JPS60149970A - Detection of deterioration and damage of high temperature pressure resistant member - Google Patents

Detection of deterioration and damage of high temperature pressure resistant member

Info

Publication number
JPS60149970A
JPS60149970A JP59005685A JP568584A JPS60149970A JP S60149970 A JPS60149970 A JP S60149970A JP 59005685 A JP59005685 A JP 59005685A JP 568584 A JP568584 A JP 568584A JP S60149970 A JPS60149970 A JP S60149970A
Authority
JP
Japan
Prior art keywords
damage
pressure resistant
resistant member
high temp
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59005685A
Other languages
Japanese (ja)
Inventor
Fujimitsu Masuyama
不二光 増山
Takashi Oguro
大黒 貴
Toshio Haneda
羽田 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59005685A priority Critical patent/JPS60149970A/en
Publication of JPS60149970A publication Critical patent/JPS60149970A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • G01N2001/364Embedding or analogous mounting of samples using resins, epoxy

Abstract

PURPOSE:To accurately detect the deterioration and creep damage of a material during the use of a high temp. pressure resistant member, by collecting a part of the outer surface of the high temp. pressure resistant member in a range not less than a predetermined thickness so as to include the surface thereof and observing the cross-sectional area or ground surface of the collected specimen by a microscope. CONSTITUTION:With due regard to such a fact that the damage generation place due to the creep of a high temp. pressure resistant member used for a long time is present in the surface layer of said pressure resistant member, this method is constituted so that a small piece having a thickness corresponding to the excessive wall thickness part of the high temp. pressure resistance member is collected from said pressure resistance member to as to include the surface thereof and inspected by a microscope. By this method, the damage state of this member can be detected in an extremely accurate manner without exerting substantially any destruction upon the high temp. pressure resistant member. Furthermore, in the microscopic observation of the small piece used in this method, not only voids due to creep but also the distribution state and form of precipitates can be accurately grasped and the element analysis of the precipitates and a matrix is enabled. Further, by observing the small piece from each part of the member, information relating to the deterioration and damage of the material can be accumulated and statistically processed and, as a result, the max. damage degree of the whole of the member can be also known.

Description

【発明の詳細な説明】 本発明は高温で長時間使用された高温耐圧部材の材質劣
化およびクリープ損傷を非破壊的に検出する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for non-destructively detecting material deterioration and creep damage in high-temperature pressure-resistant members that have been used at high temperatures for long periods of time.

(従来のものの概要とその欠点) ボイラおよび各種プラントの高温機器において、高温で
長時間使用された耐圧部材は、使用中に部材に作用する
応力あるいは加熱によって材質が変化し、使用条件に応
じた材料寿命が消費される。
(Summary of conventional products and their drawbacks) In boilers and high-temperature equipment of various plants, pressure-resistant materials that are used at high temperatures for long periods of time may change in material quality due to the stress or heating that is applied to the materials during use, and may change depending on the usage conditions. Material life is consumed.

一般に、部材は降伏点以下の小さな応力が作用しても高
温下では変形が生じ、ついには破壊に至る。このような
現象をクリープ変形およびクリープ破断と称するが、長
時間使用された部材にはほとんど変形が生じていないに
もかかわらず、結晶粒界に空孔が発生し、それがき裂に
成長して破壊する場合もある。
In general, even if a small stress below the yield point is applied to a member, it will deform at high temperatures and eventually break. These phenomena are called creep deformation and creep rupture, but even though there is almost no deformation in parts that have been used for a long time, vacancies are generated at grain boundaries and these grow into cracks. It may also be destroyed.

このように変形をともなわない場合も、クリープ損傷の
一種でアシ、実際、長時間使用材にはこのような損傷が
発生することは少なくない。
Even when this type of deformation is not involved, it is a type of creep damage, and in fact, this kind of damage often occurs in materials that have been used for a long time.

この場合、結晶粒界に発生する空孔はクリープ空孔と呼
ばれ、見掛上はとんどクリープ変形を生じないような小
さい応力が作用している状態でも、金属組織中の析出物
の生成および成長にともなって結晶粒界に発生し、それ
がき裂に成長する。クリープ空孔が生成した場合には、
クリープ破壊が発生するまでの大半の時間を消費してい
ると考えられ、新しい材料に取替えなければならない。
In this case, the vacancies that occur at the grain boundaries are called creep vacancies, and even when a small stress that does not apparently cause creep deformation is applied, the vacancies that occur at the grain boundaries are caused by the formation of precipitates in the metal structure. As cracks form and grow, they occur at grain boundaries and grow into cracks. When creep vacancies are generated,
It is thought that most of the time is consumed before creep failure occurs, and it is necessary to replace it with a new material.

