JPS60149887A - Repair method through flame spraying - Google Patents

Repair method through flame spraying

Info

Publication number
JPS60149887A
JPS60149887A JP530984A JP530984A JPS60149887A JP S60149887 A JPS60149887 A JP S60149887A JP 530984 A JP530984 A JP 530984A JP 530984 A JP530984 A JP 530984A JP S60149887 A JPS60149887 A JP S60149887A
Authority
JP
Japan
Prior art keywords
flame
burner
fuel
gaseous fuel
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP530984A
Other languages
Japanese (ja)
Other versions
JPS6248156B2 (en
Inventor
浜井 和男
堀尾 竹弘
正孝 松尾
宏之 石松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP530984A priority Critical patent/JPS60149887A/en
Publication of JPS60149887A publication Critical patent/JPS60149887A/en
Publication of JPS6248156B2 publication Critical patent/JPS6248156B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Nozzles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 l、産業上の利用分野〕 本発明は各種窯炉内張り損傷部位へ耐火物粉末を火焔溶
射により吹き付りて補修する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a method for repairing damaged parts of various furnace linings by spraying refractory powder by flame spraying.

〔従来技術とその問題点〕[Prior art and its problems]

特開昭56−118763号公報に記載されているよう
に、近年各種窯炉内張り1員傷部位の補修法として1:
11温火焔内に耐火15)末を通過させ加熱溶融投射し
て損傷内張相上に溶射層を形成させる溶射補修法が開発
されている。
As described in Japanese Unexamined Patent Application Publication No. 118763/1983, in recent years, as a repair method for damaged parts of various kiln linings, 1:
A thermal spray repair method has been developed in which a refractory 15) powder is passed through a 11-temperature flame and heated and melted to form a sprayed layer on the damaged lining layer.

かかる溶射補修法においては、最大Q、21m1lの補
修用耐火物粒子が通常の溶射火焔の早さである数10 
m / seeで飛行する場合、2400 ’cの高温
火焔中で溶融するために必要な火焔の長さは約500 
+imとされている。
In this thermal spray repair method, the maximum Q, 21 ml of repair refractory particles, is several tens of times faster than the normal thermal spray flame speed.
When flying at m/see, the flame length required to melt in a hot flame of 2400'c is approximately 500 m/see.
It is said to be +im.

一方高温火炎を得るために、燃料としてプロパンガス、
アセチレンガス等のガス燃料、灯油2重油等の液体燃料
が単独に使用され、また、助燃料として純酸素が用いら
れており、形成される火焔の長さと温度は使用される燃
料の種類によって異なる。一般に気体燃料を使用した場
合、第1図に示すように高温火焔の長さはlrν体燃料
より短く、溶射バーナの最適溶射距離は200〜800
 +imの範囲にあるとされている。これに対して、液
体燃料の場合には、バーナ先端ノズルで霧化された油滴
表面がガス化したのち燃焼するため燃焼速度が遅く、高
温火焔域は、第2図に示すように、バーナ端面カラ80
0 龍〜1500m+nの部分で形成されるので、溶射
バーナの最適溶射距離は気体燃料よりも長い8゜O” 
1500mmである。
On the other hand, in order to obtain a high-temperature flame, propane gas is used as a fuel.
Gaseous fuel such as acetylene gas, liquid fuel such as kerosene double fuel oil, etc. are used alone, and pure oxygen is used as an auxiliary fuel, and the length and temperature of the flame formed vary depending on the type of fuel used. . Generally, when gaseous fuel is used, the length of the high-temperature flame is shorter than that of lrv body fuel, as shown in Figure 1, and the optimal spraying distance of the thermal spray burner is 200 to 800.
It is said to be in the range of +im. On the other hand, in the case of liquid fuel, the surface of oil droplets atomized by the burner tip nozzle gasifies and then burns, so the combustion speed is slow, and the high temperature flame region is End collar 80
0 Dragon~1500m+n, so the optimal spraying distance of the thermal spray burner is 8°O, which is longer than that of gaseous fuel.
It is 1500mm.

