JPS60150522A - Gas breaker - Google Patents
Gas breakerInfo
- Publication number
- JPS60150522A JPS60150522A JP561284A JP561284A JPS60150522A JP S60150522 A JPS60150522 A JP S60150522A JP 561284 A JP561284 A JP 561284A JP 561284 A JP561284 A JP 561284A JP S60150522 A JPS60150522 A JP S60150522A
- Authority
- JP
- Japan
- Prior art keywords
- arc
- contact
- gas
- arc contact
- fixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/70—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
- H01H33/7015—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
- H01H33/7023—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
Landscapes
- Circuit Breakers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、六弗化硫黄(SFslガス遮断器に関するも
のである。−
〔発明の背景〕
SFeガス遮断器の遮断構造は一般に第1図に示すよう
に固定アーク接触子1、可動アーク接触子2、固定主接
触子3、可動主接触子4、絶縁ノズル5、バッファシリ
ンダ6とバッファピストン7で形成されるバッファ室8
から形成されている。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a sulfur hexafluoride (SFsl gas circuit breaker). As shown, a buffer chamber 8 is formed by a fixed arc contact 1, a movable arc contact 2, a fixed main contact 3, a movable main contact 4, an insulating nozzle 5, a buffer cylinder 6, and a buffer piston 7.
It is formed from.
このSF6ガス遮断器の通電時は第1図上側に示すよう
に固定アーク接触子1と可動アーク接触子2及び固定主
接触子3と可動主接触子4はそれぞれ電気的に接続され
ている。開極動作時は第1図下側に示すように、バッフ
ァシリンダに固着されている可動アーク接触子2.可動
主接触子4及び絶縁ノズル5が図示例では左側に移動す
る。この過程で固定主接触子3と可動主接触子が開離し
、これより遅れて固定アーク接触子1と可動アーク接触
子2が開離する。このため、開極時には固定アーク接触
子1と可動アーク接触子2間にアークが発生するが固定
主接触子3と可動主接触子間にはアークの発生Viない
。一方、バッファピストン7は固定されており、バッフ
ァシリンダ6は第1図において左側に移動するためバッ
ファ室8内のSFa ガスは圧縮され、固定アーク接融
子1が絶縁ノズル5のスロート部を抜けるとこのSFa
ガスは固定アーク接触子1と絶縁ノズル5の末広部間の
空間を通り絶縁ノズル5外に流れる。When the SF6 gas circuit breaker is energized, the fixed arc contact 1 and the movable arc contact 2 and the fixed main contact 3 and the movable main contact 4 are electrically connected, respectively, as shown in the upper part of FIG. During the opening operation, as shown in the lower part of FIG. 1, the movable arc contact 2. which is fixed to the buffer cylinder. The movable main contactor 4 and the insulating nozzle 5 move to the left in the illustrated example. In this process, the fixed main contact 3 and the movable main contact are separated, and after this, the fixed arc contact 1 and the movable arc contact 2 are separated. Therefore, at the time of opening, an arc occurs between the fixed arc contact 1 and the movable arc contact 2, but no arc occurs between the fixed main contact 3 and the movable main contact. On the other hand, the buffer piston 7 is fixed, and the buffer cylinder 6 moves to the left in FIG. Toko SFa
Gas flows out of the insulating nozzle 5 through the space between the fixed arc contact 1 and the diverging part of the insulating nozzle 5.
