JPS6014985B2 - Solid heat recovery method - Google Patents

Solid heat recovery method

Info

Publication number
JPS6014985B2
JPS6014985B2 JP52041230A JP4123077A JPS6014985B2 JP S6014985 B2 JPS6014985 B2 JP S6014985B2 JP 52041230 A JP52041230 A JP 52041230A JP 4123077 A JP4123077 A JP 4123077A JP S6014985 B2 JPS6014985 B2 JP S6014985B2
Authority
JP
Japan
Prior art keywords
heat
aqueous solution
temperature
salt
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52041230A
Other languages
Japanese (ja)
Other versions
JPS53125649A (en
Inventor
義顕 水本
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP52041230A priority Critical patent/JPS6014985B2/en
Publication of JPS53125649A publication Critical patent/JPS53125649A/en
Publication of JPS6014985B2 publication Critical patent/JPS6014985B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高温固体からの熱回収方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering heat from high temperature solids.

更に詳しくは、温度範囲100〜600q○の高温固体
の熱を回収するのに際し、温度範囲50〜20000、
濃度5重量%以上の可溶性塩の希薄水溶液と直接接触さ
せ、高温固体の有する熱により可.溶性塩の希薄水溶液
を温度範囲100〜500℃、濃度5の重量%以上の濃
厚水溶液あるいは溶融塩に変換し、これを水で希釈する
時の発生熱を回収することによって高温固体から間接的
に熱を回収する方法を提供することにある。近年省エネ
ルギーの立場から従来においては廃棄されていたエネル
ギーを回収して有効に利用しようとする動向が強いが、
製鉄所におけるスラブなどの高温、固体からの放棄熱を
回収して有効に利用している例はない。
More specifically, when recovering the heat of a high temperature solid in the temperature range of 100 to 600q○, the temperature range of 50 to 20000,
It is brought into direct contact with a dilute aqueous solution of a soluble salt with a concentration of 5% by weight or more, and the heat of the high-temperature solid is used. By converting a dilute aqueous solution of a soluble salt into a concentrated aqueous solution or molten salt with a temperature range of 100 to 500°C and a concentration of 5% by weight or more, and recovering the heat generated when diluting this with water, it can be indirectly extracted from a high-temperature solid. The objective is to provide a method for recovering heat. In recent years, from the perspective of energy conservation, there has been a strong trend toward recovering and effectively using energy that would previously have been discarded.
There is no example of recovering and effectively using waste heat from high-temperature, solid materials such as slabs in steel plants.

このように従来において高温固体の熱を回収して有効に
利用できなかった理由は、水による冷却の場合は冷却後
の水の温度が低く、ポテンシャルの低いエネルギー利用
に限られるし、また空気による冷却の場合は温度はある
程度高くなるが、熱伝達率が小さく、熱回収装置が非常
に大きくなるという欠点があるからである。本発明者ら
は高温固体からの熱回収にあたって、熱伝達率が大きく
4・さな設備で熱回収できる方法について鋭意実験検討
を重ね、他に類例をみなし・本発明を提案するに至った
The reason why heat from high-temperature solids could not be recovered and used effectively in the past is that in the case of cooling with water, the temperature of the water after cooling is low, which limits the use of energy with low potential. This is because, although the temperature increases to some extent in the case of cooling, the heat transfer coefficient is low and the heat recovery device becomes very large. The inventors of the present invention conducted intensive experimental studies on a method that has a high heat transfer coefficient and can recover heat using small equipment when recovering heat from a high-temperature solid, and found no other similar method and came to propose the present invention.

本発明方法は、高温固体からの熱回収に際し、可溶性塩
の希薄水溶液を高温固体と直接接触させ、固体の有する
熱を利用して、可溶性塩の希薄水溶液を濃厚水溶液ある
いは溶融塩に変換し、これを水で希釈する時の発生熱を
回収する方法において、この水として可溶性塩の希薄水
溶液と直接接触後の高温固体の洗浄水を用いることによ
り無排水すなわちクローズドシステムで高温固体から間
接的に熱回収することを特徴としている。
In the method of the present invention, when recovering heat from a high-temperature solid, a dilute aqueous solution of a soluble salt is brought into direct contact with the high-temperature solid, and the dilute aqueous solution of a soluble salt is converted into a concentrated aqueous solution or a molten salt using the heat possessed by the solid. In the method of recovering the heat generated when diluting this with water, the water used to wash the high-temperature solids after direct contact with the dilute aqueous solution of soluble salts is used to indirectly remove the heat from the high-temperature solids in a non-drainage, i.e., closed system. It is characterized by heat recovery.