このため、補修適用部位によっては、溶射バーナの高温
火焔域と溶射位置とを一致させることが困難となり溶射
補修法の利用が制限されることがある。例えば、コーク
ス炉炉壁、/8鋼真空脱ガス槽吸上管等はその形状から
の制限を受けて数10cmの溶射距離しか確保出来ない
場合もある。この場合に、液体燃料を用いたのでは、第
2図のa点で溶射層が形成されることになり、耐火物の
粒子は未溶融のまま損傷部位に溶射されて、不完全溶融
の状態でイζ]着することになり溶融不足の多孔質な溶
射層が形成され、イNj@部分の強度も不十分となる。
For this reason, depending on the area to be repaired, it may be difficult to match the high-temperature flame area of the thermal spray burner with the spraying position, which may limit the use of the thermal spraying repair method. For example, coke oven walls, /8 steel vacuum degassing tank suction pipes, etc. are limited by their shapes and may only be able to spray a spraying distance of several tens of centimeters. In this case, if liquid fuel were used, a sprayed layer would be formed at point a in Figure 2, and the refractory particles would be sprayed unmelted onto the damaged area, resulting in an incompletely melted state. As a result, a porous sprayed layer with insufficient melting is formed, and the strength of the Nj@ portion becomes insufficient.

また、例えば真空脱ガス槽の溶鋼を吸上げる吸上管、槽
下部壁の内張り祠の補修をおこなう場合には、溶射バー
ナからの距離は吸上管部で約200〜400 +1m、
槽側壁下部で400〜1500mmと変化する。
In addition, for example, when repairing the suction pipe that sucks up molten steel in a vacuum degassing tank, or the lining shrine on the lower wall of the tank, the distance from the thermal spray burner should be approximately 200 to 400 +1 m at the suction pipe part.
The length varies from 400 to 1500 mm at the bottom of the tank side wall.

このような溶射距離が変化する部位に対して従来の単一
燃料のバーナを使用したのでは、両部位を1徒al容芽
]位置にすることはできず、バーナランス自体にランス
長さを変化出来る装置を具備させないと適正な溶射施工
体が得られないという問題がある。
If conventional single-fuel burners are used for areas where the thermal spray distance changes, it is not possible to place both areas in the same position, and the lance length must be adjusted to the burner lance itself. There is a problem that a proper thermal sprayed body cannot be obtained unless a device capable of changing the temperature is provided.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、溶射バーナから補修部位までの溶射距
離の長短に関係なく、またバーナランスに格別の装置を
設けることなく最適な火焔を生成して溶射補修の効率を
高める方法を提供することにある。
It is an object of the present invention to provide a method for increasing the efficiency of thermal spray repair by generating an optimal flame regardless of the length of the spraying distance from a thermal spray burner to the repaired area and without installing any special equipment in the burner lance. It is in.

〔発明の構成〕[Structure of the invention]

本発明は、火焔発生部分に火焔長さ特性か異なる複数の
燃料を供給することによって火;、6の長さを制御する
ものである。
The present invention controls the length of the flame by supplying a plurality of fuels with different flame length characteristics to the flame generating portion.

第3図は本発明の詳細な説明する図である。同図は、燃
焼条件を同しにして前述の第1図と第2図に示す気体燃
料と液体燃料とを(jf用して燃J/6した場合の火焔
の特性を示す。気体燃料によってバーナ端面から約80
0 mmの位置まで2000℃以上の高温火焔域を形成
し、液体燃れ1による111i温火J、ζ1域はバーナ
端面から800 mm −1500mmの部分で形成さ
れる。このように高温火焔域はバーナ6111面から1
500部の位置まで連続して形成されることになり、高
温火焔形成域の長さは前記第1図と第2図の場合のよう
に単一の燃料を用いた場合よりも略2倍の高温火焔域を
形成することになる。このことば高温火焔を通過する耐
火物粒子の溶融能力は2倍となることを意味し、火焔内
の粒子濃度を2倍にすることが可能となることを意味す
る。
FIG. 3 is a diagram explaining the present invention in detail. This figure shows the flame characteristics when the gaseous fuel and liquid fuel shown in Figs. Approximately 80mm from the burner end face
A high temperature flame area of 2000°C or more is formed up to the 0 mm position, and a 111i hot flame J and ζ1 area due to liquid combustion 1 is formed at a portion of 800 mm to 1500 mm from the burner end face. In this way, the high temperature flame area is 1
500 parts, and the length of the high-temperature flame formation region is approximately twice as long as when a single fuel is used as in the case of Figures 1 and 2. A high temperature flame area will be formed. This means that the melting capacity of refractory particles passing through a high-temperature flame is doubled, which means that the concentration of particles in the flame can be doubled.

第4図は気体燃料と液体燃料とを組合せて使用するのに
好適なバーナの先端の各噴出孔の配置を示す正面図であ
り、第5図は第4図のバーナ先端部の構造を示すA−A
断面回である。
Fig. 4 is a front view showing the arrangement of the jet holes at the tip of a burner suitable for using a combination of gaseous fuel and liquid fuel, and Fig. 5 shows the structure of the burner tip in Fig. 4. A-A
It is a cross section.

