JPS60151073A - Thermal head driving circuit - Google Patents

Thermal head driving circuit

Info

Publication number
JPS60151073A
JPS60151073A JP898484A JP898484A JPS60151073A JP S60151073 A JPS60151073 A JP S60151073A JP 898484 A JP898484 A JP 898484A JP 898484 A JP898484 A JP 898484A JP S60151073 A JPS60151073 A JP S60151073A
Authority
JP
Japan
Prior art keywords
temperature
heating element
circuit
thermal head
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP898484A
Other languages
Japanese (ja)
Inventor
Masayuki Hisatake
真之 久武
Haruhiko Moriguchi
晴彦 森口
Toshiji Inui
利治 乾
Akio Noguchi
野口 秋生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP898484A priority Critical patent/JPS60151073A/en
Publication of JPS60151073A publication Critical patent/JPS60151073A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/36Print density control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/36Print density control
    • B41J2/365Print density control by compensation for variation in temperature

Abstract

PURPOSE:To prevent image quality from being lowered due to broken characters or the like, by a method wherein the change of the resistance of each heating element to a predetermined resistance is detected, and the temperature of the heating element is prevented from being raised beyond an appropriate printing temperature. CONSTITUTION:When the temperature of each of the heating elements R1-Rn reaches the appropriate printing temperature T0, a switching circuit for the element is turned OFF to forcibly stop the passage of an electric current to the element. For this purpose, the system is provided with measuring resistors r0 having the same resistance (which is sufficiently lower than the resistance of the heating element) and provided between each heating element and each switching circuit, and driving circuits 1-n each of which detects the change of the temperature of each of the elememts R1-Rn to the appropriate temperature T0 by monitoring the voltage between the ends of the resistor and performs ON-OFF control for the relevant switching circuit. Accordingly, when the temperature of the heating element Rn reaches the appropriate temperature T0, a signal of logic level ''1'' is outputted from a comparator n1, and the change of the temperature of the element Rn to the appropriate temperature T0 is detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、感熱記録装置に用いられるサーマルヘッド
の駆動回路に関し、特に同サーマルヘッド自体への組み
込みが可能な程度に小型化できて、かつ同サーマルヘッ
ドの蓄熱補正を図りながらこれを有効に駆動し得る回路
の具現化に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a drive circuit for a thermal head used in a thermal recording device, and particularly to a drive circuit that can be miniaturized to the extent that it can be incorporated into the thermal head itself, and The present invention relates to the realization of a circuit that can effectively drive the thermal head while correcting heat accumulation in the thermal head.

〔従来技術〕[Prior art]

感熱記録に用いられるサーマルヘッドハ、通常熱記録媒
体の主走査方向の画集数に対応するよう複数の発熱素子
(例えは日本工業規格A列4番の記録紙上に画情報を記
録する場合必要とする発熱素子数は1728個、B列4
番の記録紙の場合には2048個)によって構成されて
おシ、画情報に対応して所要の発熱素子のみを発熱させ
ることによって、該発熱部に摺接する感熱記赤紙やイン
クドナーシート等の熱記録縁体を発色させている。
The thermal head used for thermal recording usually has multiple heating elements to correspond to the number of image collections in the main scanning direction of the thermal recording medium (for example, it is necessary when recording image information on Japanese Industrial Standards A column No. 4 recording paper). The number of heating elements is 1728, B row 4
By generating heat from only the necessary heating elements corresponding to the image information, the heat-sensitive red paper, ink donor sheet, etc. that comes into sliding contact with the heating element can be The heat recording material is colored.

ところで、このようなサーマルヘッドを用いて記録を行
なう場合翫特に1ラインの配録庵期を10 m sec
以下にして嶋速駆動を図ろうとすると、(2) 例えば同一発熱素子を連続して発熱さゼた場合などにす
[、蓄熱の影響によって、該発熱菓子が冷えきらないう
ちに次の行のデータを記録しなければならず、記録濃度
にバラツキが発生し、画質を低下させてしまっていた。
By the way, when recording using such a thermal head, the recording period of one line in particular is 10 m sec.
If you try to achieve speed drive in the following manner, (2) For example, when the same heat generating element generates heat continuously [, due to the influence of heat accumulation, the next row of confectionery will start before the heat generating confectionery cools down completely. Data had to be recorded, causing variations in recording density and deteriorating image quality.