ここで、高温固体とは製鉄所のスラブ、線材、ストリッ
プ、高炉連、鋳造鋳物、鍛造品など生産時にかなりの熱
エネルギーを有している固体であり、可溶性塩とは、水
に可溶な塩でかつ、水に溶解する時にかなりの熱を発生
し、その水溶液の沸点が純水の沸点よりかなり高くなる
ような塩、例えばアルカリ金属元素あるいはアルカリ士
金属元素の水酸化物、ハロゲン化物、硝酸塩、亜硝酸塩
などの物質である。たとえば、温度100oo、濃度5
の重量%の水酸化ナトリウム水溶液200夕を900o
0に加熱したlk9の鋼板に直接接触させたところ40
9qCの溶融塩に変化し、それを水で希釈した時の発熱
量により302℃の水蒸気28夕が得られ、従来そのま
ま廃棄していた熱を十分回収できることが明らかとなっ
た。
Here, high-temperature solids are solids that have a considerable amount of thermal energy during production, such as slabs, wire rods, strips, blast furnaces, cast irons, and forged products in steel mills, and soluble salts are solids that are soluble in water. Salts that generate considerable heat when dissolved in water and whose aqueous solution has a boiling point considerably higher than the boiling point of pure water, such as hydroxides and halides of alkali metal elements or alkali metal elements; Substances such as nitrates and nitrites. For example, temperature 100oo, concentration 5
A sodium hydroxide aqueous solution of 200% by weight was heated to 900oC.
40 when brought into direct contact with a lk9 steel plate heated to 0.
It turned into a molten salt of 9qC, and when it was diluted with water, 28 degrees of steam at 302°C was obtained, making it clear that the heat, which was conventionally discarded, could be sufficiently recovered.

なお、本発明方法において、高温固体の温度範囲を10
0〜600℃に限定しているのはloo。○以下では熱
交換後蒸気を発生させる温度としては低すぎて熱回収の
メリットが小さいこと、又600℃以上ではその熱回収
に使用する可溶性塩の水溶液中の塩が分解したり、蒸発
による塩の損失が大きくなるという理由からである。次
に熱回収後の可溶性塩の濃厚水溶液あるいは溶融塩の温
度範囲を100〜500ooに限定しているのは、10
0oo以下では蒸気を発生して熱回収する温度としては
低すぎて熱回収のメリットが小さいこと、又500oo
以上では可溶性塩の溶融塩が分解したり、蒸発による塩
の損失が大きくなるという理由からである。次に可溶性
塩の希薄水溶液の温度範囲を50〜200qoに限定し
ているのは、50℃以下では上記限定した温度200q
oまで温度を上げるのに温度差が大きく熱回収の効率が
小さすぎること。
In addition, in the method of the present invention, the temperature range of the high-temperature solid is 10
loo is limited to 0-600℃. If the temperature is below ○, the temperature to generate steam after heat exchange is too low and the merit of heat recovery is small, and if it is above 600°C, the salt in the aqueous solution of soluble salt used for heat recovery may decompose or the salt may be removed by evaporation. This is because the loss will be large. Next, the temperature range of concentrated aqueous solution or molten salt of soluble salt after heat recovery is limited to 100 to 500 oo.
Below 0oo, the temperature is too low to generate steam and recover heat, and the merit of heat recovery is small;
This is because the molten salt of the soluble salt decomposes or the loss of salt due to evaporation becomes large. Next, the reason why the temperature range of the dilute aqueous solution of soluble salt is limited to 50 to 200qo is that below 50℃, the above limited temperature range is 200qo.
The temperature difference is large and the efficiency of heat recovery is too low to raise the temperature to 0.