バーナ(1)の先b::iの各噴出孔の配置は第4図に
示すように、中心部に酸素の噴出孔(2)を設の、その
外側に同心円状に液体燃料(たとえば灯油)の噴出孔(
;3)、而・j火わ)末の噴出孔(4a)と(4b) 
、気体燃!1′、l(たとえばプロパンカスに酸素を予
l昆合したガス)の噴出孔(5)の多数個が順に配置さ
れている。
As shown in Figure 4, the arrangement of the nozzles at the tip b::i of the burner (1) is as shown in Figure 4. ) vent (
;3), the vents (4a) and (4b) at the end of the fire
, gas combustion! A large number of ejection holes (5) for gases 1' and 1 (for example, a gas prepared by premixing oxygen with propane gas) are arranged in this order.

バーナ(11の先端部、いわゆるノズル部の構造は第5
図に示すごとく、酸素噴出孔(2)につづく酸素ノズル
(2’)、液体燃料の噴出孔(3)につづく液体燃料ノ
ズル(3’)、耐火材わ〕未噴出孔(4a) 。
The structure of the burner (the tip of 11, the so-called nozzle part is the fifth
As shown in the figure, an oxygen nozzle (2') is connected to the oxygen nozzle (2), a liquid fuel nozzle (3') is connected to the liquid fuel nozzle (3), and a non-nozzle hole (4a).

(4b)につづく耐火祠粉末ノスル(4’)、気体燃料
噴出孔(5)につつく気体燃料ノズル(5’a)と混合
部(5’c)にて気体燃料ノズル(5′a)に交わる酸
素ノズル(5’ b)がそれぞれ各噴出孔に対応して設
けられている。
The refractory powder nozzle (4') following (4b), the gaseous fuel nozzle (5'a) that pokes into the gaseous fuel nozzle (5), and the gaseous fuel nozzle (5'a) at the mixing part (5'c). Intersecting oxygen nozzles (5'b) are provided corresponding to each jet hole, respectively.

これら各ノズルはバーナfilの後端で図示しないラン
ス内の各供給路と連結されており、さらにランス内の各
供給路は別に設置されている各供給装置(流量調節装置
を含む)にボース等により接続されている。これらラン
スおまひ供給装置は、公知技術の応用により容易に設計
+’ 1作できるものであるから、ここでは詳細な説明
は省略する。
Each of these nozzles is connected to each supply path in the lance (not shown) at the rear end of the burner fil, and each supply path in the lance is connected to each supply device (including a flow rate adjustment device) installed separately. connected by. Since these lance paralysis supply devices can be easily designed and manufactured by applying known techniques, a detailed explanation will be omitted here.

さて上記のような構造のバーナにおいて、気体燃料の供
給、噴出や液体燃料の供給、噴出の方法自体はそれぞれ
の燃料を単独に使用する従来の方法と基本的には同しで
あるが、本発明でば溶射距離が大のときに気体燃料と液
体燃料を併用することによって長い火焔を1−!?るよ
うにした点が従来法と異なる。耐火粉末の供給、噴出に
ついても、粉末の組成や粒度、キャリヤガス(通電は酸
素を用いる)を用いた1般送方法など従来の方法をその
まま応用できる。
Now, in the burner with the structure described above, the method of supplying and ejecting gaseous fuel and supplying and ejecting liquid fuel is basically the same as the conventional method of using each fuel individually. In our invention, when the spraying distance is long, we can achieve a long flame by using gaseous fuel and liquid fuel together! ? This method differs from the conventional method in that it allows for Regarding the supply and ejection of the refractory powder, conventional methods such as powder composition, particle size, and general feeding method using a carrier gas (oxygen is used for energization) can be applied as is.

このようなバーナを使用して溶剤補修を行°うにあたり
、バーナ端面から被補修面までの距離が800II11
程度以内の場合は気体燃料のみによる火焔で溶射吹付け
を行い、前記距離か800龍〜1500+am程度の場
合は気体燃料に加えてttν体燃料を用い、長い火焔で
/8躬吹伺&Jを行う。
When performing solvent repair using such a burner, the distance from the burner end face to the surface to be repaired must be 800 II11.
If the distance is within the above range, perform thermal spraying with a flame using only gaseous fuel, and if the distance is between 800 am and 1,500 am, use ttv body fuel in addition to gaseous fuel, and perform / 8 tsubukikin & J with a long flame. .

〔実施例〕〔Example〕

第4図および第5図に示したバーナを用いて、溶鋼真空
脱ガス槽の溶用部位を溶射補修した。
Using the burner shown in FIGS. 4 and 5, the melted parts of the molten steel vacuum degassing tank were repaired by thermal spraying.

