JPS6014830B2 - infrared radiator - Google Patents

infrared radiator

Info

Publication number
JPS6014830B2
JPS6014830B2 JP55101627A JP10162780A JPS6014830B2 JP S6014830 B2 JPS6014830 B2 JP S6014830B2 JP 55101627 A JP55101627 A JP 55101627A JP 10162780 A JP10162780 A JP 10162780A JP S6014830 B2 JPS6014830 B2 JP S6014830B2
Authority
JP
Japan
Prior art keywords
enamel
infrared
ceramic
thermal
sprayed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55101627A
Other languages
Japanese (ja)
Other versions
JPS5726168A (en
Inventor
敦 西野
正樹 池田
忠視 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55101627A priority Critical patent/JPS6014830B2/en
Priority to AU73184/81A priority patent/AU531587B2/en
Priority to US06/286,185 priority patent/US4377618A/en
Priority to GB8122687A priority patent/GB2081245B/en
Priority to FR8114353A priority patent/FR2487482A1/en
Publication of JPS5726168A publication Critical patent/JPS5726168A/en
Publication of JPS6014830B2 publication Critical patent/JPS6014830B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D13/00After-treatment of the enamelled articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガス、石油、電気などの加熱により、赤外線波
長の熱線を放射する赤外線韓射体、特に、ガステーブル
グリル、ガスオーブン、電気オーブン、電気トースター
などの調理器具用韓射体に関するものである。 赤外線は波長が0.3〜0.8仏肌の可視光線に比較し
て、被加熱体によく吸収されて、被加熱体の分子運動を
活発化せしめて、発熱させる効果が大であるので、近年
、暖房や乾燥などに広く利用されるようになって来た。 熱エネルギーの伝播には伝導、対流、頚射の3種類があ
ることはよく知られている。従来、食物を調理する場合
、ガス、石油、園型炭などの燃焼炎の直火であぶる、ホ
ットプレートなどの熱板上で焼く等の熱エネルギーを主
に直接的な熱伝導によっている加熱手段、あるし、はオ
−ブン等のように、庫内空気をあたためて、熱い空気か
ら調理物への熱エネルギー伝播、すなわち、主に対流に
たよっている加熱手段がある。 食物を構成する成分は水、たん白質、澱粉、脂肪等より
なっており、それぞれの物質は第1図に示すような吸収
特性を示し、赤外線波長、特に3ムの以上の遠赤外線波
長領域に大きな吸収率を持ち、その吸収率に応じて赤外
線エネルギーを吸収して、熱に変換する性質を持つ。 すなわち食物をより効果的に加熱するには、構成成分の
吸収率に相当する波長の赤外線を外部から多量に照射す
る必要がある。この遠赤外線の照射により、被加熱体構
成分子は振動し自己発熱を行うので、従来の伝導および
対流の加熱法に比較すると、熱効率およびエネルギー効
率が良好となり、省エネルギーの効果がある。特に調理
物を効果的に加熱調理するには、第1図の吸収特性から
見てもわかるように、赤外加熱が良好であり、調理物の
吸収波長に相当する赤外線波長を放射する加熱源が必要
である。 一般に物体から放射されるエネルギーEはステフアン・
ボルッマンの法則E=ご 。 TY
The present invention relates to an infrared projector that emits heat rays of infrared wavelength by heating with gas, oil, electricity, etc., and particularly relates to an infrared projector for use in cooking utensils such as gas table grills, gas ovens, electric ovens, and electric toasters. be. Infrared rays have a wavelength of 0.3 to 0.8 cm compared to visible light, which is absorbed by the object to be heated and has a greater effect on activating the molecular movement of the object and generating heat. In recent years, it has become widely used for heating and drying purposes. It is well known that there are three types of thermal energy propagation: conduction, convection, and radiation. Traditionally, when cooking food, heating methods mainly use direct heat conduction to generate heat, such as roasting it over an open flame using gas, oil, or garden-type charcoal, or baking it on a hot plate or other hot plate. There are heating means, such as ovens, that warm the air inside the refrigerator and rely primarily on the propagation of thermal energy from the hot air to the food being cooked, that is, on convection. The ingredients that make up food are water, protein, starch, fat, etc., and each substance exhibits absorption characteristics as shown in Figure 1, and is sensitive to infrared wavelengths, especially in the far-infrared wavelength region of 3 µm or more. It has a high absorption rate and has the property of absorbing infrared energy and converting it into heat according to its absorption rate. That is, in order to heat food more effectively, it is necessary to irradiate a large amount of infrared rays from the outside with a wavelength corresponding to the absorption rate of the constituent components. By this irradiation with far-infrared rays, molecules constituting the heated object vibrate and generate self-heating, so compared to conventional conduction and convection heating methods, thermal efficiency and energy efficiency are improved, resulting in an energy-saving effect. In particular, in order to effectively cook food, as can be seen from the absorption characteristics in Figure 1, infrared heating is effective, and a heating source that emits infrared wavelengths corresponding to the absorption wavelength of the food is required. is necessary. Generally, the energy E radiated from an object is calculated by Stefan E.
Bormann's law E=go. T.Y.