このため、同サーマルヘッドを使用する記録装置では、
上記蓄熱を補正して、それぞれ発熱素子の温度状況に応
じた駆動態様をとることが必須となる。
For this reason, recording devices that use the same thermal head
It is essential to correct the heat accumulation and adopt a driving mode according to the temperature situation of each heating element.

従来よシ、上記蓄熱の補正を図9ながらサーマルヘッド
の駆動を行なうべく回路の開発も試みられはしたが、 ○ h1録装置自体を複雑かつ筒1曲なものとしてしま
う。
In the past, attempts have been made to develop a circuit to drive the thermal head while correcting the heat accumulation described above, but the following problems arise: The H1 recording device itself becomes complicated and has a single cylinder.

○ 記録装置が大型化する。○ Recording devices become larger.

など、実用化に際してはいまだ問題が多かった。There were still many problems in practical application.

〔発明の目的〕[Purpose of the invention]

この発明は、安価でかつ集積化に適した簡単な構成をも
って、上述した蓄熱補正を含むサーマルヘッドの有効駆
動を図ることのできるサーマルヘッド駆動回路を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal head drive circuit that is inexpensive and has a simple configuration suitable for integration, and is capable of effectively driving a thermal head including the above-mentioned heat accumulation correction.

〔発明の構成〕[Structure of the invention]

この発明では、前記各発熱菓子がぞれぞれ印字に適正な
所定の温度以上に加熱されることさえ抑え得れば実質的
に前述した蓄熱補正を達成することができ、しかもこれ
ら各発熱素子の温度の変化は同発熱素子の抵抗値の変化
と対応することから上記印字に適正な所定の温度もこれ
に対応した各発熱菓子毎の所定の抵抗値への推移を検出
することで的確に察知することができることが着目して
、電源回路に共通接続される上記各発熱菓子と、これら
各発熱素子に画情報に応じた駆動信号に基づきそれぞれ
選択的に通電せしめるようになるスイッチ回路との間に
それぞれ適宜の抵抗器を設けるとともに、上記各発熱素
子について、それぞれ該当する発熱菓子の上記印字に適
正な所定の温度に対応した抵抗値にさらに対応するよう
になる上記当該抵抗器の両端電圧に相当する第1の価と
、当該発熱素子の上記抵抗値推移を示す第2の値すなわ
ち上記当該抵抗器の実際の両端間電圧値とを比較し、こ
の第2のf的が上り1第1の1直よシ低くなったときこ
の旨示す所定の検出信号を出力するコン・ンレータを設
け、適宜な論理回路によシこの検出信号が出力された時
点で上記駆動信号の該当する信号を遮断するようにする
。これによシ、たとえ蓄熱された発熱素子が再駆動され
ることがあってもこれら発熱素子の温度が上記印字適正
温度以上に上がることはなくなり、文字つぶれ等による
画質の低下も良好に回避される。また、このような回路
であれば、集積化して非常に小型にすることもできるた
め、サーマルヘッド自体に直接組み込むことも可能とな
)、前述した従来かかえていたような諸問題も一気に解
消される。
In this invention, as long as each heat-generating confectionery can be prevented from being heated above a predetermined temperature appropriate for printing, the heat accumulation correction described above can be substantially achieved, and each of these heat-generating elements Since the change in temperature corresponds to the change in the resistance value of the heat generating element, the appropriate predetermined temperature for the above printing can be determined accurately by detecting the transition to the corresponding predetermined resistance value for each heat generating confectionery. Focusing on this fact, we developed a switch circuit that selectively energizes each of the above-mentioned heat-generating confectioneries commonly connected to a power supply circuit and each of these heat-generating elements based on a drive signal corresponding to image information. In addition to providing an appropriate resistor between each of the heating elements, the voltage across the resistor is such that the resistance value corresponds to a predetermined temperature that is appropriate for the printing of the heating confectionery. The first value corresponding to the value of f is compared with the second value indicating the resistance value transition of the heat generating element, that is, the actual voltage value between both ends of the resistor, and this second value is A converter is provided which outputs a predetermined detection signal indicating this when the current becomes lower than 1 of 1, and an appropriate logic circuit outputs the corresponding signal of the drive signal at the time this detection signal is output. Try to block it. As a result, even if the heat-generating elements that have stored heat are driven again, the temperature of these heat-generating elements will not rise above the above-mentioned appropriate printing temperature, and deterioration of image quality due to characters being crushed etc. can be effectively avoided. Ru. Furthermore, since such a circuit can be integrated and made extremely compact, it can also be directly incorporated into the thermal head itself), which instantly eliminates the various problems previously encountered. Ru.