また、最近、10万時間以上の長時間運転された発電プ
ラントなどが多くなシ、その保守管理が重要な問題とな
ってきている。すなわち、現在の設計基準では10万時
間のクリープ破断強度牽もとに各耐圧部の設計を行なっ
ておシ、安全率が見込まれているが、10万時間以上の
使用後においてその残寿命を推定することはかなシ困難
である。従って、一般には損傷あるいは事故が発生した
時点で初めて材料を取替えることが多く、事故の処理お
よび新材料の購入などの面で多大の労力と費用を要する
ことになる。
Furthermore, recently, many power generation plants have been operated for a long time of 100,000 hours or more, and their maintenance management has become an important issue. In other words, in the current design standards, each pressure-resistant part is designed based on the creep rupture strength of 100,000 hours, and a safety factor is expected, but after 100,000 hours of use, the remaining life is It is difficult to estimate. Therefore, in general, materials are often replaced only after damage or an accident occurs, which requires a great deal of effort and expense in handling the accident and purchasing new materials.

また、最近では損傷の発生を非破壊的に検出し、それに
もとすいて補修あるいは材料の取替えを行なうことも検
討されているが、まだ、信頼性に欠け、実用化に至って
いないのが現状である。
In addition, recently, non-destructive detection of damage and repair or material replacement has been considered, but it is still unreliable and has not yet been put to practical use. It is.

従って、上記のような従来方法ではいずれにしても、損
傷を正確に検出することが難しく、事故の発生を避ける
ために、まだ十分に寿命があると推定されても、安全性
の点から新材料に取替えざるを得ない状態にある。
Therefore, it is difficult to accurately detect damage using conventional methods such as those described above, and even if it is estimated that there is still enough life to avoid accidents, it is difficult to detect new damage from a safety point of view. We are in a situation where we have no choice but to replace the material.

(発明の目的および動機) ′本発明は高温耐圧部材の使用中における材料劣化およ
びクリープ損傷を正確に検出することを目的とするもの
であシ、長時間使用された高温耐圧部材の損傷の発生挙
動を詳細に調べることによってなされたものである。
(Aim and Motive of the Invention) 'The purpose of the present invention is to accurately detect material deterioration and creep damage during use of high-temperature and pressure-resistant members, and to detect the occurrence of damage to high-temperature and pressure-resistant members that have been used for a long time. This was done by examining the behavior in detail.

(本発明の構成及び新規な着目点) 本発明は高温耐圧部材の外表面の一部分を該部材の設計
必要肉厚を下廻らない範囲で表面を含めて採取し、採取
試料の断面あるいは研摩面を顕微鏡で観察することを要
旨とするものである。
(Structure and novel points of interest of the present invention) The present invention collects a part of the outer surface of a high-temperature and pressure-resistant member, including the surface within a range not less than the required design thickness of the member, and collects a cross-section of the sample or a polished surface. The gist of this study is to observe them using a microscope.

ここで、本発明の新規な着目点は、長時間使用された高
温耐圧部材のクリープによる損傷の発生個所が表面層で
あることに着目し、この部材から設計上余肉に相当する
部分を表面を含めて採取し、それを顕微鏡で検査する点
である。
Here, the novel point of the present invention is to focus on the fact that damage occurs due to creep in high-temperature and pressure-resistant members that have been used for long periods of time, and that the damage occurs in the surface layer. The point is to take a sample of the sample and examine it under a microscope.

この設計上余肉に相当する部分とは部材の寸法によって
異なシ、数−の場合もあるが、クリープ損傷を最もよく
検出できる約α2fiが含まれておればよい。
In terms of design, the portion corresponding to excess thickness may vary depending on the dimensions of the member, but it is sufficient that it includes approximately α2fi, where creep damage can be best detected.

(応用分野) 本発明は長時間使用された火力発電プラントなどの高温
耐圧部材の材料劣化およびクリープ損傷検出に適用でき
る。
(Application Field) The present invention can be applied to detecting material deterioration and creep damage in high-temperature and pressure-resistant members of thermal power plants and the like that have been used for long periods of time.