【11ただ
しz:放射率、。:定数、T:温度(〇K)で表わされ
る。すなわち物体の温度と物質の放射率によって定まる
もので、赤外城に高い放射率を持つ物質を適当な温度に
加熱することにより、赤外線放射源を実現することがで
きる。‘1ー式においてどが大きな材料として、セラミ
ックス材料がよく知られていた。従釆、赤外線放射源と
しては放射率の大きなセラミックス材料が用いられてお
り、次の方法で、表面にセラミックスを付着形成したり
セラミックス焼結体を用いたりして、鍵射体として用い
られていた。 ‘aー 高温焼成して磁器化したセラミックス糠結体を
用いる方法。 ‘b)有機または無機バインダーとセラミックス材料を
組合わせ、塗布、焼成する方法。 【c)溶射法 などがある。 【a)のセラミックス焼縞体を用いる方法、例えばシュ
バンクバーナといわれるもので一般に市販されている、
これはセラミックス暁結体熱板にその表面と直角に多数
の微細の透孔を穿ち、熱板背後で燃焼したガスの炎が透
孔を通って表面に出る間に熱板を加熱して多量の赤外線
を発生させる方式であるが、このセラミックス暁鯖体は
機械的な衝撃強度や冷熱ヒートサイクルに劣ること、生
産性が劣ること、またセラミックス暁結体の厚さおよび
その重量が大きいので、熱容量が大きくなり、加熱初期
の途熱性に劣ること、およびセラミックス嬢縞体の断熱
性質により、セラミックス暁絹体表面の温度が低くなり
、m式の放射エネルギーが小さくなる。 すなわち糠結体加熱エネルギーのわりには、放射エネル
ギーが小さいという欠点があつた。【b’のセラミック
ス材料をガラス等の無機バインダーあるいは耐熱塗料等
の有機バインダーによって塗着する方法は冷熱ヒートサ
イクルや耐熱性に劣るため、長時間使用を考えた場合、
実用に供しない欠点があった。 ‘cゆ溶射法は金属表面をブラスティングなどにより、
表面を粗面化した後、セラミック材料をプラズマ溶射あ
るいはフレーム溶射により、溶射層を形成して、セラミ
ック鼠射体層を形成する方法である。 溶射法によるセラミック鰭射体の特徴として、膜厚が数
十仏〜数百〆でよく、しかも熱容量が小さいので、その
セラミックス層の表面温度はセラミック焼縞体方式に比
べ高くなる。第2図に溶射式、セラミック擬結体式の同
一発熱量における放射エネルギーと波長の関係を示す。
すなわち、同一発熱量において、表面温度の大きな溶射
式の鰭射体の放射エネルギーが‘1’式に従って大きく
なる。 溶射法による鰻射体はこのような優れた特徴を持ちなが
ら、未だ調理器用蟻射体として実用化されていない。 特に使用環境の過酷なガス用頚射体について以下に詳述
する。その理由は実使用において、■が350〜800
℃の高温熱サイクルを受け、酸化腐食を受ける。 @燃料中の硫黄分、食品中の硫黄分による硫化腐食が促
進される。■燃料の不完全燃焼により、鰭射体表面に炭
素質残笹が被覆され、結果として、浸炭腐食が促進され
る。宮食品中の水分あるいは燃料の燃焼にともなう水の
発生により「水蒸気酸化が促進される。@食品中の塩分
あるいは調味料中の塩分による、食塩腐食が促進される
。第3図aに示す如く、溶射層は素材面1に高温の粒子
2を積層して、被膜を形成している関係上、本質的には
多孔質である。 この多孔性のために、素材は前述した腐食環境の影響を
受けやすく、長時間、実使用に供すると溶射層の剥離と
いう現象を生起し、遂には頚射体としての効果を失うと
いう欠点を有していた。また第3図bの如く、溶射層の
多孔部を封孔剤3で自づめして、前述した腐食環境から
保護しようという試みも行われているが未だ不十分であ
る。 すなわち本発明は以上の種々の問題点を解決し、耐熱性
、耐食性に優れ、寿命の長い、高性能な赤外線鍵射体を
提供することにある。 以下に本発明の詳細を説明する。 凶 本発明の構成 本発明の頚射体の構成を第3図cに示す。 すなわち金属素材表面1に凹凸を有したホゥロウ層3を
形成した後、赤外線放射材料を溶射形成する。前述した
ように溶射層は多孔質であるために、第3図aのような
構成では、炭素のような浸炭腐食怪物質、またはS02
のような腐食性ガス、あるいはNaCIのような腐食性
液が、溶射層の気孔を通過し、素材金属を腐食させ、そ
の結果漆射層の剥離が現われる。 本発明(図3c)の構成では溶射層の下地にホーロー層
があるため、溶射層を通過した腐食性物質、ガスあるい
は溶液から素材が完全に保護されており、腐食による溶
射層の剥離は起らない。また第3図bのように、溶射層
を形成した後、封孔部にホウロウスリップを含浸させ、
競き付ける方法も考えられ、耐食性には効果的であるが
、赤外放射の観点から問題がある。 その理由はガラス形成陽イオンと酸素イオンの結合の相
互振動エネルギーの遷移にもとづく赤外波長の吸収がお
こる。たとえば石英ガラスでは、9、13、21仏に吸
収があり、Naを含むときはこれ以外に11仏に吸収が
生ずる。ホウ酸ガラスでは6.5一、13rに吸収があ
り、アルカリが添加されると7〆付近の吸収が大きくな
る。またリン酸塩ガラスでは7.8、9、10、11.