大電流遮断のときは電流値が太きいため固定アーク接触
子1と可動アーク接触子が開離しても極間にはアークが
継続し、固定アーク接触子1が絶縁ノズル5内にある状
態では電流遮断はできず、固定アーク接触子lが絶縁ノ
ズル5のスロート部kM全に脱出した後に・バッファ室
8で圧縮されたSF6 カスがアークに吹き付けられて
消弧される。従って・大電流遮断には固定アーク接触子
1が絶縁ノズル5のスロート部を抜は出た後のガス流を
制御することが有効であり、開極後0.5サイクル程度
で固定アーク接触子1が絶縁ノズル5のスロート部を抜
は出し、アークにガス全吹き付ける構造がとられる。When a large current is interrupted, the current value is large, so even if the fixed arc contact 1 and the movable arc contact are separated, the arc continues between the poles, and when the fixed arc contact 1 is inside the insulating nozzle 5, The current cannot be interrupted, and after the fixed arc contact 1 escapes into the throat part kM of the insulating nozzle 5, SF6 scum compressed in the buffer chamber 8 is blown onto the arc and extinguished. Therefore, in order to interrupt large currents, it is effective to control the gas flow after the fixed arc contact 1 exits the throat part of the insulated nozzle 5, and the fixed arc contact 1 pulls out the throat part of the insulating nozzle 5, and the structure is such that the entire gas is blown onto the arc.
しかし、進み小電流遮断の場合には、遮断電流が小さい
ために、固定アーク接触子1と可動アーク接触子2が開
離すると同時にアーク時間0で電流が遮断されることが
ある。進み小電流の場合には電圧と電流の位相差は電気
角ではソ90°であるため消弧されると遮断器の負荷側
にはこの時の対地電圧のピーク値が充電された状態とな
り、遮断器の電源測には電源周波数の対地電圧が加えら
れる。この結果、例えば3相の場合極間には次式で示さ
れる′」位差■が生ずる。However, in the case of advanced small current interruption, since the interruption current is small, the current may be interrupted at the same time as the fixed arc contactor 1 and the movable arc contactor 2 are separated and the arc time is 0. In the case of a small lead current, the phase difference between voltage and current is 90 degrees in electrical angle, so when the arc is extinguished, the load side of the circuit breaker is charged with the peak value of the ground voltage at this time. To measure the power supply of a circuit breaker, the ground voltage at the power frequency is applied. As a result, for example, in the case of three phases, a phase difference ``'' shown by the following equation occurs between the poles.
ただし、VP:電源電圧(相電圧実効値)ω :電源周
波数の角速度
t :時間
この値は電源周波数の0.5サイクル後に最大となる。However, VP: power supply voltage (effective value of phase voltage) ω: angular velocity of power supply frequency t: time This value reaches its maximum after 0.5 cycles of the power supply frequency.
実用される遮断器では開極時の極間長の増加の割合より
も、(1)式の電圧上昇の割合が大きいために・極間の
電界強度はこの開極0.5ザイクル後が最も高くなり、
特にアーク時間0のときが最も大きい。従って極間の負
担電圧が幸くなるにつれて、進み小電流遮断責務は遮断
器開発上解決しなければならない大きな課題の1つとな
ってきている。In practical circuit breakers, the rate of voltage increase in equation (1) is larger than the rate of increase in the length between poles when the circuit is opened, so the electric field strength between the poles is at its highest after 0.5 cycle of opening. get high,
In particular, it is greatest when the arc time is 0. Therefore, as the burden voltage between the poles decreases, the progressive small current breaking duty has become one of the major issues that must be solved in the development of circuit breakers.