〔発明の効果〕〔Effect of the invention〕

このように、この発明にかかるサーマルヘッド駆動回路
によれば、安価でかつ集積化に適した簡単な構成をもっ
て蓄熱補正を伴なった同サーマルヘッドの有効駆動を図
ることができるようになる。
As described above, according to the thermal head drive circuit according to the present invention, it is possible to effectively drive the thermal head with heat accumulation correction using a simple configuration that is inexpensive and suitable for integration.

特に同駆動回路を、上述したように集積化してサーマル
ヘッドに直接組み込むようにすれば、当初の感熱記録装
置と同様、単に画情報に対応した駆(5) 動信号を該サーマルヘッドに印加するだけで、同サーマ
ルヘッドの駆動および蓄熱補正が同時にかつ自動的に実
現されるようになる。
In particular, if the drive circuit is integrated as described above and incorporated directly into the thermal head, it will be possible to simply apply a drive signal corresponding to the image information to the thermal head, similar to the original thermal recording device. With just this, the drive of the thermal head and the correction of heat accumulation can be realized simultaneously and automatically.

〔実施例〕〔Example〕

第1図に、この発明で駆動対象とするサーマルヘッドの
1つの発熱素子について、該発熱菓子をパルス幅1ms
の駆動ノ々ルス信号(以下これまでの記載にならって単
に駆動信号という)で駆動したときのこの温度応答、抵
抗値変化、および供給電力変化の様子をそれぞれ示す。
FIG. 1 shows a pulse width of 1 ms for one heating element of a thermal head to be driven in this invention.
The following shows the temperature response, resistance value change, and supply power change when driven by a drive signal (hereinafter simply referred to as a drive signal following the previous description).

すなわち同発熱素子においては、この第1図に示される
ように、上記駆動信号の印加と同時にその温度Tが指数
関数的に増大し、またこれに伴なってその抵抗値Rも増
大するようになる。特にこれら温度Tと抵抗値Rとは第
2図に示すようにほぼ比例した関係にあシ、同発熱素子
の抵抗値Rの推移が検知できればこの温度Tも自動的に
把握できるようになる。
In other words, as shown in FIG. 1, the temperature T of the heating element increases exponentially at the same time as the drive signal is applied, and the resistance value R also increases accordingly. Become. In particular, the temperature T and the resistance value R are in a nearly proportional relationship as shown in FIG. 2, and if the change in the resistance value R of the heating element can be detected, the temperature T can also be automatically determined.

第3図に、発熱素子のこうした特性を踏まえて構成した
この発明の駆動回路の一実施例を示す@はしめに、この
実施例回路の構成について説明r6) する。
FIG. 3 shows an embodiment of the drive circuit of the present invention constructed in consideration of these characteristics of the heating element. Finally, the structure of the circuit of this embodiment will be explained.

同第3図において、電源回路10に共通接続されている
R1 、Rn + R3r ”’Rn−1+ Rnは、
それぞれサーマルヘッドの前述した発熱素子を等測的に
示すものであり、これら発熱素子R,,R2゜R3、・
・・Rn−1r Rnは各対応するスイッチ回路s、l
 ”’2 Hs3+ ”’8n−1+Snがオンとなる
ことによってそれぞれ通電され駆動するようになってい
る。
In FIG. 3, R1, Rn+R3r"'Rn-1+Rn, which are commonly connected to the power supply circuit 10, are
The above-mentioned heating elements of the thermal head are shown isometrically, and these heating elements R,, R2゜R3, .
...Rn-1r Rn is each corresponding switch circuit s, l
When "'2 Hs3+" and "8n-1+Sn are turned on, they are respectively energized and driven.