又200℃以上では熱回収の対象固体との温度差が4・
さいため熱交換量が小さく装置が大きくなるという理由
からである。次に可溶性塩の希薄水溶液の濃度を5重量
%以上に限定しているのは5重量%以下では水が多く、
高温固体から熱回収する際その熱の大部分が水の蒸発に
費やされるようになり熱回収の効率が非常に小さくなる
という理由からである。ここで濃度の上限を限定する必
要はないけれども経済的には5の重量%以下が好ましい
In addition, at temperatures above 200℃, the temperature difference between the target solid and the target of heat recovery is 4.
This is because the heat exchange amount is small and the device becomes large. Next, the reason why the concentration of dilute aqueous solutions of soluble salts is limited to 5% by weight or more is that below 5% by weight, there is a lot of water.
This is because when heat is recovered from a high-temperature solid, most of the heat is spent in evaporating water, resulting in a very low heat recovery efficiency. Although there is no need to limit the upper limit of the concentration, economically it is preferably 5% by weight or less.

又可溶性塩の濃厚水溶液の濃度を5の重量%以上に限定
しているのは、その水溶液の沸点が上記限定した温度2
0000以上になるのには少なくとも濃度が5の重量%
以上でなければならないという理由からである。
Furthermore, the concentration of the concentrated aqueous solution of the soluble salt is limited to 5% by weight or more because the boiling point of the aqueous solution is at the above-limited temperature 2.
To reach 0000 or more, the concentration must be at least 5% by weight.
This is because it has to be more than that.

なお、高温固体と可溶性塩の希薄水溶液との直接接触方
式としては、高温固体と可溶性塩の希薄水溶液の糟に浸
債する方法あるいは高温固体の表面に可溶性塩の水溶液
をスブレィなどで皮膜状に塗布する方法などがあり、こ
れらの方法を用し、れば従来のガスによる冷却より冷却
効率が向上する。
In addition, direct contact between the high-temperature solid and a dilute aqueous solution of a soluble salt is possible by immersing the high-temperature solid in a dilute aqueous solution of a soluble salt, or by coating the surface of the high-temperature solid with an aqueous solution of a soluble salt in the form of a film using a sprayer. There are various methods such as coating, and using these methods improves cooling efficiency compared to conventional gas cooling.

又、可溶性塩の水溶液の一部は高温固体の表面に付着す
るが、これは可溶性であるので水により容易に洗浄でき
るし、この洗浄水を可溶性塩の濃厚水溶液あるいは溶融
塩の希釈に利用することによりプロセスをクローズド化
できる。以上説明したように本発明方法は高温固体から
の熱回収にあたって、従来水、空気などを媒体に、高温
固体と接触させ熱回収する方法が試みられていることと
異なり、本発明方法は、可溶性塩の水溶液を媒体とし、
この媒体の高温固体との接触による濃縮あるいは固体化
、溶融塩化の工程と、生成した濃厚水溶液、固体塩ある
いは溶融塩の水との接触による希釈熱の回収工程との組
み合わせからなることを特徴としており、この提案によ
り、高温固体からの数回収を効果的に行うことができる
ことを明らかにした。
Also, some of the aqueous solution of soluble salts adheres to the surface of the high-temperature solid, but since it is soluble, it can be easily washed with water, and this washing water is used to dilute the concentrated aqueous solution of soluble salts or the molten salt. This allows the process to be closed. As explained above, the method of the present invention differs from the conventional methods of recovering heat from high-temperature solids by bringing water, air, etc. into contact with the high-temperature solid as a medium. Using an aqueous solution of salt as a medium,
It is characterized by a combination of a process of concentration or solidification or molten chlorination by contacting the medium with a high-temperature solid, and a process of recovering heat of dilution by contacting the produced concentrated aqueous solution, solid salt, or molten salt with water. It was revealed that this proposal can effectively perform several recovery from high-temperature solids.

次に、本発明実施における態様の一例を第1図によって
説明する。
Next, an example of an embodiment of the present invention will be explained with reference to FIG.