第2図に、第1図に示した従来の構造の絶縁ノズルを用
いたときの開極動作時の固定アーク接触子1の先端角部
9点の圧力変化、開極動作中の極間の絶縁耐力及び開極
動作?ともなわない静止時の極間絶縁耐力を示す。開極
動作時のQ点の圧力は極間長d1までは充気圧力よりも
上昇し、その後、極間長d2になるまで、Q点の圧力は
急低下している。遮断器のストローク特性と対応させて
調べると極間長d1は固定アーク接触子1の端部Qが絶
縁ノズル5のスロートを抜けはじめる位置に当り、d2
は絶縁ノズル5の末広部と固定アーク接触子間のガス流
路断面積が絶縁ノズル5のスロート部の断面積よりわず
かに大きくなった位置に当る。すなわち、d2は固定ア
ーク接触子1の先端角部9点の近傍のガス流速が最大と
なる位置であり、ガス流速が大きくなるために固定アー
ク接触子1表面の静圧が急低下する位置といえる。Figure 2 shows the pressure changes at the nine tip corners of the fixed arc contact 1 during the opening operation when the insulated nozzle with the conventional structure shown in Figure 1 is used, and the gap between the poles during the opening operation. Dielectric strength and opening operation? This shows the dielectric strength between electrodes at rest. During the electrode opening operation, the pressure at point Q rises higher than the filling pressure until the distance between poles d1 is reached, and thereafter, the pressure at point Q rapidly decreases until the distance between poles reaches d2. When examined in relation to the stroke characteristics of the circuit breaker, the distance between poles d1 corresponds to the position where the end Q of the fixed arc contact 1 begins to pass through the throat of the insulating nozzle 5, and d2
corresponds to a position where the cross-sectional area of the gas flow path between the divergent part of the insulating nozzle 5 and the fixed arc contact is slightly larger than the cross-sectional area of the throat part of the insulating nozzle 5. That is, d2 is the position where the gas flow velocity near the 9 points of the tip corner of the fixed arc contact 1 is maximum, and is the position where the static pressure on the surface of the fixed arc contact 1 suddenly decreases due to the increased gas flow velocity. I can say that.
一方第2図において開極動作時の絶縁耐力をみると極間
長d、までは静止ガスの場合と同様に上昇し極間長d1
を越えると急に低下し、極間長d2で極小値を示しその
後は再び上昇するという圧力変化と同じ傾向を示し、開
極動作時の極間絶縁耐力は固定アーク接触子1の表面の
圧力に依存していることがわかる。上述のごとく、大電
流の遮断性能をよくするために開極後0.5サイクル程
度からアークに強力にガス全欧き付けようとすると、進
み小電流遮断で極間電圧が最も高くなる極間長で固定ア
ーク接触子先端部のカス圧が低下し極間絶縁耐力が低下
するという欠点がある。On the other hand, in Fig. 2, when looking at the dielectric strength during electrode opening operation, it increases until the electrode gap length d, as in the case of stationary gas, and increases to the electrode gap length d1.
It shows the same tendency as the pressure change, in which it suddenly decreases when the contact distance exceeds d2, reaches a minimum value at the contact distance d2, and then rises again. It can be seen that it depends on As mentioned above, in order to improve the interrupting performance of large currents, if you try to forcefully apply gas to the arc from about 0.5 cycles after contact opening, the gap between the electrodes where the voltage between the electrodes is the highest when interrupting a small current advances. If the length is too long, the scum pressure at the tip of the fixed arc contact decreases, resulting in a decrease in inter-electrode dielectric strength.
1だ別の公知例を第3図に示す。固定アーク接触子1、
可動アーク接触子2、固定主接触子3゜可動主接触子4
.絶縁ノズル5、バンファシリンダ6及びバッファピス
トン7で構成されるのは第1図に示した例と同じである
が、絶縁ノズル5の末広部後方にガス流を乱すための突
起9を点在さぞである。これは大電流遮断の際の遮断直
前すムわち、極間長が十分に大きくなり遮断しようとす
る電流が小さくなった時点で、絶縁ノズル5の末広部の
ガス流の一部と絶縁ノズル5の中心部に向は消弧全助長
しようとするものである。従って、極間長の短かい時点
での進み小電流遮断性能には何んら影響を与えない。筐
たこのように突起全点在させることはガス流の中に渦を
発生させることになり、渦中心部のガス圧が低下するの
で絶縁耐力の低下をまねく欠点がある。従って進み小電
流遮断に影響を与える極間長が短かく・極間の電界強度
の高い位置にこの種の突起を付けることは好1しくない
。Another known example is shown in FIG. fixed arc contact 1,
Movable arc contact 2, fixed main contact 3゜movable main contact 4
.. The insulating nozzle 5, bumper cylinder 6, and buffer piston 7 are the same as the example shown in FIG. That's amazing. This occurs immediately before the interruption of a large current, that is, when the distance between poles becomes sufficiently large and the current to be interrupted becomes small, part of the gas flow in the wide end of the insulating nozzle 5 and the insulating nozzle The direction toward the center of 5 is intended to fully promote arc extinction. Therefore, there is no effect on the advanced small current interrupting performance at a point in time when the distance between poles is short. If all the protrusions are scattered like this, a vortex will be generated in the gas flow, and the gas pressure at the center of the vortex will decrease, resulting in a decrease in dielectric strength. Therefore, it is not preferable to provide this kind of protrusion at a position where the distance between the poles is short and the electric field strength between the poles is high, which affects the interruption of small currents.