さて、この実施例回路は、上記各発熱素子R1゜R2、
Rs 、 −Rn−j t Rn毎にその温度Tの変化
を監視し、同温度Tが印字に適正な温度(これをToと
する)となったときこの時点で当該素子に対応する上記
スイッチ回路をオフとして該素子への通電を強制解除す
るようにしだものであシ、上記各発熱素子R1+ R2
+ R3+ ”’ Rn−1+ Rnの温展変化を監視
すべくこれら谷素子と上記各スイッチ回路との間にそれ
ぞれ同一の抵抗値を有する測定用抵抗器76 (この抵
抗値は発熱素子の抵抗値に比べて十分に小さいとする)
と、これら抵抗器rQの両端間電圧をそれぞれ監視する
ことによって上述した発熱素子の適正温度T。への推移
を検出しさらにこれに基づいて当該スイッチ回路のオン
−オフ制御を実行する駆動回路1,2,3゜・・・(n
−1)、nとを具えて構成されている。
Now, in this example circuit, each of the heating elements R1°R2,
Rs, -Rn-j t The change in temperature T is monitored for each Rn, and when the same temperature T becomes an appropriate temperature for printing (this is set as To), the above-mentioned switch circuit corresponding to the element in question is activated at this point. The heating elements R1+R2 are
+ R3+ "' Rn-1+ In order to monitor the temperature change of Rn, a measuring resistor 76 having the same resistance value is connected between these valley elements and each of the switch circuits (this resistance value is the resistance value of the heating element). )
and the appropriate temperature T of the heating element mentioned above by monitoring the voltages across these resistors rQ. Drive circuits 1, 2, 3゜...(n
-1) and n.

以下、第n番目の発熱素子Rnに対応して配される駆動
回路nの動作を例にとって、これら駆動回路1,2,3
.・・・(n−1)、nの上記検出および制御にかかる
動作を詳述する。なお、第4図はこれら発熱素子Rnお
よび駆動回路nの動作例を示すタイムチャートであシ、
この説明に除して同第4図も同時に参照する。
Hereinafter, taking as an example the operation of the drive circuit n arranged corresponding to the n-th heating element Rn, these drive circuits 1, 2, 3
.. ...(n-1), the operation related to the above detection and control of n will be described in detail. Note that FIG. 4 is a time chart showing an example of the operation of these heating elements Rn and drive circuit n.
In this explanation, FIG. 4 will also be referred to.

電源回路10から上記発熱素子Rnに印加される電圧の
値をvlまた該駆動回路によって抽出される電圧の値を
9とすると、上記測定用抵抗器r6の配設によシ、この
抽出電圧の値υは ■ サ :’ −’ r 6 Rn といった形で表わされる。すなわちこの値τは、上記発
熱素子Rnが加熱されて温度が上昇しく第4図(h)参
照)、シたがってその抵抗値Rn(便宜上同じ符号を用
いる)が増大すると、これに伴なって小さくなる(第4
図(1)参照)。
Assuming that the value of the voltage applied from the power supply circuit 10 to the heating element Rn is vl, and the value of the voltage extracted by the drive circuit is 9, the value of this extracted voltage can be increased by arranging the measuring resistor r6. The value υ is expressed in the form ■Sa:'-'r6Rn. In other words, this value τ increases as the heating element Rn is heated and its temperature rises (see FIG. 4 (h)), and therefore its resistance value Rn (the same sign is used for convenience) increases. becomes smaller (4th
(See Figure (1)).

