subject to environmental regulations, which poses a major constraint, and therefore measures are needed to reduce its sulfur content. On the other hand, conventional solvent deasphalting methods, typically represented by supercritical solvent deasphalting methods, are positioned as equipment for upgrading heavy residual oil.

第1図はアラビアンヘビーを主体とする減圧蒸留残油を
ブタン溶剤を用いて溶剤脱れき装置にかけた場合の金属
分、CCR分、硫黄分Q除去率と脱れき油収率の関係を
示している。この図からも判るように溶剤脱れき法は脱
バナジウム、脱ニッケル、脱OCRの効果は良いが、脱
硫黄には大きな効果が期待できない。
Figure 1 shows the relationship between the metal content, CCR content, sulfur content Q removal rate, and deasphalted oil yield when vacuum distillation residual oil, mainly Arabian Heavy, is subjected to a solvent deasphalting device using butane solvent. There is. As can be seen from this figure, the solvent deasphalting method is effective in removing vanadium, removing nickel, and removing OCR, but cannot be expected to have a great effect in removing sulfur.

従来、脱金属、脱OCR、脱硫黄を目的として直接脱硫
装置および溶剤脱れき装置を組み合わせたプロセスが提
案されてきているが、これらはいずれも溶剤説れき装置
に脱硫効果を期待するものではなかった。
Conventionally, processes that combine direct desulfurization equipment and solvent deasphalting equipment have been proposed for the purpose of demetalization, de-OCR, and desulfurization, but none of these methods expects the desulfurization effect from the solvent-based deasphalting equipment. Ta.

本発明は究明者らが溶剤脱れき装置の脱れき性能を研究
する過程において、各種の油で溶剤脱れきテストを屯ね
る中、直接脱硫装置残渣油の溶剤脱れき効果が特異であ
ることを見いだした。すなわち従来脱硫効果が期待でき
ないとされていた溶剤脱れき法を直接脱硫装置残渣油に
必用した結果、残渣油中のアスファルテン分を所定の値
以上に濃縮すると高脱硫率が得られることを知見した。
In the process of researching the deasphalting performance of solvent desulfurization equipment, the present inventors conducted solvent deasphalting tests with various types of oil, and discovered that the solvent deasphalting effect of direct desulfurization equipment residual oil was unique. I found it. In other words, as a result of applying the solvent deasphalting method, which was conventionally thought to have no desulfurization effect, to the residual oil of the direct desulfurization equipment, it was discovered that a high desulfurization rate could be obtained by concentrating the asphaltene content in the residual oil to a predetermined value or higher. .

この知見を基にさらに4If究を進め本発明を完成させ
るに至ったものである。
Based on this knowledge, we further conducted 4If research and completed the present invention.

すなわち本発明は、比較的重質な原油の直接脱硫装置残
渣油をプロパン、ブタンまたはペンタン等の溶剤を用い
て溶剤脱れきするに際して、予めQ 71 油中のアス
ファルテン分(ヘプタン不溶分)及びCCR分を蒸留装
置、蒸発装置または溶剤抽出装置において、アメファル
テン分については6重量%以上寸たけCCR分について
は9重量%以上に調整することにより、次工程である溶
剤脱れき装置での極めて高効率の脱硫を特徴とするもの
である。
That is, in the present invention, when solvent deasphalting of direct desulfurization equipment residual oil of relatively heavy crude oil is carried out using a solvent such as propane, butane, or pentane, the asphaltene content (heptane insoluble content) and CCR By adjusting the amephaltene content to 6% by weight or more and the CCR content to 9% by weight or more in the distillation device, evaporation device, or solvent extraction device, extremely high efficiency can be achieved in the next step, the solvent deasphalting device. It is characterized by desulfurization.

以下、本発明の構成を図面に基づいて詳細に説明する。Hereinafter, the configuration of the present invention will be explained in detail based on the drawings.