本発明の目的は、ガス遮断器の開極動作時、固定アーク
接触子近傍の圧力低下全防ぎ進み小電流連断性能を向上
させることにある。An object of the present invention is to completely prevent pressure drop in the vicinity of a fixed arc contact during the opening operation of a gas circuit breaker, and to improve small current connection performance.
[発明の概要]
本発明ハ、カス遮断器の絶縁ノズルスロート下流側に変
流体を設け、開極動作中の開極後0.5サイクル近くで
の固定アーク接触子表面にガス流による動圧を与え固定
アーク接触子近傍のカス圧低下を防止するようにしたも
のである。[Summary of the Invention] The present invention C. A variable fluid is provided on the downstream side of the insulating nozzle throat of the cass circuit breaker, and dynamic pressure due to the gas flow is applied to the surface of the fixed arc contact near 0.5 cycles after opening during the opening operation. This is to prevent a drop in gas pressure near the fixed arc contact.
第4図に本発明によるガス遮断器の遮断部構造を示す。 FIG. 4 shows the structure of the interrupting part of the gas circuit breaker according to the present invention.
固定アーク接触子l、バッファシリンダ(図示せず)に
固着された可動アーク接触子2及び絶縁ノズル5などに
よって構成されている点は従来と全く同じである。本発
明の特徴とするところは絶縁ノズル5のスロート下流側
に変流体13を設けることにあり、本発明により進み小
電流遮断性能を大幅に向上できる。以下第4図により詳
細に説明する。開極時にパンファ室(図示せず)で圧縮
されたSF6ガスは消弧室11を通り絶縁ノズル5のス
ロートを経て固定アーク接触子1の周囲から絶縁ノズル
5の外側(同右側)に流れる。The structure is exactly the same as the conventional one in that it is composed of a fixed arc contact 1, a movable arc contact 2 fixed to a buffer cylinder (not shown), an insulating nozzle 5, and the like. A feature of the present invention is that a variable fluid 13 is provided on the downstream side of the throat of the insulating nozzle 5, and the present invention can significantly improve the small current interrupting performance. This will be explained in detail with reference to FIG. 4 below. SF6 gas compressed in a puffer chamber (not shown) when the electrode is opened passes through the arc extinguishing chamber 11, passes through the throat of the insulating nozzle 5, and flows from around the fixed arc contact 1 to the outside (to the right side) of the insulating nozzle 5.
この過程においてSF6 カスは絶縁ノズル5の末広部
A−Dに付けられた変流体13の先細部を形成する0面
に当り、ガス流の一部は固定アーク接触子1側に流れの
向き全変見られ、このガス流によって固定アーク接触子
表面に動圧が与えられる。In this process, the SF6 scum hits the zero surface forming the tapered part of the variable fluid 13 attached to the widening part A-D of the insulating nozzle 5, and a part of the gas flow is directed toward the fixed arc contact 1 side in all directions. Apparently, this gas flow applies dynamic pressure to the surface of the fixed arc contact.