さて、同駆動回路nのコンパレータn1は、このような
電圧νを反転端子に受入し、尚該発熱素子Rnの適正温
度Toに対応した同電圧τに相当する個−vQが非反転
端子に設定されたコンパレータであシ、上記電圧Vが上
記設定電圧vQ よシ高い状態で論理レベル“0#の信
号を、また同電圧τが上記設定電圧voよシ低くなった
ときに論理レベル″′1”の信号をそれぞれ出力するよ
う動作する。換貫すれば、当該発熱素子Rnが上記適正
温度Toに達したときこのコンパレータn1から論理レ
ベル″1#の信号が出力されることになり(第4図(j
)参照)、同コンパレータn1の出力さえ監視していれ
ば当該発熱素子Rnの適正温度Toへの推移が横通され
ることになる。なお、上記設定電圧v6の値は外部印加
電圧VDDの抵抗器r1およびr2による分圧態様によ
って上記適正温度T。
Now, the comparator n1 of the drive circuit n receives such a voltage ν at the inverting terminal, and sets the voltage -vQ corresponding to the same voltage τ corresponding to the appropriate temperature To of the heating element Rn at the non-inverting terminal. The comparator outputs a signal of logic level "0#" when the voltage V is higher than the set voltage vQ, and outputs a signal of logic level "'1" when the voltage τ becomes lower than the set voltage vo. If the heating element Rn reaches the appropriate temperature To, a signal of logic level ``1#'' will be output from the comparator n1 (the fourth Figure (j
), as long as the output of the comparator n1 is monitored, the transition of the heating element Rn to the appropriate temperature To can be monitored. Note that the value of the set voltage v6 is determined at the appropriate temperature T depending on the voltage division mode of the externally applied voltage VDD by the resistors r1 and r2.

に対応した値に経験的に設定される。また同コン(9) パレータn1の反転端子に接続されている抵抗器r3は
保護用抵抗である。
is empirically set to a value corresponding to Further, the resistor r3 connected to the inverting terminal of the comparator (9), the parator n1, is a protection resistor.

このコンパレータn1の出力は、当該発熱素子Rnの適
正温度検出信号GTとしてアンドゲートn2に加えられ
、該アンドグー)R2において駆動信号発生回路20か
ら伝送される当該発熱素子Rnの駆動信号DSn(第4
図(C)参照)とのアンド条件がとられる。そしてこの
アンド条件が成立した場合にはさらに加熱解除指令信号
CS(第4図(d)参照)としてオアゲートn3を介し
てフリップフロップn4に加えられ、該フリップフロッ
プn4をセット状態とする(第4図(e)参照)。この
フリップフロップn4はトグロ型フリッグフロッゾによ
って構成されたものであり、サーマルヘットカ前回の印
字を終了したときに上記駆動信号発生回路20から伝送
されるセット信号5Sn(第4図(b)参照)によυセ
ットされ、上記駆動信号DSnの伝送に先だって同駆動
信号発生回路20から伝送される印字開始信号PRn(
第4図(a)参照)によシセットされ、さらに上記加熱
解除指令信号C8が加(10) えられたときセットされるといった動作をこれら各信号
の印加タイミングに基づいて繰シ返し実行する(第4図
(、)および(b)および(d)および(e)参照)。
The output of the comparator n1 is applied to the AND gate n2 as an appropriate temperature detection signal GT of the heat generating element Rn, and in the AND gate R2, the drive signal DSn (fourth
(See Figure (C)). If this AND condition is satisfied, the heating release command signal CS (see FIG. 4(d)) is further applied to the flip-flop n4 via the OR gate n3, setting the flip-flop n4 in the set state (the fourth (See figure (e)). This flip-flop n4 is constituted by a toggle-type frig-flozzo, and receives a set signal 5Sn (see FIG. 4(b)) transmitted from the drive signal generation circuit 20 when the thermal header finishes the previous printing. The print start signal PRn (
4(a)), and is further set when the heating release command signal C8 is applied (10), based on the application timing of each of these signals (10). 4(a) and (b) and (d) and (e)).

なお、駆動信号発生回路20は、受入画情報VDに基づ
いて上述した各種タイミング信号を発生する感熱記録装
置においては周知の回路であシ、この詳細についての説
明は割愛する。
Note that the drive signal generation circuit 20 is a well-known circuit in thermal recording apparatuses that generate the above-mentioned various timing signals based on the received image information VD, and a detailed explanation thereof will be omitted.