5、13、20山に吸収がある。すなわち第3図bのよ
うな構成では、赤外線材料より放射した赤外線を6〜2
0仏の波長城をフィルター効果によりカットし、第1図
に示したような調理物に有効な赤外波長城が得られず、
エネルギーロス、あるいは調理性能に影響を及ぼし、効
果的ではない。 本発明の鏡射体においては赤外線放射材料は表面に露出
しており、赤外線放射材料より放出される赤外線は調理
物に有効に利用される。 ‘B} 縞射体を構成する基材本発明の鐘射体を構成す
る基材はアルミニウム、アルミニウムダィキャスト、鋳
物、アルミナィズド鋼、低炭素鋼、ホウロウ用鋼板、ニ
ッケルークロム鋼、ニッケルクロムーアルミ鋼あるいは
ステンレス鋼等が使用され、その選択にあたっては使用
条件、使用温度、経済性、基材の形状、加工性より決定
される。‘C’素材の形状 素材の材質を勘案し、並板状、並板に凹凸をつけた形状
、ラス金網状、ラス金網を圧延した形状、パンチングメ
タル状およびコイル状も使用可能である。 ‘功 素材のホウロウ加工 第4図に本発明の代表的なホゥロウ加工工程図を示す。 ■ 素材の前処理工程金属に輸送中または貯蔵中のさび
止めのため、また成形工程で、塗られた油や金属の酸化
物はホウロウの前に除いておく必要がある。 この素材の前処理工程はホウロウ層の密着強度に大きな
影響を与える。第4図から明らかなように素材に通した
前処理をする必要がある。@ホウロウフリツト 素材の種類が決定されれば、素材の熱側髪眼率、融点、
変態温度等を堪案し、素材に適した物理的性質(熱膨は
眼率、軟化温度等)およびホウロウ焼成温度を有するフ
リツト組成を選ぶ必要がある。 第1表に本発明の代表的な素材およびそのフリツトの熱
風彰脹率を示す。 第1表 すなわち素材とホウロゥ層の熱膨脹率の違いによる、ホ
ーロ一面の剥離を防止するために、素材に通した熱膨脹
率を有するフリットを選択する必要がある。 Q ホウロウスリップの調整工程 フリツトの種類が決定されれば、フリツトのほかにミル
添加剤、マット形成物、界面活性剤、水などを必要に応
じ適量を混合し、ポールミル等を用いて、泥状物(スリ
ップ)にする。 @ 塗布、乾燥、焼成工程 調製された‐スリップを素材に塗布する方法は通常スプ
レー法あるいはデイップ法であるが、ハケ塗り法、バー
コ−ト法でも可能である。 乾燥工程は風乾もしくは50〜150℃の乾燥炉を用い
て、塗布面を乾燥させる。 次いで焼成を行う。 焼成は所定の温度に設定されたバッチ炉、あるいは連続
炉で行う。 (E】 ホウロウ面の表面粗さ。通常、金属素材にセラ
ミックを溶射する場合、素材と被膜の密着強度は機械的
な投錨効果が王であるため、ブラスティング等の表面拡
大化処理により、金属素材面の粕面化を行う必要がある
。 通常金属素材にセラミックを溶射する場合「密着強度を
考慮して、素材面の粗さはタリサ−フ表面粗さ計での表
面中心線平均組さRaで4払の以上必要である。 それに対し「本発明のホウロウ面にセラミツク溶射する
場合、ホウロウ面の粗さは中心線平均粗さRaで1ム以
上あればよい。 その理由は、投錨効果のほかに、高温のセラミック熔融
粒子がぶつかることにより、局部的にホゥロウ面が加熱
され、局部的にガラス半溶融状態となり、セラミック粒
子とガラス質が化学的に結合し、密着強度の強いものが
得られる。以上の結果を第2表に示す。 密着強度の評価はガムテープ剥離試験で行った。ここで
○印は溶射層の剥離がまったく見られない状態、△印は
一部剥離が見られる状態、×印は完全に剥離した状態を
示す。第 2 表 したがって本発明のホウロウ面の表面粗度は1.0A以
上が有効である。 価 ホウロゥ面の表面組度の具現化 ホウロゥ面を所望の表面粗度にする方法としては次のよ
うなものがある。 ■機械的方法(サンドブラスティング、サンドペーパー
等でこする方法等)■化学的方法(エッチング処理等) ■スリップによる調製(スリップ粒度、ミル添加剤、マ
ット形成剤の添加量および粒度、焼成温度および時間等
のコントロール)以上の方法はいずれの場合も、本本発
明に有効である。 に)溶射方法熔射方法としてはアーク溶射、炎溶射等が
あるが、本発明の目的を果すためにはプラズマ溶射が好
ましく、その理由はホウロウ素材と溶射粉末との結合は
化学結合的に密着し、強い結合層でなければ、熱サイク
ル使用の条件、使用環境条件が厳しいので、プラズマ溶
射以外では結合力が弱い。 またプラズマ溶射時のプラズマ条件はアルゴンガス、ア
ルゴン一水素またはアルゴン−ヘリウムガス系が好まし
く、特にアルゴンーヘリゥムガス系が良好な結果が得ら
れ、また溶射条件は二次側出力条件が直流30V以上、
電流600A以上の条件が好ましい。この条件は特に寿
命の観点から判断し、 30V、600A以下でもプラズマ溶射は可能であるが
、この条件下では熱サイクル使用調理環境条件の下で、
溶射層の寿命が短かくなる。 畑)赤外線放射材料 本発明に用いられる赤外線放射性を有する熔射材料とし
ては、例えば幻203、Ti02、Si02、Zr02
、Mg○、Ca○、Cr203、Ni○、Cooなどの
群から選ばれる金属酸化物およびN203、Ti02、
2N203、$i02、Zの2、Ca0などの混合酸化
物あるいはMgA1204、M解の3、CaZr03な
どの複合酸化物、またはSIC「TIC、Cr3C2、
ZrCなどの炭化物およびBN、TIN、SIN、C州
などの窒化物および黒鉛およびニッケルコーテッド黒鉛
が本発明に有効である。 次に実施例を挙げて説明する。 〔具体的な実施例〕 60×18仇舷の平板素材上に代表的なホゥロウ層を施
工し、耐熱性、および大きな放射率を有する溶射被覆を
行ない、セラミック被覆頚射体を作製し、種々の観点か
ら評価を行ない、その結果を第3表に示した。 第 3 表(1) 第 3 表■ A欄は素材の材質およびホー。 一層の種類を、B欄は素材表面の表面中心線平均粗さR
aおよび、表面拡大化処理の種類を、C欄は溶射層を構
成する粉末材料を、D欄は構成法を、E欄はガステープ
ルグリルの実用試験における溶射層の剥離性を、F欄は