第1図において高温固体をラィンーから、また可溶性塩
の希薄水溶液をライン2から、固液接触装置3へ供給し
、ここで、高温団体と可溶性塩の希薄水溶液とを直接接
触させ、高温固体の有する熱により、可溶性塩の希薄水
溶液を濃厚水溶液あるいは溶融塩に変換する。
In FIG. 1, high-temperature solids are supplied from line 1 and dilute aqueous solutions of soluble salts are supplied from line 2 to solid-liquid contacting device 3, where the high-temperature solids and the dilute aqueous solutions of soluble salts are brought into direct contact, and the high-temperature solids are The heat it possesses converts a dilute aqueous solution of a soluble salt into a concentrated aqueous solution or molten salt.

ここでの接触方式としては、高温団体の表面に可溶性塩
の希薄水溶液をスプレィ浸積で被膜状に塗布する方法な
どがある。可溶性塩の濃縮水溶液あるいは溶融塩はライ
ン4からタンク5へ、また熱回収された固体はライン6
から洗浄装置7へ供聯合する。洗浄装置7ではライン6
から供給される対象固体に付着した可溶性塩をライン8
からの洗浄水で洗い落とし、冷却された固体は、ライン
9より次工程へ送る。可溶性塩の少量含有洗浄水をライ
ン1 1から、また可溶性塩の濃厚水溶液あるいは溶融
塩をライン10から熱発生装置12へ供給し、ここで可
溶性塩の濃厚水溶液あるいは溶融塩を可溶性塩の少量含
有洗浄水で希釈しその時発生する熱を熱交換により回収
する。なお、この発生熱の回収方法としては、希釈時に
発生する蒸気をそのまま利用する方法も適用できる。こ
の回収熱の利用方法の一例として熱発生装置12に蒸気
発生管を設け、その中の水を蒸気に変えてエネルギーと
し回収する方法などがある。
As a contact method here, there is a method of applying a dilute aqueous solution of a soluble salt to the surface of the high temperature group in the form of a film by spray dipping. Concentrated aqueous solutions of soluble salts or molten salts are sent from line 4 to tank 5, and heat-recovered solids are sent to line 6.
The cleaning device 7 is then connected to the cleaning device 7. In cleaning device 7, line 6
The soluble salt attached to the target solid supplied from the line 8
The cooled solids are sent to the next step via line 9. Wash water containing a small amount of soluble salt is supplied from line 11 and a concentrated aqueous solution or molten salt of soluble salt is supplied from line 10 to a heat generating device 12, where the concentrated aqueous solution or molten salt containing a small amount of soluble salt is supplied to a heat generating device 12. It is diluted with washing water and the heat generated at that time is recovered by heat exchange. Note that as a method of recovering this generated heat, a method of directly utilizing the steam generated during dilution can also be applied. An example of a method of utilizing this recovered heat is a method in which a steam generation tube is provided in the heat generation device 12, and water therein is converted into steam and recovered as energy.

熱発生装置12で希釈された溶液はライン2を通って循
環される。以上の如くして、連続的に高温固体の熱を回
収するものである。
The diluted solution in the heat generating device 12 is circulated through line 2. As described above, the heat of the high temperature solid is continuously recovered.

次に本発明の実施例を示す。実施例 1高温固体として
500q0に加熱したlk9の鋼板を、また可溶性塩の
希薄水溶液として水酸化ナトリウム70夕を水130の
こ溶かした水酸化ナトリウム溶液を用いて本発明を実施
した。
Next, examples of the present invention will be shown. Example 1 The present invention was carried out using a lk9 steel plate heated to 500q0 as a high temperature solid and a sodium hydroxide solution prepared by dissolving 70 parts of sodium hydroxide in 130 parts of water as a dilute aqueous solution of a soluble salt.

50000の鋼板lk9に対して8000の水酸化ナト
リウム溶液200夕を1の砂間接触させたところ、鋼板
は500q○から246ooに低下し、また水酸化ナト
リウム溶液は18700の7がt%の水酸化ナトリウム
溶液に変化した。
When 200 tons of 8,000 sodium hydroxide solution was brought into contact with 1 portion of sand between 50,000 lk9 of steel plate, the steel plate decreased from 500q○ to 246oo, and the sodium hydroxide solution was 18,700 7t% hydroxide. It turned into a sodium solution.