第2図は本発明を実施するだめの装置構成を示す説明図
である。図中1は直接脱硫装置、2は蒸留装置、蒸発装
置または溶剤抽出装置、3は溶剤脱れき装置である。第
2図において、直接脱硫装置1により得られた直接脱硫
装置残渣油は、蒸留装置、または蒸発装置まだ1は溶剤
抽出装置2に導入され、直接脱硫装置残渣油中のアスフ
ァルテン分(ヘプタン不溶分)を6重量%以上、望まし
くは8.0重量%以上、またはCCR分を9重量%以上
、望甘しくけ1000重量%以上に調整した後、溶剤脱
れき装置3にて脱れきを行うことにより、(流黄分の低
い軽質油及び脱れき油を得る。
FIG. 2 is an explanatory diagram showing the configuration of an apparatus for carrying out the present invention. In the figure, 1 is a direct desulfurization device, 2 is a distillation device, evaporation device, or solvent extraction device, and 3 is a solvent deasphalt device. In Fig. 2, the direct desulfurization equipment residual oil obtained by the direct desulfurization equipment 1 is introduced into a distillation equipment, or an evaporation equipment 1, and a solvent extraction equipment 2, where the asphaltene content (heptane insoluble content) in the direct desulfurization equipment residue oil is removed. ) is adjusted to 6% by weight or more, preferably 8.0% by weight or more, or the CCR content is adjusted to 9% by weight or more, desirably 1000% by weight or more, and then descaling is performed using the solvent descaling device 3. (Obtain light oil with low yellowing content and deasphalted oil.

本発明の特徴は直接脱硫装置残渣油を溶剤脱れきした場
合の硫黄分の挙動の特異1生にあり、第1表に示した直
接脱硫設備残渣油を減圧蒸留装置などを介さず、溶剤を
ブタンとして溶剤脱れきした結果得られた脱れき油の性
状を第2表に示す。
The feature of the present invention is the unique behavior of the sulfur content when direct desulfurization equipment residual oil is deasphalted with a solvent. Table 2 shows the properties of the deasphalted oil obtained as a result of solvent deasphalting as butane.

(以下余白) 第2表 減圧蒸留残渣油または常圧蒸留残渣油を溶剤脱れきした
場合に比し脱1fle黄の効果が特徴的であり、脱れき
油の収率は高いにもかかわらず脱硫率は比較的高かった
。これは直接税+St装置残渣油の1流黄の分布が減圧
蒸留装置残渣油と異なっていることが原因と考えられる
。特に脱硫率が脱OCR率と相関関係にあることから直
接脱硫装置残渣油中の硫黄分は直接脱硫条件下において
も分解さ、れない比較的安定な高分子化合物、すなわち
アスファルテン分に偏在していると推定できた。この仮
定に基づき高脱硫率を得る抽出条件を実験により調査し
た所、OCR分9分量重量%以上1しくけ10.5重↓
d%以上、またはアヌファルテン分6屯量%lLh、望
ましくは8.0重量%以上に濃縮調整した場合に極めて
有効であることを見いだした。OCR分9分量重量%以
下たはアス″ファルテン分6重量%以下の場合には十分
な脱硫率を得ようとすれば脱れき油取率は大幅に低下し
不経済となり、逆に脱れき油を高収率で得ようとした場
合には脱硫率は大幅に凹下する。したがって高収率及び
高脱硫率が両者共71浦だされるためには脱れきアヌフ
ァルト収率を高める必要がある。すなわち直接脱硫装置
残渣油中のOCR分9重址%以上まだはアスファルテン
分6重量%以上を確保する必要がある。
(Left below) Table 2: Compared to solvent deasphalting of vacuum distillation residue oil or atmospheric distillation residue oil, the effect of deasphalting is distinctive, and although the yield of deasphalted oil is high, desulfurization The rate was relatively high. This is thought to be due to the fact that the first stream yellow distribution of the direct tax+St equipment residual oil is different from that of the vacuum distillation equipment residual oil. In particular, since the desulfurization rate is correlated with the removal OCR rate, the sulfur content in the residual oil of the direct desulfurization equipment is unevenly distributed in relatively stable polymer compounds, that is, asphaltenes, which are not decomposed even under direct desulfurization conditions. It was estimated that there was. Based on this assumption, we conducted an experiment to investigate the extraction conditions for obtaining a high desulfurization rate, and found that the OCR content was 9% by weight or more, and 1 load was 10.5%↓
It has been found that it is extremely effective when the concentration is adjusted to d% or more, or annuphaltene content 6 tons %lLh, preferably 8.0% by weight or more. If the OCR content is 9% by weight or less or the asphaltenes content is 6% by weight or less, the deasphalting oil removal rate will significantly decrease and become uneconomical if a sufficient desulfurization rate is to be obtained; When trying to obtain a high yield of Anuphalt, the desulfurization rate drops significantly.Therefore, in order to achieve both high yield and high desulfurization rate, it is necessary to increase the yield of deasphalt. That is, it is necessary to ensure that the OCR content in the residual oil of the direct desulfurization equipment is 9% by weight or more, and the asphaltene content is 6% by weight or more.