さて、上記加熱解除指令信号C8によってフリツプフロ
ツプn4がセットされ、この出力FOが論理レベルで”
1#となると、インバータn5からはこれが反転されて
論理レベル°゛0#となるような信号IOが出力される
(第4図(f)参照)。そしてこのインバータ出力IO
と上記駆動信号DSnとがアンドダートn6によって最
終的に論理積がとられ、このとき論理レベルで”1#と
なる信号が当該発熱素子Rnの実駆動信号TDSn(第
4図G)参照)としてスイッチ回路Snに加えられ、該
論理レベルで“1”となっている時間だけこのスイッチ
回路Snをオンとする。すなわちこのスイッチ回路Sn
は、駆動信号発生回路20から駆動信号DSnが発生さ
れて以後上記加熱解除指令信号CSが形成されるまでの
時間だけオン状態を保持することになシ、当該発熱素子
Rnもこの時間に限シ実駆動されゐ(第4図(h)参照
)。
Now, flip-flop n4 is set by the heating release command signal C8, and this output FO is at a logic level.
1#, the inverter n5 inverts this and outputs a signal IO having a logic level of 0# (see FIG. 4(f)). And this inverter output IO
and the drive signal DSn are finally ANDed by AND/DART n6, and at this time, the signal whose logic level is "1#" is the actual drive signal TDSn (see FIG. 4G) of the heating element Rn. is added to the switch circuit Sn, and this switch circuit Sn is turned on only during the time when the logic level is "1".In other words, this switch circuit Sn
The heating element Rn is kept in the ON state only for the time from when the drive signal DSn is generated from the drive signal generation circuit 20 until the heating release command signal CS is generated, and the heat generating element Rn is also switched off only during this time. It is actually driven (see Fig. 4(h)).

このように、この駆動回路nを用いれば、当該発熱素子
Rnは、蓄熱の有無にかかわらず、その駆動に際しては
常に印字適正温度T。まで加熱され、しかもこの温度1
0以上には加熱されないため、該発熱素子Rnによって
記録用紙に印字される画(累)も常に一定の大きさおよ
び濃度に維持される品質の高いものとなる。
In this way, if this drive circuit n is used, the heat generating element Rn will always be at the appropriate printing temperature T when driven, regardless of whether heat is stored or not. It is heated to 1, and this temperature 1
Since it is not heated above 0, the image (cumulative) printed on the recording paper by the heating element Rn is always maintained at a constant size and density and is of high quality.

この実施例回路では、上述したような温度検知および駆
動制御を各発熱素子R1r R2+ R3。
In this embodiment circuit, temperature detection and drive control as described above are performed for each heating element R1r R2+R3.

・・・Rn1 * Rn毎に各別に実施するようにした
ものであシ、これによって同発熱索子R1+ R2+R
3、・・・Rn−1+ Rn全てに上述した品質の高い
画像記録を行なわしめることができるようになる。
... Rn1 * This is performed separately for each Rn, and as a result, the same heating cord R1 + R2 + R
3, . . . Rn-1+ The above-mentioned high-quality image recording can be performed on all Rn.

ところで、この実施例回路は上記各発熱素子”1 r 
R2+ R3H””’n−j + Rnの抵抗値が全て
等しいことを前提に構成したものであるが、これら発熱
素子に抵抗値のバラツキがおるようなサーマルヘッドに
ついても同実施例回路が適用可能であることは勿論であ
る。すなわち、各発熱素子の抵抗値にバラツキがあった
場合、前記印字適正温度Toに対応する前記電圧嘗の値
も各発熱素子で異なってくることになるが、例えば室温
において抵抗値の異なる3つの発熱素子においてもその
温度応答と抵抗値変化との関係は第5図に示すように各
発熱素子毎に同一の態様となるものであシ、予め各発熱
素子の同一温度条件下での抵抗値を測定して、例えば各
駆動回路1,2,3.・・・(n−”)+nにおける前
記基準設定電圧υ0の値を当該発熱素子の上記測定した
抵抗値に基づいて調製するようにすれば、これら抵抗値
のバラツキも良好に補正することができる。勿論、この
補正方法は任意でア如、他に例えば、前記電圧嘗の方の
値を上記測定した抵抗値に基づいて演算修正するように
したり、測定用抵抗器roの抵抗値を上記測定した抵抗
価に基づいて′v@製設定するようにしたりしてもよい
By the way, in this example circuit, each of the above heating elements "1 r
Although this circuit is constructed on the assumption that the resistance values of R2+R3H""'n-j + Rn are all equal, the same embodiment circuit can also be applied to thermal heads in which there are variations in the resistance values of these heating elements. Of course it is. In other words, if there is variation in the resistance value of each heating element, the value of the voltage corresponding to the appropriate printing temperature To will also be different for each heating element. As shown in Figure 5, the relationship between the temperature response and the change in resistance value of a heating element is the same for each heating element, and the resistance value of each heating element under the same temperature condition is For example, each drive circuit 1, 2, 3 . ...If the value of the reference setting voltage υ0 at (n-")+n is adjusted based on the measured resistance value of the heating element, variations in these resistance values can also be corrected well. Of course, this correction method is optional.For example, the value of the voltage may be calculated and corrected based on the measured resistance value, or the resistance value of the measuring resistor ro may be corrected based on the measured resistance value. The value may be set based on the resistance value obtained.