バーナ6::5面と被補修面との距離は/8損部位によ
って異なり、近い部位で400+nm、遠い部位では1
500順ある。
The distance between the burner 6::5 surface and the surface to be repaired varies depending on the /8 loss area, and is 400 + nm for the near area and 1 for the far area.
There are 500 orders.

本実施例では、燃料として、熱量24000 Kcal
/rnのプロパンガスと!’、!’r Jl 8800
Kca l/ Rの灯油を準備し、溶射材としての1l
j(火粉末は、平均粒度110μH1のM、O・Al2
O3粉末を、酸素をキャリヤガスとして搬送した。
In this example, the fuel has a calorific value of 24,000 Kcal.
/rn propane gas! ',! 'r Jl 8800
Prepare kerosene of Kcal/R and 1l as thermal spraying material.
j (Fire powder is M, O・Al2 with an average particle size of 110μH1
The O3 powder was delivered with oxygen as a carrier gas.

被補修面までの距離が800 +u+以内の部位に対し
、ではプロパンガス単独(プロパンガス20ONm/H
r、予混合用の酸素100ON m / l1r)の火
焔で溶剤補修し、被補修面までの距離が800 m+n
を超えるば1;位に対しては上記のプロパンガスに加え
て灯油を併用し、灯油使用量は被補修面までの距離に応
じて増量し、距離150hmにおいて灯油1700n 
/ Ilr。
For areas where the distance to the surface to be repaired is within 800 +u+, use propane gas alone (propane gas 20ONm/H).
Solvent repair with a flame of 100ON m/l1r) of oxygen for premixing, and the distance to the surface to be repaired is 800 m+n.
If the distance exceeds 1;, kerosene is used in addition to the above propane gas, and the amount of kerosene used is increased according to the distance to the surface to be repaired.
/ Ilr.

支燃酸素320ON n? / Ilr (キャリヤガ
スとしての酸素も含む)を用い、MgO−Al203耐
火粉末12TON/ Ilrを完全な溶融状態で溶射す
ることかできた。
Combustion supporting oxygen 320ON n? MgO-Al203 refractory powder 12TON/Ilr was successfully sprayed in a completely molten state using 12TON/Ilr (including oxygen as a carrier gas).

従来、プロパンカスキ1独のバーナの溶射能力は、プロ
パンガス−200N n? / llr、 M素−10
0ON n? /Hrの火焔で、Mg0−AQ、z○3
耐火粉末を3 ′I’ON/11r /8射可能であり
、また、幻浦単独のバーナーの溶射能力は、灯油170
(H! / llr、酸素320ON IT?/11r
の火焔で、同上の耐火わ)末を3 TON/ llr/
8射iiJ能であるのに刻して、プロパンカスと灯油と
を併用した本発明の溶射法では、それぞれの単独の場合
の合計よりも溶射能力は2倍に増大したごとが判る。
Conventionally, the thermal spraying capacity of the propane gas burner was -200N n? /llr, M element-10
0ON n? /Hr flame, Mg0-AQ, z○3
It is possible to spray 3'I'ON/11r/8 refractory powder, and Genura's burner alone has thermal spraying capacity of 170 kerosene.
(H!/llr, oxygen 320ON IT?/11r
With the flame of the above fireproof, the end of 3 TON/llr/
It can be seen that the thermal spraying method of the present invention, which uses propane gas and kerosene in combination, has twice the thermal spraying ability as compared to the sum of each of them alone.