ガステーブルグリルでのサバ2匹の暁上り時間を示した
。具体例No.2およびNO.4〜No.10は第4図
に示す如く、素材種類に通した前処理を行った後、素材
に適した市販のホウロウスリップを用い、スプレーガン
で塗布後、乾燥、焼成を行った。(競成温度はステンレ
スホウロウ=980℃、鉄ホウロウ=820〜860午
0、アルミナイズド鋼ホウロウ=600〜680qo)
また、NO.3はプラズマ溶射にて、セラミックスを被
覆した後、セラミック溶射層の封孔部にホウロウスリツ
プを含浸させNo.2と同一の条件で乾燥、焼成を行っ
た。 (第3図bの構成)No.4〜No.ふNo.7〜No
.10はプラズマ溶射の下地処理として、ホウロウ面を
充分アセトンにて脱脂洗浄を施した後、60メッシュの
アルミナに研削材で表面のサンドブラスト処理を行ない
、充分表面の拡大化処理を行った。 またNO.6は市販のホゥロウスリップにケィ石粉を1
岐部添加して、焼成後、ホウロウ面に凹凸をもうけた。
その時のホウロウ面の表面中心線平均粗さRaをタリサ
ーフ粗度計を用いて測定した。その後溶射を行った。溶
射条件は出力8雌Wのプラズマ溶射装置を用い、粉末の
種類によって異なるが、電圧として20〜100V印加
し、電流として400〜100船を流して、アルゴンー
ヘリウムガスからなるプラズマ条件で溶射被覆処理を行
った。綾射届の厚みは50〜100叫こなるよう溶射を
行った。すなわち具体例1は従来の金属素材に溶射層を
形成した試料、具体例2は金属素材にホウロウ層のみを
形成した試料、具体例3は溶射層の封孔処理として、ホ
ゥロウ層を形成した試料、具体例4はホウロウ層を形成
した後、凹凸の少ないホーロー面上に溶射した試料、具
体例5〜10は本発明の表面粗度の大なるホウロウ層の
上に溶射層を形成した試料を示す。 前述の各試料の鰭射体をガステーブルグリルに取り付け
、E欄に示す、実用試験における溶射層の剥離性評価を
行った。 ここで、ヒートサイクル性試験は2仇舷間燃焼、15分
間消火を1サイクルとし、これを1000回繰り返し、
その後の溶射層の剥離状態を観察した。 食塩腐食試験は2仇hin間燃焼、消火後、鰭射体を3
%NaCI溶液中に浸潰し、さらに燃焼させる作業を1
サイクルとし、50サイクル繰り返した後の溶射層の剥
離状態真を観察した。浸炭腐食試験は赤火燃焼のような
不完全燃焼を3の片、定常燃焼を30分繰り返し、その
作業を1サイクルとし、合計500サイクル後の溶射層
の剥離状態を観察した。 硫化腐食試験は都市ガス中にS02を約0.1%混合し
、20皿て連続燃焼した後の溶射層の剥離状態を観察し
たoF欄は400〜500夕/匹の塩サバを2匹焼いた
時の焼き上がり時間の測定を行った。 焼き上がりの度合は魚肉表面のこげの状態および火通り
性等の観点から判断した。すなわち第3表から明らかな
ように、実施例1の従来の金属素材に溶射形成した頬射
体は溶射層の空孔部を腐食液が容易に通過し、素材を腐
食させ、溶射層の剥離が発生することを示す。 実施例2〜3のホウロゥ層のみおよび溶射形成後ホウロ
ウ層を形成した鏡射体は、耐食性は優れているが、前述
したフィルター効果により、調理性能が著しく劣化する
ことを示す。 実施例4は凹凸の少ないホウロウ層に溶射層を形成した
額射体はヒートサイクル性に問題があることを示す。 すなわち実施例5〜10に示すように、表面粗さがRa
でIA以上を有するホウロウ基板上に赤外線放射セラミ
ックスを溶射形成した本発明韓射体はヒートサイクル性
、および耐食性に優れ、なおかつ調理性能も劣化するこ
とがないことが判明した。 ここではガステープルグリルについて述べてきたが、電
気オーブン等の電気で加熱する鯛射体についても応用可
能である。 以上詳述の如く、本発明の鍵射体は赤外線放射効率、腐
食寿命、安定性等の観点から著しい改善が認められるす
ぐれた発明である。
[11 However, z: emissivity. : Constant, T: Temperature (〇K). In other words, it is determined by the temperature of the object and the emissivity of the material, and an infrared radiation source can be realized by heating a material with high emissivity to an appropriate temperature. Ceramic materials were well known as the major material in the '1-type. However, ceramic materials with high emissivity are used as infrared radiation sources, and can be used as key projectors by depositing ceramics on the surface or using ceramic sintered bodies by the following method. Ta. 'a- A method that uses ceramic bran compacts that have been fired at high temperatures and turned into porcelain. 'b) A method of combining, coating, and firing an organic or inorganic binder and a ceramic material. [c) There are thermal spraying methods, etc. Method (a) using a ceramic fired striped body, for example, a method called Svanbanvarna, which is generally commercially available.