第3表はアスファルテンまだはOCR濃度調整の効果に
ついて示している。−例として第1表に示す直接脱硫装
置残渣油を原料とし、VGO(バキュームガスオイ/I
/)及び脱れき油の合計1直である油取率を一定とし、
ブタン溶剤を使用し1M剤比6の同一条件の下で溶剤脱
れきした場合、蒸留装置などたとえば減圧蒸留装置にょ
シ)濃度調整を実施しない場合と実施した場合について
得られた油性状を示している。
Table 3 shows the effect of asphaltene OCR concentration adjustment. - As an example, VGO (vacuum gas oil/I
/) and deasphalting oil, with a total oil removal rate of one shift being constant,
When deasphalting the solvent using butane solvent under the same conditions with a 1M agent ratio of 6, the oil properties obtained in the case where concentration adjustment was not performed and when concentration adjustment was performed are shown. There is.

第3表 この場合、減圧蒸留装置によるアスファルテン分のa縮
に!す、同じ油取率において脱硫率は約20%も向上し
、従来非常に過酷な脱硫条件の下にしか達し得なかった
0、 1%の硫黄含有率に極めて容易に到達することが
できた。また同時に溶剤脱れき装置の本来の効用である
脱金属効果とも相俟って容易に流動接触分解装置におい
て処耶できる性状を90%の鳥油収率で達成することが
できた。本究明は脱硫黄の観点からみれば、直接脱硫装
置と溶剤脱れき装置との組合わせにより容易に高脱硫率
が達成し得ることを示しており、従来莫大な設#111
費及び運転費を費やして達成していた直接脱硫条件下の
負荷を大幅に低減できると同時に、流動接触分解装置の
原料を効果的に提供し得る有用な発明と言える。
Table 3 In this case, the asphaltene content is a-condensed using a vacuum distillation device! At the same oil extraction rate, the desulfurization rate improved by about 20%, making it extremely easy to reach a sulfur content of 0.1%, which was previously only possible under extremely harsh desulfurization conditions. . At the same time, in combination with the demetalization effect, which is the original effect of the solvent deasphalting equipment, we were able to achieve properties that could be easily processed in a fluid catalytic cracking equipment, with a yield of 90%. From the viewpoint of desulfurization, this study shows that a high desulfurization rate can be easily achieved by combining a direct desulfurization equipment and a solvent deasphalt equipment.
This invention can be said to be a useful invention that can significantly reduce the load under direct desulfurization conditions, which has been achieved with great expense and operating costs, and at the same time can effectively provide raw materials for fluid catalytic cracking equipment.