(13) また、各駆動回路1,2,3.・・・(n−1)。(13) Further, each drive circuit 1, 2, 3 . ...(n-1).

nにおける論理回路の構成も上述した実施例に限らず任
意であり、各発熱素子の印字適正温度検出回路である前
記コンパレータの出力に基づいて前記駆動信号DS1 
、DS2 、DS3、、−DSn−4,DSnの該当す
る信号を遮断し得れはいかなる構成としてもよい。
The configuration of the logic circuit in n is not limited to the above-mentioned embodiment, but is arbitrary, and the drive signal DS1 is determined based on the output of the comparator, which is a printing appropriate temperature detection circuit for each heating element.
, DS2, DS3, -DSn-4, and any configuration that can block the corresponding signals of DSn may be used.

さらに同実施例では、第3図に示したように、上記各駆
動回路1,2,3.・・・(n−1)、nをサーマルヘ
ッド自体に直接組み込むことを想定してその全体の構成
を図ったが(この発明によシ十分可能となる構成である
)、これとて実情に応じて任意となるものであυ、上記
駆動回路のうち各コンパレータまでをサーマルヘッドに
組み込んで以降段の各論理回路を駆動信号発生回路20
と組み合せたシ、あるいは上記駆動回路全てを駆動信号
発生回路20を組み合せたシ、その組み合せの選択は自
由である。
Furthermore, in the same embodiment, as shown in FIG. 3, each of the drive circuits 1, 2, 3 . ...(n-1), the overall configuration was designed assuming that n would be directly incorporated into the thermal head itself (a configuration that is fully possible with this invention), but this does not meet the actual situation. Depending on the situation, the drive signal generating circuit 20 can be configured as desired by incorporating the drive circuits up to each comparator into the thermal head and converting each subsequent logic circuit to the drive signal generation circuit 20.
The combination can be freely selected, such as a combination of the above drive circuits and the drive signal generation circuit 20.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサーマルヘッドの1つの発熱素子につ(14) いて同素子を・平ルス幅1msの駆動信号で駆動したと
きの温度応答および抵抗値変化および供給電力変化のそ
れぞれの関係を示す線図、第2図は同発熱素子における
温度応答と抵抗値変化との対応関係を示す線図、第3図
はこの発明にかかるサーマルヘッド駆動回路の一実施例
を示す回路図、第4図は第3図に示した実施例回路の動
作例を示すタイムチャート、第5図は室温において抵抗
値の異なる3つの発熱素子における各温度応答と抵抗値
変化との対応関係を示す線図である。 1 、2 、3 、 ”・(n −1) 、 n =・
駆動回路、nl・・・コンパレータ、R2,R6・・・
アンドダート、R3・・・オアダート、R4・・・フリ
ップフロップ、R5・・・インバータ、10・・・電源
回路、20・・・駆動信号発生回路、R1+ R2s 
RB p ”’ Rn−1+ Rn・・・発熱素子、r
o・・・測定用抵抗器、sl l s21S、・・・S
nl 、sn・・・スイッチ回路(15) ’E4%l5Jrr−’d7 特輯 婿 αq
Figure 1 shows a line showing the relationship between temperature response, resistance value change, and supply power change when one heat generating element (14) of a thermal head is driven with a drive signal with a pulse width of 1 ms. 2 is a diagram showing the correspondence between temperature response and resistance value change in the heating element, FIG. 3 is a circuit diagram showing an embodiment of the thermal head drive circuit according to the present invention, and FIG. FIG. 3 is a time chart showing an operation example of the embodiment circuit shown in FIG. 3, and FIG. 5 is a diagram showing the correspondence between each temperature response and resistance value change in three heating elements having different resistance values at room temperature. 1, 2, 3, ”・(n −1), n =・
Drive circuit, nl... comparator, R2, R6...
And dirt, R3...or dirt, R4...flip-flop, R5...inverter, 10...power supply circuit, 20...drive signal generation circuit, R1+R2s
RB p ”' Rn-1+ Rn...Heating element, r
o...Measuring resistor, sl l s21S,...S
nl, sn...Switch circuit (15) 'E4%l5Jrr-'d7 Special order son-in-law αq