この濃厚水酸化ナトリウム溶液1009‘こ9yoの水
100夕を添加した場合の発熱量を熱交換器により熱回
収すると、13が0の水蒸気7夕が得られた。実施例
2 高温固体として600ooに加熱したlk9の鋼板を、
また可溶性塩の希薄水溶液として、塩化マグネシウム6
0夕を水140のこ溶かした塩化マグネシウム溶液を用
いて本発明を実施した。
When the calorific value obtained when 1009 yen of this concentrated sodium hydroxide solution was added with 100 yen of water was recovered using a heat exchanger, 7 yen of water vapor with 13% of 0 was obtained. Example
2 A lk9 steel plate heated to 600oo as a high-temperature solid,
Also, as a dilute aqueous solution of soluble salt, magnesium chloride 6
The present invention was carried out using a magnesium chloride solution prepared by dissolving 0.0 parts in water and 14 parts in water.

600qoの鋼板lk9に対して80q○の塩化マグネ
シウム溶液200夕を1硯砂間接触させたところ、鋼板
は600こ0から29300に低下しまた塩化マグネシ
ウム溶液は203qoの61M%の塩化マグネシウム溶
液に変化した。
When 200 tons of 80qo magnesium chloride solution was brought into contact with 600qo steel plate lk9 between 1 inkstone sand, the strength of the steel plate decreased from 600qo to 29300, and the magnesium chloride solution changed to 203qo 61M% magnesium chloride solution. did.

この濃厚水溶液100のこ75q0の水100夕を添加
した場合の発熱量を熱交換器により熱回収すると149
午○の水蒸気7夕が得られた。実施例 3高温固体とし
て550℃に加熱した3k9の鋼板を、また可溶性塩の
希薄水溶液として水酸化ナトリウム100夕を水100
のこ溶かした水酸化ナトリウム溶液を用いて本発明を実
施した。
If 100 liters of this concentrated aqueous solution and 75 q0 of water are added, and the heat generated is recovered by a heat exchanger, 149
Water vapor of 7 o'clock in the afternoon was obtained. Example 3 A 3K9 steel plate heated to 550°C was used as a high-temperature solid, and 100 parts of sodium hydroxide was mixed with 100 parts of water as a dilute aqueous solution of soluble salt.
The invention was carried out using sawn sodium hydroxide solution.

55000の鋼板lk9に対して100ooの水酸化ナ
トリウム溶液200夕を1鼠砂間接触させたところ、鋼
板は409qoの溶融塩に変化した。
When a 55,000 lk9 steel plate was brought into contact with 200 ml of a 100 oz sodium hydroxide solution, the steel plate turned into a 409 qo molten salt.

この溶融塩100夕に90qoの水80夕を添加した場
合の発熱量を熱交換器により熱回収すると、30200
の水蒸気28夕が得られた。以上、説明したように本発
明は従来放棄されていた固体熱を、可溶性塩の水溶液を
冷却剤として使用することにより、効果的に熱回収でき
るという利点がある。
When the calorific value when 80 kg of 90 qo water is added to 100 kg of this molten salt and the heat is recovered using a heat exchanger, it is 30,200 kg.
28 hours of water vapor was obtained. As described above, the present invention has the advantage that solid heat, which was previously discarded, can be effectively recovered by using an aqueous solution of a soluble salt as a coolant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される装置の一実施例を示すフロ
ーシートである。 1・・…・高温固体供給ライン、2・・・・・・希薄可
溶性塩液ライン、3・・・・・・固体接触装置、5・・
・・・・濃縮塩液タンク、7・・・・・・洗浄装置、8
・・・・・・洗浄水ライン、9・・・・・・冷却固体ラ
イン、10・・…・濃厚塩液ライン、1 1・・・・・
・可溶性塩含有洗浄水、12・・・・・・執発生装置。
FIG. 1 is a flow sheet showing one embodiment of the apparatus used in the present invention. 1... High temperature solid supply line, 2... Dilute soluble salt solution line, 3... Solid contact device, 5...
...Concentrated salt solution tank, 7...Cleaning device, 8
...Washing water line, 9...Cooling solid line, 10...Concentrated salt liquid line, 1 1...
・Soluble salt-containing cleaning water, 12... Decontamination generator.

