JPS60147741A - Processor and its monitoring method - Google Patents

Processor and its monitoring method

Info

Publication number
JPS60147741A
JPS60147741A JP59003999A JP399984A JPS60147741A JP S60147741 A JPS60147741 A JP S60147741A JP 59003999 A JP59003999 A JP 59003999A JP 399984 A JP399984 A JP 399984A JP S60147741 A JPS60147741 A JP S60147741A
Authority
JP
Japan
Prior art keywords
alignment mark
mark
detection
detection system
projection lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59003999A
Other languages
Japanese (ja)
Inventor
Akiyoshi Suzuki
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59003999A priority Critical patent/JPS60147741A/en
Publication of JPS60147741A publication Critical patent/JPS60147741A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To correct the change of reference length accurately so that the change of the reference value is calculated as a half of a detected value and to contribute to the system stabilization by arranging an off-axis microscope symmetrically with a projection lens. CONSTITUTION:A reference A of a detecting system 15 and an alignment mark AM2 are catched, and if a difference is detected between the reference A in the directing system 15 and the mark AM2, a signal corresponding to the difference is outputted. At that time, the positional shift in the x axis direction is measured or the XY stage is moved along the x coordinate until the mark AM2 coincides with the reference A. The alignment mark AM2 is matched with a reference C of a detecting system 17, an wafer is moved by 2L' from the reference C along the y coordinate and the deviation between the reference of a detecting system 18 and the alignment mark AM2 is measured. A half of the error is stored in a control device 22 as a correcting value, and when the detecting system 17 or 18 is used form the detection of the alignment mark, the correcting value is used to determined the moving value. Thus, the change in the reference length can be accurately corrected.

Description

【発明の詳細な説明】 (背景) 本発明は検知系で予め位置一定した物体を規定の位置ま
で正確に移動させて位置決めするための装置の誤差除去
に関す葛もので、特に半導体集積回路パターンをウェハ
ーに転写するマスク・アライナ−の内、オフ・アクシス
方式のウェハー・アライメントを行うステップ・アンド
・リピート型転写装置のアライメント誤差の除去に適す
るものである。 ・ (従来技術) 近年、10製作の微細加fの一形式としてステップ拳ア
ンド・リピート方式の露光装置、所謂ステパーと呼ばれ
る装置が多用される様になってきている。ステッパーで
は前工程まで加工されたウェハーのパターンとこれから
露光を行なおうとするパターンとの位置合せが非常Kl
i!なファクターとなる。位置合せ方式として社オフア
クシス法とTTL法とが知ら′れている。TTI、法社
レチクルパターンをウェハー上に転写する投影レンズの
制約を受けるが、直接パターンとパターンを合わせる事
ができるという利点がある。これに対しオアアクシス法
は投影レンズから所定の距離の位置に別の基準点を設け
、その位置に対して先づウェハーの位置合せを実行する
。然る後にレーザー干渉計等の高精度位置検出手段を用
いてウェハーを所定の距離送り込み投影レンズを用いて
露光を行5゜オフアクシス法は投影レンズと別の位置で
検出を行うので投影レンズの制約を全く受けないという
利点がある。
DETAILED DESCRIPTION OF THE INVENTION (Background) The present invention relates to the removal of errors in a device for accurately moving and positioning an object whose position has been fixed in advance to a specified position in a detection system, and particularly relates to the removal of errors in a device for positioning an object whose position is fixed in advance in a detection system. Among mask aligners that transfer images onto wafers, this is suitable for eliminating alignment errors in step-and-repeat transfer devices that perform off-axis wafer alignment. - (Prior Art) In recent years, a step-and-repeat type exposure device, a so-called stepper, has come into frequent use as a type of fine addition f in 10 manufacturing. With a stepper, it is very difficult to align the pattern on the wafer that has been processed up to the previous process and the pattern that is about to be exposed.
i! It becomes a factor. The off-axis method and the TTL method are known as alignment methods. Although TTI is limited by the projection lens used to transfer the reticle pattern onto the wafer, it has the advantage of being able to match patterns directly. In contrast, in the or-axis method, another reference point is provided at a predetermined distance from the projection lens, and the wafer is first aligned with respect to that position. After that, the wafer is fed a predetermined distance using a high-precision position detection means such as a laser interferometer, and exposed using a projection lens.In the 5° off-axis method, detection is performed at a position different from the projection lens, so the projection lens It has the advantage of not being subject to any restrictions.