この結果固定アーク接触子lの表面のガス圧力が増加し
、極間の絶縁耐力全高める。変流体の先端Cははソ開極
0.5サイクル後に固定アーク接触子1の先端角部9点
が通過する位置に設けられである。従って・進み小電流
遮断で最も電界が高くなる時点での固定アーク接触子l
の端部の圧力が高くなり進み小電流遮断性能を向上でき
る。この変流体13は環状の連続したものでも、甘た。As a result, the gas pressure on the surface of the fixed arc contact 1 increases, increasing the total dielectric strength between the electrodes. The tip C of the variable fluid is provided at a position where the nine tip corners of the fixed arc contactor 1 pass after 0.5 cycles of polar opening. Therefore, the fixed arc contact l at the point where the electric field is highest in advanced small current interruption
The pressure at the end increases and progresses, improving small current interrupting performance. Even if this variable fluid 13 is annular and continuous, it is not easy.
第4図に示したように不連続のものでもよいが、不連続
にする場合には変流体13間で形成される溝140寸法
によってその特性が異なる。第5図は、変流体13間の
ガス流路面積を変えてめた開極時の極間絶縁耐力の開極
後0.5サイクルの位置の値を示すものである。変流体
13の先端Cと固定アーク接触子1間のガス流路断面積
esl −変流体13間のガス流路断面積すなわち第4
図に示す溝14の幅Wと変流体の高さhの債k S 2
とし、横軸に(82/S 1)2 縦軸に絶縁耐力で
示すと(S2/S1)Σの値が0.1より大きくなると
絶縁耐力が急激に低下することがわかる。第1図に示し
た従来の絶縁ノズルを用いfc場合の絶縁耐力(相対値
)は0.7であり、進み小電流遮断性能を同上させるた
めには(S 2/ S +)T が民以下でなければな
らないことがわかる。これは、変流体13間のガス流路
断面積が増加すると変流体13間に対向する固定アーク
接触子1表面のガス圧増加が少ないばかりでなく、変流
体13の周囲にガス流の渦が発生し、渦中心部の圧力が
低下し絶7穎剛力が低下するためである。流体力学の理
論によれば渦中の圧力は(2)式で表わされる。As shown in FIG. 4, the grooves 140 may be discontinuous, but if they are discontinuous, the characteristics will vary depending on the dimensions of the grooves 140 formed between the variable fluids 13. FIG. 5 shows the value of the interelectrode dielectric strength when the electrodes are opened by changing the gas flow path area between the variable fluids 13 at a position 0.5 cycle after the electrodes are opened. The cross-sectional area of the gas flow between the tip C of the variable fluid 13 and the fixed arc contact 1 esl - The cross-sectional area of the gas flow between the variable fluid 13, that is, the fourth
The width W of the groove 14 and the height h of the variable fluid shown in the figure k S 2
If the horizontal axis is (82/S 1) 2 and the vertical axis is dielectric strength, it can be seen that when the value of (S2/S1)Σ becomes larger than 0.1, the dielectric strength decreases rapidly. The dielectric strength (relative value) in the case of fc using the conventional insulated nozzle shown in Fig. 1 is 0.7, and in order to achieve the same advanced small current interrupting performance, (S 2 / S +) T must be less than or equal to that of civil. I know it has to be. This is because when the cross-sectional area of the gas flow path between the variable fluids 13 increases, not only does the increase in gas pressure on the surface of the fixed arc contact 1 facing between the variable fluids 13 become smaller, but also the vortices of the gas flow around the variable fluids 13. This is because the pressure at the center of the vortex decreases and the absolute stiffness decreases. According to the theory of fluid dynamics, the pressure in the vortex is expressed by equation (2).