(本発明の具体例) 内圧300 kg/’cm2、温度620℃の条件で約
17万時間蒸気配管として使用された5US316H鋼
管の一部を切出して、その断面を顕微鏡で観察した結果
、結晶粒界および粒内には多数の析出物が認められたが
、これと同時に、結晶粒界の析出物に沿ってクリープに
よって生じたとみられる空孔が観察された。との空孔の
管横断面における分布を詳細に観察したところ、管外表
面や約Q、2gmから約2瓢の深さの範囲において集中
的に存在し、それよシも深い範囲においては分布密度が
小さいことが分った。
(Specific example of the present invention) A portion of a 5US316H steel pipe that had been used as steam piping for approximately 170,000 hours under conditions of an internal pressure of 300 kg/'cm2 and a temperature of 620°C was cut out, and its cross section was observed under a microscope. As a result, crystal grains were observed. A large number of precipitates were observed at the boundaries and within the grains, and at the same time, vacancies, which appeared to be caused by creep, were observed along the precipitates at the grain boundaries. A detailed observation of the distribution of pores in the cross section of the tube revealed that they were concentrated on the outer surface of the tube and in the depth range of about Q, 2gm to about 2gm, and that they were distributed even deeper. It was found that the density was low.

そこで、上、起供試管の他に、同条件で使用された管の
表面層のみを約2mの深さくこれはこの管の厚さを超音
波肉厚計で測定した結果と設計必要肉厚を比較した結果
、十分余肉の範囲に入っていた。)まで、被観察部に塑
性変形を与えないように、小片(3爆X 5 ran 
X 2 arm )を採取した。次にこの小片を樹脂の
中に埋め、その断面が観察できるように研磨した後、ピ
クリン酸塩酸を用いて軽く腐食し、走査型電子顕微鏡に
よって、その組織を観察した。
Therefore, in addition to the test tube mentioned above, only the surface layer of the tube used under the same conditions was deepened to a depth of approximately 2 m. As a result of comparing, it was within the range of sufficient extra meat. ), small pieces (3 bombs x 5 ran
X 2 arm) was collected. Next, this small piece was buried in resin, polished so that its cross section could be observed, and then lightly corroded using picric acid, and its structure was observed using a scanning electron microscope.

その結果、小片の断面には結晶粒界の粗大な析出物に沿
った空孔が存在することが確認された。
As a result, it was confirmed that there were pores along coarse precipitates at grain boundaries in the cross section of the small piece.

(本発明の効果) 従って、本発明法によれば、耐圧部材の表面部から余肉
の範囲の小片を採取するだけで、この耐圧部材の損傷状
態をきわめて正確に検出できることが分る。なお、本発
明法で使用する小片の顕微鏡観察ではクリープによる空
孔のみでなく、析出物の分布状態、形態も正確に把握す
ることができるとともに、析出物および母地の元素分析
も可能である。また、この方法では部材の各部から小片
を多数サンプリングして、観察することによって、材料
劣化および損傷に関する情報を集積、統計処理すること
ができ、これによって部材全体の最大損傷度を知ること
もできる。
(Effects of the Present Invention) Therefore, it can be seen that according to the method of the present invention, the damaged state of the pressure-resistant member can be detected very accurately by simply collecting a small piece of excess thickness from the surface of the pressure-resistant member. In addition, microscopic observation of small pieces used in the method of the present invention makes it possible to accurately grasp not only the pores caused by creep but also the distribution and morphology of precipitates, as well as elemental analysis of the precipitates and matrix. . Additionally, with this method, by sampling and observing many small pieces from each part of the component, it is possible to accumulate and statistically process information regarding material deterioration and damage, which also makes it possible to determine the maximum degree of damage to the entire component. .

復代理人 内 1) 明 復代理人 萩 原 亮 −Among the sub-agents: 1) Akira Sub-agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】[Claims] 高温耐圧部材の外表面層の一部分を、該部材の設計必要
肉厚を下廻らない範囲で、表面を含めて採取し、採取試
料の断面あるいは研磨面を顕微鏡で観察することを特徴
とする高温耐圧部材の劣化、損傷検出方法。
A high-temperature method characterized by sampling a part of the outer surface layer of a high-temperature pressure-resistant member, including the surface, to the extent that the thickness is not less than the required design thickness of the member, and observing the cross section or polished surface of the sample using a microscope. Method for detecting deterioration and damage of pressure-resistant components.
JP59005685A 1984-01-18 1984-01-18 Detection of deterioration and damage of high temperature pressure resistant member Pending JPS60149970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005685A JPS60149970A (en) 1984-01-18 1984-01-18 Detection of deterioration and damage of high temperature pressure resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005685A JPS60149970A (en) 1984-01-18 1984-01-18 Detection of deterioration and damage of high temperature pressure resistant member