This is done by drilling a large number of fine holes perpendicular to the surface of a ceramic Akatsuki hot plate, and heating the hot plate while the flame of the gas combusted behind the hot plate exits through the holes to the surface. This method generates infrared rays, but this ceramic body has poor mechanical impact strength, low thermal heat cycle, poor productivity, and the thickness and weight of the ceramic body are large. Due to the increased heat capacity, poor heat dissipation properties at the initial stage of heating, and the heat insulating properties of the ceramic striped body, the temperature of the surface of the ceramic half-stripe body is lowered, and the radiant energy of the m-type is reduced. In other words, there was a drawback that the radiant energy was small compared to the bran compact heating energy. [The method of coating the ceramic material b' with an inorganic binder such as glass or an organic binder such as heat-resistant paint is inferior in cold heat cycle and heat resistance, so when considering long-term use,
There were drawbacks that made it unusable. The thermal spraying method uses blasting etc. on the metal surface.
In this method, after the surface is roughened, a sprayed layer is formed using a ceramic material by plasma spraying or flame spraying to form a ceramic injector layer. Ceramic fin projectiles produced by thermal spraying are characterized by a film thickness that can range from a few dozen to a few hundred thicknesses, and because their heat capacity is small, the surface temperature of the ceramic layer is higher than that of the ceramic fired strip method. Figure 2 shows the relationship between radiant energy and wavelength for the same calorific value for the thermal spray type and the ceramic pseudo-solid type.
That is, for the same calorific value, the radiant energy of a thermal spray type fin projectile with a large surface temperature increases according to equation '1'. Although eel projectiles produced by thermal spraying have such excellent characteristics, they have not yet been put to practical use as eel projectiles for cooking utensils. The gas projectile, which is used in a particularly harsh environment, will be described in detail below. The reason is that in actual use, ■ is 350 to 800.
It undergoes high temperature thermal cycles at ℃ and undergoes oxidative corrosion. @Sulfur content in fuel and food accelerates sulfide corrosion. ■Due to incomplete combustion of fuel, the surface of the fin projectile is coated with carbonaceous residue, which promotes carburization and corrosion. Moisture in food or the generation of water as fuel burns promotes steam oxidation. Salt in food or seasonings promotes salt corrosion.As shown in Figure 3a. The sprayed layer is essentially porous because it forms a coating by laminating high-temperature particles 2 on the material surface 1. Due to this porosity, the material is susceptible to the effects of the corrosive environment mentioned above. It has the disadvantage that the thermal sprayed layer peels off when used in actual use for a long time, and eventually loses its effectiveness as a cervical projectile.Also, as shown in Figure 3b, the thermal sprayed layer Attempts have been made to protect the pores from the above-mentioned corrosive environment by filling the pores with a sealant 3, but this is still insufficient.In other words, the present invention solves the various problems described above, and provides heat-resistant The object of the present invention is to provide a high-performance infrared key projector that has excellent durability and corrosion resistance, and has a long life.The details of the present invention will be explained below. As shown in Figure c. That is, after forming the hollow layer 3 having irregularities on the surface 1 of the metal material, an infrared emitting material is sprayed.As mentioned above, since the sprayed layer is porous, In such configurations, carburized corrosive materials such as carbon, or S02
A corrosive gas such as NaCl or a corrosive liquid such as NaCI passes through the pores of the sprayed layer and corrodes the base metal, resulting in peeling of the sprayed layer. In the configuration of the present invention (Fig. 3c), since there is a enamel layer under the sprayed layer, the material is completely protected from corrosive substances, gases, or solutions that have passed through the sprayed layer, and the sprayed layer does not peel off due to corrosion. No. Further, as shown in Fig. 3b, after forming the sprayed layer, the sealing part is impregnated with enamel slip,
A competitive method is also considered, which is effective for corrosion resistance, but has problems from the perspective of infrared radiation. The reason for this is that absorption of infrared wavelengths occurs based on the transition of the mutual vibrational energy of the bond between glass-forming cations and oxygen ions. For example, in quartz glass, absorption occurs at 9th, 13th, and 21st positions, and when Na is included, absorption occurs at 11th position. In boric acid glass, there is absorption at 6.5- and 13r, and when alkali is added, the absorption near 7. In addition, 7.8, 9, 10, 11.