本発明に関する研究の過程で得られた直接脱硫装置減圧
I/jJ、渣油を原料とし、ブタン溶剤を使用した溶剤
脱れきにおける脱硫黄率、脱金属率と油取率の関係を第
3図に示す。第1図に示す減圧残油の溶剤脱れき結果と
比較して全体的に脱金属率の向上が認められ、中でも脱
硫黄率の向上が特徴的である。特に脱硫黄率に関し、脱
れき油収率が80%を越える辺りから急速に低下するこ
とが認められる。高説れき油収率及び高説硫黄率を同時
に達成するには減圧蒸留装置等によりアスファルテン分
−またはCCR分を所定量以上に調整することが有効で
あるとわかる。アスファルテン分及びCCR分の調整方
法について、後述の実施例では減圧蒸留装置を使用した
が、これを溶剤抽出装置としても良く、この場合には溶
剤抽出装置にて50%程度の低抽出率、したがって高脱
硫率、高脱金属率により調整しさらに残渣油を溶剤腕れ
きすることにより、減圧蒸留装置を使用した場合と同様
の効果が得られる。まだ蒸発装置を使用した場合でも同
様である。また直接脱硫装置残渣油の溶剤腕れき法によ
る高説硫黄率は硫黄分がアスファルテン分に偏在してい
ることに起因するため、溶剤は実施例テ用イタブタンに
限定はされず、プロパン、ペンタンあるいはこれらの混
合溶剤についても同(筆の効果は得られる。処理原油の
種類についても特に限定はされないが、性状改善の効果
は重質油はど著しく、したがって直接脱硫装置で処理で
きないようなたとえばマヤ原油等は除き、アラビアンヘ
ビー、カフジ等の重質原油からの直接脱硫装置残渣油に
適用すると特に効果的である。
Figure 3 shows the relationship between the desulfurization rate, metal removal rate, and oil removal rate in solvent deasphalting using a butane solvent using direct desulfurization equipment reduced pressure I/jJ obtained in the course of research related to the present invention, residue oil as raw material. Shown below. Compared to the results of solvent deasphalting of the vacuum residual oil shown in FIG. 1, an overall improvement in the metal removal rate was observed, and the improvement in the desulfurization rate was particularly notable. In particular, regarding the desulfurization rate, it is recognized that the yield of deasphalted oil rapidly decreases when it exceeds 80%. It has been found that it is effective to adjust the asphaltene content or CCR content to a predetermined amount or more using a vacuum distillation apparatus or the like in order to simultaneously achieve a high oil yield and a high sulfur content. Regarding the method for adjusting the asphaltene content and CCR content, a vacuum distillation apparatus was used in the examples described below, but this may also be replaced by a solvent extraction apparatus. In this case, the solvent extraction apparatus has a low extraction rate of about 50%. By adjusting the desulfurization rate and high demetallization rate and further removing the residual oil with a solvent, the same effect as when using a vacuum distillation apparatus can be obtained. The same applies even if an evaporator is still used. In addition, the high sulfur content of the residual oil from the direct desulfurization equipment obtained by the solvent arm rub method is due to the fact that the sulfur content is unevenly distributed in the asphaltene content. The same effect can be obtained with the mixed solvent of It is particularly effective when applied to direct desulfurization equipment residual oil from heavy crude oil such as Arabian Heavy and Khafji.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例 アラビアンヘビーを主体とした混合原油の常圧蒸留残渣
油を直接脱硫処理したときの残渣油(第1表に示す性状
のもの)を減圧蒸留装置にかけ、■GOをカットして、
アスファル1フ分(ヘフタン不溶分)8.6重量%、O
CR分11.1重量%に調整した。このときの直接脱硫
装置減圧残渣油の性状を第4表に示す。この残渣油をブ
タンを溶剤とし溶剤比6にて抽出温度110〜130°
Cの範囲で溶剤腕れきした。この結果得られた脱れき油
の収率及び性状を第4表に、脱れきアスファルトの収率
及び性状を第5表に示す。
Example: The residual oil obtained by directly desulfurizing the atmospheric distillation residual oil of a mixed crude oil mainly composed of Arabian Heavy (having the properties shown in Table 1) was applied to a vacuum distillation apparatus, and ■ GO was cut.
Asphal 1f (heftane insoluble content) 8.6% by weight, O
The CR content was adjusted to 11.1% by weight. Table 4 shows the properties of the vacuum residual oil from the direct desulfurization equipment at this time. This residual oil was extracted using butane as a solvent at a solvent ratio of 6 and a temperature of 110 to 130°.
Solvent leakage occurred in the C range. The yield and properties of the resulting deasphalted oil are shown in Table 4, and the yield and properties of the deasphalted asphalt are shown in Table 5.

(以下余白) 第 5 表(Margin below) Table 5

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアラビアンヘビーを主体とする原油の減圧残油
をブタン溶剤を用いて溶剤腕れきした場&に得られた脱
れき油収率と脱金属率、脱硫黄率の関係を示すグラフ、
第2図は本発明の方法を実施する装置の構成を示すフロ
ーシート、第3図はアラビアンヘビーを主体とする原油
の直接脱硫装置減圧残渣油をブタン溶剤を用いて溶剤腕
れきした場合に得られた脱れき油収率と脱金属率、脱硫
醒率の関係を示すグラフである。 l・・・直接脱硫装置、2・・・減圧蒸留装置または溶
剤抽出装置、3・・・溶剤腕れき装置
Figure 1 is a graph showing the relationship between the deasphalted oil yield, metal removal rate, and sulfur removal rate obtained when vacuum residue of crude oil, mainly Arabian Heavy, was subjected to solvent scraping using a butane solvent.
Figure 2 is a flow sheet showing the configuration of an apparatus for carrying out the method of the present invention, and Figure 3 is a direct desulfurization equipment for crude oil, mainly Arabian Heavy. It is a graph showing the relationship between the deasphalted oil yield, the metal removal rate, and the desulfurization rate. 1... Direct desulfurization equipment, 2... Vacuum distillation equipment or solvent extraction equipment, 3... Solvent arm scraping equipment

Claims (1)

【特許請求の範囲】[Claims] 1 直接脱硫装置残渣油を蒸留装置、蒸発装置または溶
剤抽出装置に導入して直接脱硫装置残渣油中のアメファ
ルテン分を6重量%以上またはコンラドソン残留炭素分
を9取量%以上に調整し、ついでとの残渣油を俗剤説れ
き装置にかけることを特徴とする直接脱硫装置残1に油
の脱硫方法。
1. Introduce the direct desulfurization equipment residual oil to a distillation unit, evaporation equipment, or solvent extraction equipment to adjust the amephaltene content in the direct desulfurization equipment residue oil to 6% by weight or more or the Conradson residual carbon content to 9% by weight or more, and then 1. A method for desulfurizing oil from a direct desulfurization apparatus, characterized in that the residual oil is passed through a vulcanization apparatus.
JP969884A 1984-01-23 1984-01-23 Desulfurization of residual oil from direct desulphurizer Granted JPS60152594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP969884A JPS60152594A (en) 1984-01-23 1984-01-23 Desulfurization of residual oil from direct desulphurizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP969884A JPS60152594A (en) 1984-01-23 1984-01-23 Desulfurization of residual oil from direct desulphurizer