Publications (1)

Publication Number Publication Date
JPS60149970A true JPS60149970A (en) 1985-08-07

Family

ID=11617953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005685A Pending JPS60149970A (en) 1984-01-18 1984-01-18 Detection of deterioration and damage of high temperature pressure resistant member

Country Status (1)

Country Link
JP (1) JPS60149970A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232565A (en) * 1986-04-02 1987-10-13 Mitsubishi Heavy Ind Ltd Evaluation of residual life of heat resistance steel
JPS62245960A (en) * 1986-04-18 1987-10-27 Mitsubishi Heavy Ind Ltd Nondestructive evaluation system for life expectancy of turbine
CN109916693A (en) * 2019-04-01 2019-06-21 西北工业大学 A kind of method of determining casting single crystal high temperature alloy crystal orientation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201066A (en) * 1995-01-25 1996-08-09 Alps Electric Co Ltd Oscillatory gyroscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201066A (en) * 1995-01-25 1996-08-09 Alps Electric Co Ltd Oscillatory gyroscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232565A (en) * 1986-04-02 1987-10-13 Mitsubishi Heavy Ind Ltd Evaluation of residual life of heat resistance steel
JPS62245960A (en) * 1986-04-18 1987-10-27 Mitsubishi Heavy Ind Ltd Nondestructive evaluation system for life expectancy of turbine
CN109916693A (en) * 2019-04-01 2019-06-21 西北工业大学 A kind of method of determining casting single crystal high temperature alloy crystal orientation
CN109916693B (en) * 2019-04-01 2021-09-17 西北工业大学 Method for determining crystal orientation of cast single crystal superalloy

Similar Documents

Publication Publication Date Title
Edwards et al. Mechanical and microstructural properties of 2024-T351 aluminium using a hat-shaped specimen at high strain rates
Darras et al. Analysis of damage in 5083 aluminum alloy deformed at different strainrates
Wallace et al. Fretting fatigue crack nucleation in Ti–6Al–4V
Choudhuri et al. Ballistic response of a fcc-b2 eutectic alcocrfeni 2.1 high entropy alloy
CN105510392B (en) A kind of end-of-life engine valve lossless detection method based on micro resistance
Nobakhti et al. Evaluating small punch test as accelerated creep test using Larson–Miller parameter
CN109187543A (en) A kind of in-service ethylene cracking tube embrittlement classification lifetime estimation method
JPS60149970A (en) Detection of deterioration and damage of high temperature pressure resistant member
Jin et al. An experimental methodology for quantitative characterization of multi‐site fatigue crack nucleation in high‐strength Al alloys
Xie et al. Investigations on oxidation and microstructure evolution of pure Cu in simulated air–kerosene combustion atmospheres
JP3015599B2 (en) Creep damage evaluation method for ferritic heat-resistant steel
Andrew et al. Investigating and interpreting failure analysis of high strength nuts made from nickel-base superalloy
Maitra Determination of stress corrosion cracking resistance of Al-Cu-Mg alloys by slow strain rate and alternate immersion testing
Nyhus et al. Normalisation of material crack resistance curves by the T-stress
JPH06249828A (en) Detection of carbide in low alloy steel by electrochemical polarization method
Chene et al. SIMS analysis of deuterium diffusion in alloy 600: The correlation between fracture mode and deuterium concentration profile
Maier et al. Cyclic deformation and lifetime of Alloy 617B during thermo-mechanical fatigue
Holzmann et al. Degradation of mechanical properties of Cr Mo V and Cr Mo V W steam turbine rotors after long-term operation at elevated temperatures. Part I: tensile properties, intergranular fracture strength and impact tests
Hurst et al. A renaissance in Small Punch testing at Swansea University
Plumtree et al. Damage accumulation and fatigue crack propagation in a squeeze-formed aluminium alloy
Shinde et al. The Effects of Dwell on the LCF Behavior of IN617
Chen et al. Investigation on the stress corrosion crack initiation and propagation behavior of alloy 600 in high-temperature water
Sasaki et al. Fracture mode determinations by scanning electron microscopy
JPH0635971B2 (en) Method for predicting remaining life of metallic materials
Gowda et al. On The Role of Environment on Tensile Response and Fracture Behavior of A High Strength Alloy Steel