There is absorption in mountains 5, 13, and 20. In other words, in the configuration shown in Figure 3b, the infrared rays emitted from the infrared material are
The wavelength range of 0 French is cut by the filter effect, and the infrared wavelength range that is effective for cooking food as shown in Figure 1 cannot be obtained.
It causes energy loss or affects cooking performance and is not effective. In the mirror projector of the present invention, the infrared ray emitting material is exposed on the surface, and the infrared rays emitted from the infrared ray emitting material are effectively used for cooking food. 'B} Base material constituting the striped projectile The base material constituting the bell projectile of the present invention is aluminum, aluminum die-casting, casting, aluminized steel, low carbon steel, steel plate for enameling, nickel-chromium steel, nickel chromium steel. Mualuminum steel or stainless steel is used, and its selection is determined based on usage conditions, usage temperature, economic efficiency, shape of the base material, and workability. Shape of 'C' Material Considering the material of the material, it is also possible to use the shape of a plain plate, the shape of a plain plate with irregularities, the shape of a lath wire mesh, the shape of a rolled lath wire mesh, the shape of a punched metal, and the shape of a coil. Enameling processing of material Figure 4 shows a typical enameling process diagram of the present invention. ■ Material pre-treatment process Oil and metal oxides applied to the metal during transportation or storage, as well as during the forming process, must be removed before enameling. The pretreatment process for this material has a large effect on the adhesion strength of the enamel layer. As is clear from FIG. 4, it is necessary to pre-process the material. @ Once the type of enamel frit material is determined, the thermal side hair ratio, melting point,
It is necessary to carefully consider the transformation temperature, etc., and select a frit composition that has physical properties (thermal expansion, eye ratio, softening temperature, etc.) and enamel firing temperature suitable for the material. Table 1 shows hot air expansion rates of representative materials of the present invention and their frits. In order to prevent the entire surface of the enamel from peeling off due to the difference in thermal expansion coefficient between the material and the enamel layer as shown in Table 1, it is necessary to select a frit that has a coefficient of thermal expansion that passes through the material. Q Enamel slip adjustment process Once the type of frit is decided, mill additives, matte forming materials, surfactants, water, etc. are mixed in appropriate amounts as necessary in addition to the frit, and a slurry is prepared using a pole mill etc. to make something (slip). @ Coating, Drying, and Firing Steps The prepared slip is usually applied to the material by spraying or dipping, but brushing and bar coating are also possible. In the drying step, the coated surface is dried using air drying or a drying oven at 50 to 150°C. Next, baking is performed. Firing is performed in a batch furnace or continuous furnace set at a predetermined temperature. (E) Surface roughness of the enamel surface. Normally, when ceramic is sprayed onto a metal material, the adhesion strength between the material and the coating is determined by the mechanical anchoring effect. It is necessary to create a rough surface on the material surface.Usually, when thermal spraying ceramic onto metal materials, the roughness of the material surface is determined by the surface centerline average roughness measured using a Talysurf surface roughness meter. On the other hand, when ceramic spraying is applied to the enamel surface of the present invention, the roughness of the enamel surface only needs to be 1 mm or more in terms of center line average roughness Ra. In addition, the collision of high-temperature molten ceramic particles locally heats the enamel surface, resulting in a locally semi-molten state of glass, which chemically bonds the ceramic particles to the vitreous material, resulting in a material with strong adhesion strength. The above results are shown in Table 2. The adhesion strength was evaluated by a duct tape peel test. Here, ○ indicates that no peeling of the sprayed layer is observed, and △ indicates that some peeling is observed. Condition, × indicates a completely peeled state.Table 2 Therefore, it is effective that the surface roughness of the enamel surface of the present invention is 1.0A or more.Value Embodying the surface texture of the enamel surface Desired enamel surface The following methods are available to improve the surface roughness: ■ Mechanical methods (sandblasting, rubbing with sandpaper, etc.) ■ Chemical methods (etching, etc.) ■ Preparation by slipping (slip coating, etc.) Control of particle size, amount of addition of mill additives, matte forming agents, particle size, firing temperature, time, etc.) The above methods are effective in the present invention in any case. 2) Thermal spraying method The spraying method is arc thermal spraying. , flame spraying, etc., but plasma spraying is preferable in order to achieve the purpose of the present invention.The reason is that the bond between the enamel material and the spray powder is chemically bonded, and unless there is a strong bonding layer, thermal cycle Since the usage conditions and usage environment conditions are severe, the bonding force is weak in cases other than plasma spraying.Also, the plasma conditions during plasma spraying are preferably argon gas, argon-hydrogen, or argon-helium gas systems, especially argon-helium gas. Good results were obtained with the system, and the thermal spraying conditions were: the secondary output condition was 30 V DC or higher;
Preferably, the current is 600 A or more. This condition is judged especially from the viewpoint of lifespan, and although plasma spraying is possible even below 30V and 600A, under these conditions, under the thermal cycle cooking environment conditions,
The life of the sprayed layer will be shortened. Field) Infrared emitting materials Examples of the infrared emitting materials used in the present invention include Gen 203, Ti02, Si02, and Zr02.