こ\で Po :渦中心の圧力
■)。:器壁の圧力
C:音速
T :カスの給体温度
1も :ガス定数
SFa ガスの場合、C=134.9 (m/s )
。Here Po: Pressure at the center of the vortex■). :Pressure of vessel wall C:Sonic speed T:Gas feed temperature 1:Gas constant SFa For gas, C=134.9 (m/s)
.
R= 56.9 (l112152K)でありT=28
8(0K)とするとP o/ Pooキ1/3になる。R = 56.9 (l112152K) and T = 28
If it is 8 (0K), Po/Pooki will be 1/3.
従ってSFsガス中の渦中心の圧力は最悪の場合1周囲
圧力の1/3 tで低下し、絶縁耐力もこれにはソ比例
して低下することになる。上述のごとく、・ム縁ノズル
5のスロート下流側で開極後0.5サイクルに固定アー
ク接触子1の端部9点が通過する位置付近にガス流路が
最も小さくなるような変流体13′fr:設け(S 2
/ S +)’≦1.5 になるようにすることにより
、進み小電流遮断性能を大幅に向上できる。Therefore, in the worst case, the pressure at the center of the vortex in the SFs gas decreases by 1/3 t of one ambient pressure, and the dielectric strength also decreases in proportion to this. As mentioned above, the variable fluid 13 is such that the gas flow path becomes the smallest near the position where the nine end points of the fixed arc contactor 1 pass 0.5 cycles after opening on the downstream side of the throat of the edge nozzle 5. 'fr: Provided (S 2
/S+)'≦1.5, the advanced small current interrupting performance can be greatly improved.
本発明によれば、ガス遮断器の開極時の固定アーク接触
子近傍のガス圧低下を防止できるので、開極動作時の極
間絶縁耐力を向上させ、進み小電流遮断性能の改善に有
効である。According to the present invention, it is possible to prevent a drop in gas pressure near the fixed arc contact during opening of a gas circuit breaker, which improves the dielectric strength between electrodes during opening operation, and is effective in improving the advanced small current breaking performance. It is.
第1図は従来のガス遮断器の構造説明図、第2図は第1
図のガス遮断器の開極動作時の極間絶縁耐力及び固定ア
ーク接触子端のガス圧変化説明図・第3図は従来の他の
ガス遮断器の遮断部構造説明図、第4図(イ)は本発明
のガス遮断器の実施例の絶縁ノズル断面図、(ロ)は(
イ)の側面図、第5図は第4図の絶縁ノズルの寸法を変
えた場合の絶縁耐力の比較説明図である。
1・・・固定アーク接触子、2・・・可動アーク接触子
、3・・・固定主接触子、4・・・可動主接触子・5・
・・絶縁ノズル、6・・・バッファシリンダ、7・・・
バッファピストン、8・・・バッファ室、9・・・突起
、11・・・消弧室、13・・・変流体、14・・・溝
。Figure 1 is an explanatory diagram of the structure of a conventional gas circuit breaker, and Figure 2 is a diagram showing the structure of a conventional gas circuit breaker.
Figure 3 is an explanatory diagram of the inter-electrode dielectric strength and gas pressure change at the fixed arc contact end during opening operation of the gas circuit breaker. Figure 3 is an explanatory diagram of the structure of the breaking part of another conventional gas circuit breaker. A) is a sectional view of the insulating nozzle of the embodiment of the gas circuit breaker of the present invention, and (B) is (
The side view of a), FIG. 5, is a comparative explanatory diagram of the dielectric strength when the dimensions of the insulating nozzle shown in FIG. 4 are changed. 1... Fixed arc contact, 2... Movable arc contact, 3... Fixed main contact, 4... Movable main contact, 5.
...Insulating nozzle, 6...Buffer cylinder, 7...
Buffer piston, 8... Buffer chamber, 9... Protrusion, 11... Arc extinguishing chamber, 13... Variable fluid, 14... Groove.