Claims (1)

【特許請求の範囲】[Claims] 1 温度範囲100〜600℃の高温固体を温度範囲5
0〜200℃、濃度5重量%以上の可溶性塩の希薄水溶
液と直接接触させ、高温固体の有する熱により可溶性塩
の希薄水溶液を温度範囲100〜500℃、濃度50重
量%以上の濃厚水溶液あるいは溶融塩に変換し、これを
液体で希釈する時の発生熱を回収する方法において、上
記液体として可溶性塩の希薄水溶液と直接接触後の高温
固体の洗浄水を用いることによりクローズドシステムで
高温固体から間接的に熱を回収することを特徴とする固
体熱の回収方法。
1 High-temperature solid in the temperature range of 100 to 600°C in the temperature range of 5
Direct contact with a dilute aqueous solution of a soluble salt with a concentration of 5% by weight or more at 0 to 200℃, and use the heat of the high temperature solid to turn the dilute aqueous solution of the soluble salt into a concentrated aqueous solution or melt at a temperature range of 100 to 500℃ with a concentration of 50% by weight or more. In a method of recovering the heat generated when converting the salt into a salt and diluting it with a liquid, the liquid is used as the liquid to wash the high-temperature solid after direct contact with the dilute aqueous solution of the soluble salt. A method for recovering solid heat, which is characterized by recovering heat.
JP52041230A 1977-04-11 1977-04-11 Solid heat recovery method Expired JPS6014985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52041230A JPS6014985B2 (en) 1977-04-11 1977-04-11 Solid heat recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52041230A JPS6014985B2 (en) 1977-04-11 1977-04-11 Solid heat recovery method

Publications (2)

Publication Number Publication Date
JPS53125649A JPS53125649A (en) 1978-11-02
JPS6014985B2 true JPS6014985B2 (en) 1985-04-17

Family

ID=12602597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52041230A Expired JPS6014985B2 (en) 1977-04-11 1977-04-11 Solid heat recovery method

Country Status (1)

Country Link
JP (1) JPS6014985B2 (en)

Also Published As

Publication number Publication date
JPS53125649A (en) 1978-11-02

Similar Documents

Publication Publication Date Title
CN110240182B (en) Resourceful treatment method of lithium-rich aluminum electrolyte
CA1062880A (en) Process for the disposal of alkali metals
JP2016183103A (en) Method for obtaining or recovering nitric acid and hydrofluoric acid from solutions of special steel pickling facility
CN110395837A (en) A kind of acid-washing stainless steel waste mixed acid recycling and processing device and technique
US2022037A (en) Dehydration of caustic
CN101285196B (en) Processing technology for surface oxide skin of aviation tubes
JPS6014985B2 (en) Solid heat recovery method
JPS6337189B2 (en)
US1511590A (en) Process of recovering tin from tin-bearing materials
JPS603124B2 (en) Heat recovery from steel ingots and wire rods
JPH0765204B2 (en) Method for dissolving and removing iron oxide
US2446484A (en) Method of converting normal ammonium fluoride to ammonium bifluoride
CN210683642U (en) Purification device for recovering benzoic acid in residual benzoyl chloride in kettle
US1892341A (en) Manufacture of potassium salts from potassium chloride
US2408623A (en) Coating ferrous metals with molten aluminum
US2816007A (en) Method of extracting lithium from its silico-aluminous ores
US1857632A (en) Method of purifying and drying crude iodine
JPH0339698A (en) Treatment of waste liquid containing nano3
SU682342A1 (en) Flux for soldering thermal compensators
JPS6349551B2 (en)
SU29475A1 (en) The method of producing benzanthrone
US943508A (en) Process of detinning tin scraps and producing tin compounds.
SU777392A1 (en) Heat exchange apparatus
Ma et al. Dissolution and Granulation of Eutectic Carbide During Heat Treatment of White Cast Iron.(Retroactive Coverage)
Finn et al. A process to recover tritium from high pressure helium