, Mg○, Ca○, Cr203, Ni○, Coo, etc., and N203, Ti02,
Mixed oxides such as 2N203, $i02, Z2, Ca0, or complex oxides such as MgA1204, M3, CaZr03, or SIC, TIC, Cr3C2,
Carbides such as ZrC, nitrides such as BN, TIN, SIN, and C-state, and graphite and nickel-coated graphite are effective in the present invention. Next, an example will be given and explained. [Specific Example] A typical hollow layer was constructed on a flat plate material of 60 x 18 m long, and a thermal spray coating with heat resistance and high emissivity was applied to produce a ceramic coated neck body. An evaluation was conducted from the viewpoint of , and the results are shown in Table 3. Table 3 (1) Table 3 ■ Column A is the material and ho. Column B is the surface center line average roughness R of the material surface.
a and the type of surface enlarging treatment; Column C indicates the powder material constituting the sprayed layer; Column D indicates the construction method; Column E indicates the removability of the sprayed layer in a practical test of gas staple grills; Column F indicates the This shows the dawning time of two mackerel on a gas table grill. Specific example no. 2 and NO. 4~No. As shown in FIG. 4, Sample No. 10 was pretreated according to the material type, and then coated with a spray gun using a commercially available enamel slip suitable for the material, followed by drying and firing. (Competitive temperature is stainless steel enamel = 980℃, iron enamel = 820~860℃, aluminized steel enamel = 600~680qo)
Also, NO. No. 3 was coated with ceramics by plasma spraying, and then the sealing part of the ceramic sprayed layer was impregnated with enamel slip. Drying and firing were performed under the same conditions as in 2. (Configuration of Fig. 3b) No. 4~No. Fu No. 7~No
.. In No. 10, as a base treatment for plasma spraying, the enamel surface was thoroughly degreased and cleaned with acetone, and then the surface was sandblasted using an abrasive on 60 mesh alumina to sufficiently enlarge the surface. Also NO. 6: Add 1 silica powder to a commercially available hollow slip.
Addition of keratin was added to create unevenness on the enamel surface after firing.
The surface center line average roughness Ra of the enamel surface at that time was measured using a Talysurf roughness meter. Then thermal spraying was performed. Thermal spraying conditions vary depending on the type of powder, using a plasma spraying device with an output of 8 W, applying a voltage of 20 to 100 V and flowing a current of 400 to 100 V, and spraying the coating under plasma conditions consisting of argon-helium gas. processed. Thermal spraying was carried out to achieve a thickness of 50 to 100 mm. Specifically, Specific Example 1 is a sample in which a thermal spray layer is formed on a conventional metal material, Specific Example 2 is a sample in which only an enamel layer is formed on a metal material, and Specific Example 3 is a sample in which an enamel layer is formed as a sealing treatment for the thermal spray layer. , Specific Example 4 is a sample in which an enamel layer is formed and then thermally sprayed on a enamel surface with few irregularities, and Specific Examples 5 to 10 are samples in which a thermally sprayed layer is formed on an enamel layer with a large surface roughness according to the present invention. show. The fin projectiles of each sample described above were attached to a gas table grill, and the peelability of the sprayed layer was evaluated in a practical test as shown in column E. Here, in the heat cycle test, one cycle is combustion between two sides and extinguishing for 15 minutes, and this is repeated 1000 times.
The peeling state of the sprayed layer after that was observed. In the salt corrosion test, the fin projectile was burned for 2 hours, and after extinguishing, the fin projectile was burned for 3 hours.
% NaCI solution and further burn it for 1 hour.
After repeating 50 cycles, the state of peeling of the sprayed layer was observed. In the carburization corrosion test, incomplete combustion such as red flame combustion was repeated for 3 pieces, steady combustion was repeated for 30 minutes, this operation was considered as one cycle, and the peeling state of the sprayed layer was observed after a total of 500 cycles. In the sulfide corrosion test, approximately 0.1% S02 was mixed in city gas, and the peeling state of the sprayed layer was observed after continuous combustion in 20 dishes.OF column is 400 to 500 nights/2 salt mackerel grilled. The baking time was measured. The degree of grilling was judged from the viewpoints of the charred state of the fish meat surface and the ability to cook through. That is, as is clear from Table 3, in the cheek spray body formed by thermal spraying on the conventional metal material of Example 1, the corrosive liquid easily passes through the pores of the thermal sprayed layer, corrodes the material, and causes the thermal sprayed layer to peel off. Indicates that this occurs. The mirror projectors of Examples 2 and 3 in which only the enamel layer was formed and the enamel layer was formed after thermal spraying had excellent corrosion resistance, but the cooking performance was significantly deteriorated due to the above-mentioned filter effect. Example 4 shows that a forehead projector in which a thermally sprayed layer is formed on an enamel layer with few irregularities has a problem in heat cycle performance. That is, as shown in Examples 5 to 10, the surface roughness is Ra
It has been found that the inventive ceramic body of the present invention, in which infrared emitting ceramics are thermally sprayed on an enameled enamel substrate having an IA or higher, has excellent heat cycle resistance and corrosion resistance, and does not deteriorate in cooking performance. Although a gas staple grill has been described here, it can also be applied to a sea bream projector that is heated by electricity such as an electric oven. As described in detail above, the key projector of the present invention is an excellent invention in which significant improvements have been recognized from the viewpoints of infrared radiation efficiency, corrosion life, stability, etc.