〔発明の効果〕〔Effect of the invention〕

液体−気体の2種類の燃料を併用させる本発明の溶射補
修法は、両燃料の流量の調整によって高温フレーム域の
長さを可変出来るため、バーナランス自体の構造を格別
なものとすることなく、補修用耐夕く物粉末の溶解効率
を向上でき、溶射距離の調節が可能となり、溶射による
補修対象を格段に広げることが可能である。
The thermal spray repair method of the present invention, which uses two types of fuel, liquid and gas, allows the length of the high-temperature flame region to be varied by adjusting the flow rates of both fuels, so there is no need to make any special structure of the burnerance itself. It is possible to improve the dissolution efficiency of the anti-spray powder for repair, to adjust the spraying distance, and to greatly expand the range of repair targets by thermal spraying.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は気体燃料および液体燃料を単独に
使用した場合の火焔の特性を示す図であり、第3図は気
体燃料と液体燃料とを併用した場合に生成する火焔の特
性を示す。第4図は本発明の方法を実施するのに好適な
バーナの構造を示す正1Jij図、第5図は同第4図の
八−Δ線矢視による縦lvi面図である。 (1):バーナ (2):酸素噴出孔 (3):液体燃料噴出孔 (4a) 、(4b) :耐火粉末噴出孔(5):気体
燃料噴出孔 特許出願人 新日本製鐵株式會社 代理人 手掘 益(ばか1名) iK I 図 へ′−+−直高面力゛ジの足巨離 第2図 第3図 八−十一を高面からの足巨富i 第4図
Figures 1 and 2 are diagrams showing the characteristics of flame when gaseous fuel and liquid fuel are used alone, and Figure 3 is a diagram showing the characteristics of flame generated when gaseous fuel and liquid fuel are used together. show. FIG. 4 is a normal view showing the structure of a burner suitable for carrying out the method of the present invention, and FIG. 5 is a vertical lvi view taken along the line 8-Δ in FIG. (1): Burner (2): Oxygen nozzle (3): Liquid fuel nozzle (4a), (4b): Refractory powder nozzle (5): Gaseous fuel nozzle Patent applicant Nippon Steel Corporation Representative Person hand digging gain (1 idiot) iK I Figure ′−+−High surface force ゛ji’s foot distance Figure 2 Figure 3 8-11 from high surface foot force I Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、 耐火物粉末の火焔溶射による補修において、溶射
バーナに気体燃料の噴出孔と液体燃料の噴出孔を別個に
設けるとともに気体燃料流量と液体燃料流量を別個に調
節可能にし、両燃料の流星比を変えて任意の火焔長さを
得るようにしたことを特徴とする火焔溶射による補修方
法。
1. When repairing by flame spraying refractory powder, the thermal spray burner is provided with separate gaseous fuel nozzle holes and liquid fuel nozzle holes, and the gaseous fuel flow rate and liquid fuel flow rate can be adjusted separately, and the meteor ratio of both fuels is adjusted. A repair method using flame spraying, characterized in that an arbitrary flame length can be obtained by changing the length of the flame.
JP530984A 1984-01-14 1984-01-14 Repair method through flame spraying Granted JPS60149887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP530984A JPS60149887A (en) 1984-01-14 1984-01-14 Repair method through flame spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP530984A JPS60149887A (en) 1984-01-14 1984-01-14 Repair method through flame spraying

Publications (2)

Publication Number Publication Date
JPS60149887A true JPS60149887A (en) 1985-08-07
JPS6248156B2 JPS6248156B2 (en) 1987-10-12

Family

ID=11607670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP530984A Granted JPS60149887A (en) 1984-01-14 1984-01-14 Repair method through flame spraying

Country Status (1)

Country Link
JP (1) JPS60149887A (en)

Also Published As

Publication number Publication date
JPS6248156B2 (en) 1987-10-12

Similar Documents

Publication Publication Date Title
JP4081129B2 (en) Combustion method including separate injection of fuel and oxidant stream and combustion thereof
RU2288193C2 (en) Method of melting of the glass-forming material in the glass melting furnace and the oxyfuel burner
JP6022531B2 (en) Distributed combustion process and burner
JP4922735B2 (en) Method for improving the performance of a glass melting furnace using a ceiling-mounted oxygen burner
US6939130B2 (en) High-heat transfer low-NOx combustion system
WO1987003065A1 (en) Oxygen temperature raising device, and high-temperature oxygen lance and burner for finely powdered solid fuel, each equipped with said device
JPH11311403A (en) Heating method of treatment object matter in heating furnace
US6910431B2 (en) Burner-lance and combustion method for heating surfaces susceptible to oxidation or reduction
US20050252430A1 (en) Burner-lance and combustion method for heating surfaces susceptible to oxidation or reduction
CA1307167C (en) Flame treatment
US3347660A (en) Method for refining metals
KR100653029B1 (en) Combustion in a porous wall furnace
JP3189729B2 (en) Thermal spray equipment for refractory repair and repair method by thermal spraying of refractory
JPS60149887A (en) Repair method through flame spraying
KR20140001926A (en) Combustion with divergent jets of fuel
KR102429928B1 (en) Methods and burners for heating furnaces for metalworking
US20060272453A1 (en) Flex-flame burner and combustion method
JPH07269804A (en) Boiler combustion apparatus
US20210262048A1 (en) Improved process and plant for preheating a metal charge fed in continuous to an electric melting furnace
US1999854A (en) Method of welding
JP2699778B2 (en) Thermal spray repair equipment
JP3551604B2 (en) Flame spraying method
US2005308A (en) Welding burner
Durrant DESIGN AND APPLICATION OF OXYGEN-FUEL BURNERS
JPS5959874A (en) Flame spraying method