Claims (1)

【特許請求の範囲】 電源回路に共通接続されるサーマルヘッドの各発熱素子
と接地との間にそれぞれスイッチ回路を有し、受入画情
報に対応して形成される駆動信号により当該スイッチ回
路をオンとすることによって当該発熱素子に通電せしめ
これを駆動するサーマルヘッド駆動回路において、前記
各発熱素子と前記各スイッチ回路との間にそれぞれ介在
するようになる抵抗器と、前記各発熱素子について、そ
れぞれ該当する発熱素子の印字適正温度に対応した当該
抵抗器は両端間電圧に相当する第1の値と、該抵抗器の
実際の両端間電圧である第2の値とを比較し、この第2
の値が前記第1の*xD低くなったとき検出信号を出力
するコンパレータと、該検出信号が出力された時点で前
記駆動信号の該当する信号を速断する論理回路とを具え
たことを特徴とするサーマルヘッド駆動回路。 (1)
[Claims] A switch circuit is provided between each heating element of the thermal head commonly connected to a power supply circuit and the ground, and the switch circuit is turned on by a drive signal formed in accordance with received image information. In a thermal head drive circuit that energizes and drives the heating element by doing so, a resistor is interposed between each of the heating elements and each of the switch circuits, and each of the heating elements is The resistor corresponding to the appropriate printing temperature of the corresponding heating element compares the first value corresponding to the voltage across the resistor with the second value which is the actual voltage across the resistor, and calculates the second value.
A comparator that outputs a detection signal when the value of xD becomes lower than the first *xD, and a logic circuit that quickly cuts off the corresponding signal of the drive signal at the time when the detection signal is output. Thermal head drive circuit. (1)
JP898484A 1984-01-20 1984-01-20 Thermal head driving circuit Pending JPS60151073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP898484A JPS60151073A (en) 1984-01-20 1984-01-20 Thermal head driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP898484A JPS60151073A (en) 1984-01-20 1984-01-20 Thermal head driving circuit

Publications (1)

Publication Number Publication Date
JPS60151073A true JPS60151073A (en) 1985-08-08

Family

ID=11707950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP898484A Pending JPS60151073A (en) 1984-01-20 1984-01-20 Thermal head driving circuit

Country Status (1)

Country Link
JP (1) JPS60151073A (en)

Similar Documents

Publication Publication Date Title
JPH02121853A (en) Thermal head control circuit
JP3039229B2 (en) Thermal printer
JP3567241B2 (en) Printing control device
JPH0368832B2 (en)
JPH0253232B2 (en)
JPS60151073A (en) Thermal head driving circuit
JP2975480B2 (en) Heating recording device
JPH0818440B2 (en) Thermal head
JPS63173669A (en) Printing controller for thermal printer
JPS61213171A (en) Bar code printer
JPS60203472A (en) Pulse width controller for drive pulse of heating resistor
JPS61228970A (en) Thermal head driver
JP2579488B2 (en) Recording device
JPH01135663A (en) Driving method of thermal head
JPS63166559A (en) Thermal-type multigradation recorder
JPH0160433B2 (en)
JP2709057B2 (en) Thermal print control circuit
JPS6189055A (en) Speed control device for thermosensitive recording
JPS609774A (en) Thermal head driver
JP2681004B2 (en) Thermal head control circuit
JPH0527549B2 (en)
JPS63126770A (en) Thermal head driving apparatus
JPS59152878A (en) Gradation-controlling system for thermal printer
JPS61184968A (en) Thermal head driving circuit
JPS59107681A (en) Printer