【図面の簡単な説明】 第1図は調理物構成成分の波長−吸収率の関係を示す図
、第2図はセラミック院結体方式および溶射方式頚射体
の波長−相対エネルギー強度の関係を示す図、第3図a
,b,cは溶射層の断面図、第4図は本発明の一実施例
における赤外線韓射体のホウロゥ加工工程図である。 1・・・・・・表板面、2・・・・・・粒子、3・・・
・・・封孔剤。 第1図第2図 第3図 第4図
[Brief explanation of the drawings] Figure 1 shows the relationship between the wavelength and absorption rate of the components of cooking products, and Figure 2 shows the relationship between the wavelength and relative energy intensity of the ceramic body type and thermal spray type cervical projectors. Figure 3a
, b, and c are cross-sectional views of the sprayed layer, and FIG. 4 is a diagram showing the process of enameling an infrared projector in an embodiment of the present invention. 1... Surface plate surface, 2... Particles, 3...
...Sealing agent. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 ホウロウ加工基板上に赤外線放射線材料の溶射層を
形成したことを特徴とする赤外線輻射体。 2 前記基板の前記溶射層形成面が凹凸を有する特許請
求の範囲第1項記載の赤外線輻射体。 3 前記凹凸面の表面粗度が表面中心線平均粗さRaで
1μ以上である特許請求の範囲第2項記載の赤外線輻射
体。
[Scope of Claims] 1. An infrared radiator characterized in that a sprayed layer of an infrared radiation material is formed on an enameled substrate. 2. The infrared radiator according to claim 1, wherein the sprayed layer forming surface of the substrate has irregularities. 3. The infrared radiator according to claim 2, wherein the uneven surface has a surface roughness of 1 μ or more in terms of surface center line average roughness Ra.
JP55101627A 1980-07-23 1980-07-23 infrared radiator Expired JPS6014830B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55101627A JPS6014830B2 (en) 1980-07-23 1980-07-23 infrared radiator
AU73184/81A AU531587B2 (en) 1980-07-23 1981-07-22 Infrared radiator
US06/286,185 US4377618A (en) 1980-07-23 1981-07-22 Infrared radiator
GB8122687A GB2081245B (en) 1980-07-23 1981-07-23 Infrared radiator
FR8114353A FR2487482A1 (en) 1980-07-23 1981-07-23 INFRARED RADIATOR COMPRISING A MOLDED MASS OF A MATERIAL EMITTING INFRARED RADIATION AND A FRITTE MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55101627A JPS6014830B2 (en) 1980-07-23 1980-07-23 infrared radiator

Publications (2)

Publication Number Publication Date
JPS5726168A JPS5726168A (en) 1982-02-12
JPS6014830B2 true JPS6014830B2 (en) 1985-04-16

Family

ID=14305634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55101627A Expired JPS6014830B2 (en) 1980-07-23 1980-07-23 infrared radiator

Country Status (1)

Country Link
JP (1) JPS6014830B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158241A (en) * 1982-03-15 1983-09-20 松下電器産業株式会社 Infrared emission composite body
JPS5933782A (en) * 1982-08-19 1984-02-23 松下電器産業株式会社 Sheathed heater and method of producing same
JPH0192350A (en) * 1987-10-01 1989-04-11 Osaka Gas Co Ltd Treatment of heat transfer surface
JPH06172956A (en) * 1992-11-30 1994-06-21 Chiyuuden Kako Kk Infrared radiator

Also Published As

Publication number Publication date
JPS5726168A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
US4377618A (en) Infrared radiator
JP2009070812A (en) Heat emission heating cooker using heat dissipation film
JPS6349871B2 (en)
KR101398430B1 (en) Roast plate
CN109891154A (en) There are the cavity, the cooking apparatus including cavity and the method for manufacturing cavity of enamel coating
JPS6014830B2 (en) infrared radiator
JPS61179881A (en) Infrared radiator with metallic base material and its production
JPS6325465B2 (en)
JP5879755B2 (en) Heating cooker, method for producing the same, and method for producing cooking utensils
JPS5856236B2 (en) Manufacturing method of far-infrared radiating element
JPS6138659Y2 (en)
JPS6040771B2 (en) infrared radiation complex
JP2007175095A (en) Inner pot for gas rice cooker
JP4346134B2 (en) Ceramic heating or glass tableware for electromagnetic heating and its manufacturing method
JPH0154611B2 (en)
JPS5836821B2 (en) far infrared radiation device
JPS6052552B2 (en) Manufacturing method of far-infrared radiation element
KR101213264B1 (en) Roasting plate
JPS58148319A (en) Infrared ray radiating complex body
JP2726844B2 (en) Heating equipment
JPH0247555B2 (en)
JPH01158917A (en) Baking plate for cooking food
JP3168456B2 (en) How to apply fluororesin to ceramic pots
JPH0363425A (en) Stove
JP2001193935A (en) Roast cooking device