Publications (2)

Publication Number Publication Date
JPS60152594A true JPS60152594A (en) 1985-08-10
JPH0422200B2 JPH0422200B2 (en) 1992-04-15

Family

ID=11727445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP969884A Granted JPS60152594A (en) 1984-01-23 1984-01-23 Desulfurization of residual oil from direct desulphurizer

Country Status (1)

Country Link
JP (1) JPS60152594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513693A (en) * 2009-12-11 2013-04-22 ユーオーピー エルエルシー Method and apparatus for producing hydrocarbon fuels and compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364205A (en) * 1976-11-22 1978-06-08 Shell Int Research Conversion of hydrocarbons
JPS587486A (en) * 1981-06-25 1983-01-17 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Manufacture of hydrocarbon mixture
JPS5847089A (en) * 1981-08-11 1983-03-18 イ− アイ デユポン デ ニモア−ス エンド コムパニ− Deasphaltenation of catalytic cracker residual oil and manufacture of anisotropic pitch
JPS58173190A (en) * 1982-03-24 1983-10-12 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Manufacture of deasphalted oil and hydrocarbon oil distillate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364205A (en) * 1976-11-22 1978-06-08 Shell Int Research Conversion of hydrocarbons
JPS587486A (en) * 1981-06-25 1983-01-17 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Manufacture of hydrocarbon mixture
JPS5847089A (en) * 1981-08-11 1983-03-18 イ− アイ デユポン デ ニモア−ス エンド コムパニ− Deasphaltenation of catalytic cracker residual oil and manufacture of anisotropic pitch
JPS58173190A (en) * 1982-03-24 1983-10-12 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Manufacture of deasphalted oil and hydrocarbon oil distillate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513693A (en) * 2009-12-11 2013-04-22 ユーオーピー エルエルシー Method and apparatus for producing hydrocarbon fuels and compositions

Also Published As

Publication number Publication date
JPH0422200B2 (en) 1992-04-15

Similar Documents

Publication Publication Date Title
US5124027A (en) Multi-stage process for deasphalting resid, removing catalyst fines from decanted oil and apparatus therefor
CA1132934A (en) Process for deasphalting hydrocarbon oils
DE69215481T2 (en) Method of treating a heavy hydrocarbon oil
US5124026A (en) Three-stage process for deasphalting resid, removing fines from decanted oil and apparatus therefor
US3501396A (en) Hydrodesulfurization of asphaltene-containing black oil
US5124025A (en) Process for deasphalting resid, recovering oils, removing fines from decanted oil and apparatus therefor
DE69018599T2 (en) Process for converting heavy hydrocarbon oil.
US4548709A (en) Hydrotreating petroleum heavy ends in aromatic solvents with dual pore size distribution alumina catalyst
US3732155A (en) Two-stage hydrodesulfurization process with hydrogen addition in the first stage
CN118028017A (en) Ebullated bed reactor using upgrades of opportunistic feedstock
US4021335A (en) Method for upgrading black oils
TW201437354A (en) Residue hydrocracking processing
US4272357A (en) Desulfurization and demetalation of heavy charge stocks
CN111484872A (en) Residual oil demetalization method
DE69006469T2 (en) Process for removing metallic contaminants from hydrocarbon oils.
US4673485A (en) Process for increasing deasphalted oil production from upgraded residua
US4522702A (en) Demetallization of heavy oils with phosphorous acid
US9783747B2 (en) Process for desulfurization of naphtha using ionic liquids
EP0462823B1 (en) Resid desulfurization and demetalation
JPS60152594A (en) Desulfurization of residual oil from direct desulphurizer
US3379639A (en) Residual deasphalting and cracking with catalyst demetallization
EP0159140B1 (en) Process for upgrading heavy crude oils
CN111601871A (en) Process for preparing iron and molybdenum catalysts and slurry hydrocracking using iron and molybdenum catalysts
US4752382A (en) Reducing the metals content of petroleum feedstocks
EP0147113B1 (en) Process for increasing deasphalted oil production