Claims (1)
を圧縮する装置、圧縮された消弧性ガスを導く絶縁ノズ
ルを備え、開極時に固定アーク接触子と可動アーク接触
子間に発生するアークに消弧性ガスを吹き付けて消弧す
るガス遮断器において、絶縁ノズルのスロート部下流で
、開極0.5サイクル後に固定アーク接触子の先端角部
が通過する位置付近でガス流路断面積が最小となる変流
体を設けたことを特徴とするガス痔断器。1.Equipped with a fixed arc contact, a movable arc contact, a device for compressing arc-extinguishing gas, and an insulated nozzle that guides the compressed arc-extinguishing gas, so that the arc-extinguishing gas generated between the fixed arc contact and the movable arc contact when the contact is opened is In a gas circuit breaker that extinguishes an arc by spraying an arc-extinguishing gas onto the arc, the gas flow path is located downstream of the throat of the insulating nozzle, near the position where the tip corner of the fixed arc contact passes after 0.5 cycles of opening. A gas hemorrhoid cutter characterized by having a variable fluid having a minimum cross-sectional area.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP561284A JPS60150522A (en) | 1984-01-18 | 1984-01-18 | Gas breaker |
US06/640,580 US4667072A (en) | 1983-08-24 | 1984-08-14 | Gas-insulated circuit breaker |
CA000460992A CA1243342A (en) | 1983-08-24 | 1984-08-14 | Gas-insulated circuit breaker |
DE8484109801T DE3480364D1 (en) | 1983-08-24 | 1984-08-17 | Gas-insulated circuit breaker |
KR1019840004953A KR890002474B1 (en) | 1983-08-24 | 1984-08-17 | Gas-insulated circuit breaker |
EP84109801A EP0135158B1 (en) | 1983-08-24 | 1984-08-17 | Gas-insulated circuit breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP561284A JPS60150522A (en) | 1984-01-18 | 1984-01-18 | Gas breaker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60150522A true JPS60150522A (en) | 1985-08-08 |
JPH0481291B2 JPH0481291B2 (en) | 1992-12-22 |
Family
ID=11616014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP561284A Granted JPS60150522A (en) | 1983-08-24 | 1984-01-18 | Gas breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60150522A (en) |
-
1984
- 1984-01-18 JP JP561284A patent/JPS60150522A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0481291B2 (en) | 1992-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5231256A (en) | Puffer type gas-insulated circuit breaker | |
US4250364A (en) | Vacuum arc current limiter with oscillating transverse magnetic field and method | |
JPS60150522A (en) | Gas breaker | |
US3381248A (en) | Magnetic pressure liquid circuit breaker | |
KR890002474B1 (en) | Gas-insulated circuit breaker | |
JPS61188825A (en) | Buffer type gas breaker | |
KR100330979B1 (en) | High Voltage Spherical-Gap Discharge Switch, High Voltage Pulse Generation Circuit and High Voltage Discharge Switching Method | |
JPS58103733A (en) | Pressure gas switch | |
JPS6352729B2 (en) | ||
JPH0495322A (en) | Gas blast circuit breaker | |
JPS6293826A (en) | Gas circuit breaker | |
JPH03134926A (en) | Buffer type gas circuit breaker | |
JPS60150521A (en) | Gas breaker | |
JPH0435857B2 (en) | ||
JPH01313830A (en) | Buffer type gas-blast circuit-breaker | |
US4319296A (en) | Series connected oscillating transverse field interrupter and method | |
JPS5887722A (en) | Compression gas breaker | |
JP2512502Y2 (en) | Gas insulated disconnector | |
JP2644290B2 (en) | Puffer type gas circuit breaker | |
JPH0435858B2 (en) | ||
JPS60212923A (en) | Gas breaker | |
US3178546A (en) | Orifice structure for circuit interrupter of fluid blast type | |
JPH05166442A (en) | Puffer type gas circuit breaker | |
JPH0378925A (en) | Gas load switch | |
JPH0487126A (en) | Gas circuit breaker |