但し、この方法の場合、基準点が複数個になるので\そ
の間の距離(基準長)の長期的な変動が問題となってい
る。即ち、投影レンズの基準点とウェハーの検出位置の
基準点の距離は0.1μmオーダーの問題としては熱的
要因等で決して一定では無く、時間的に変動するのであ
る。この基準長の変化は即、アライメント精度の悪化要
因に連示つは不図示のレチクル(集積回路パターンの描
かれた原版)の像をシリコンのウェハー6上に縮小投影
する投影レンズで、”lはその光軸である。2は検知系
の顕微鏡対物レンズで、x2はその先軸である。またウ
ェハー6上には図示しないアライメントマーク、例えば
十字線が描かれているものとする。ここで、投影レンズ
の光軸x1と顕微鏡対物レンズの光軸x2との距離即ち
基準長りは厳密に決められている。検知系は例えば光電
顕微鏡(米国特許Ql細i16657545 、556
0097 ) T、内部0:)X 、 Yる後に基準長
りとチップサイズ等から決められる所定量だけ、XYス
テージ4の送り量をレーザー干渉計などの超精密測長器
で確認しながら投影レンズ1の下へ送シ込み、続いて露
光シヨ乙トごとにチップサイズに見合った量だけステッ
プ送りする。従って基準長りの変動はそのままアライメ
ント精度の悪化につながり、製品の歩留りに著(影響す
る。
However, in this method, since there are multiple reference points, long-term fluctuations in the distance between them (reference length) poses a problem. That is, the distance between the reference point of the projection lens and the reference point of the detection position of the wafer is on the order of 0.1 μm, but is never constant due to thermal factors, etc., and varies over time. This change in the reference length immediately leads to a deterioration in alignment accuracy in the projection lens that reduces and projects the image of the reticle (not shown) (original plate on which the integrated circuit pattern is drawn) onto the silicon wafer 6. is its optical axis. 2 is the microscope objective lens of the detection system, and x2 is its tip axis. It is also assumed that an alignment mark (not shown), such as a crosshair, is drawn on the wafer 6. Here, , the distance between the optical axis x1 of the projection lens and the optical axis x2 of the microscope objective lens, that is, the reference length, is strictly determined.The detection system is, for example, a photoelectron microscope (U.S. Pat.
0097) T, internal 0:) 1, and then step feed by an amount commensurate with the chip size for each exposure shot. Therefore, variations in the reference length directly lead to deterioration of alignment accuracy, which significantly affects product yield.

なお、自動式の検知系と、1シて祉光電顕微鏡に限らず
他の型式のものでも良く、また十字線の会致のみは接眼
あるいはテレビ・モニターで観察しマニュアルで実行す
ることもでき、マークの形態もこれに限らない。またこ
の植のり密決めは光学投影式のステッパーに限らず、荷
、重粒子でウエノ・−上にバターを形成する装置の位置
決め、更には精密穴あけなどの機械加工装置の位置決め
にも適用される。
It should be noted that the automatic detection system is not limited to a photoelectron microscope, and other types may be used, and the alignment of the crosshairs can also be performed manually by observing with an eyepiece or a TV monitor. The form of the mark is not limited to this either. In addition, this method of determining the density of seeding is not limited to optical projection type steppers, but is also applied to the positioning of equipment that forms butter on Ueno using loads and heavy particles, and even to the positioning of machining equipment such as precision hole drilling. .

(目 的) 本発明の目的は、投影系等の主系から基準長りだけ離れ
た検知系で物体の位置検知を行う工程を具えた装置で基
準長の変動を監視認知し、あるいはその影響を除去する
ことにある。
(Purpose) The purpose of the present invention is to monitor and recognize fluctuations in a reference length using a device that includes a step of detecting the position of an object using a detection system that is separated by a reference length from a main system such as a projection system, or to detect the effects thereof. The goal is to eliminate the

(実施例) 以下、平面配置を示す第2図と、斜めから見た構成を示
す1g6図を使って本発明の一実施例を説明する。ただ
し、本発明を実現する際に、アライメント・マークとし
てX成分とY成分を持つものを使用すれば基本的には一
組の検知系を設ければ良いが、本例ではより品度の補償
を考慮している0図番10は縮小投影ンンズ、11はレ
チクル112が規定長さ離間した十字騙状アライメント
・マークAM1 、AM2を有しているが、XYステー
ジ上に設けても良い。XYステージ14aX座標方z 向並ff、、Y座標方向即ちステップ移動の2方向と回
転(θ)移動が可能である。
(Embodiment) Hereinafter, an embodiment of the present invention will be described using FIG. 2 showing the planar arrangement and FIG. 1g6 showing the configuration viewed from an angle. However, when implementing the present invention, if an alignment mark with an X component and a Y component is used, it is basically sufficient to provide one set of detection systems, but in this example, quality compensation is more important. Figure 10 shows a reduced projection lens, and 11 shows a reticle 112 having cross-shaped alignment marks AM1 and AM2 spaced apart by a prescribed length, but they may also be provided on an XY stage. The XY stage 14a can move in two directions: the X coordinate direction, the z direction, the parallel ff, and the Y coordinate directions, that is, step movement and rotational (θ) movement.

15.1<5,17.18はそれぞれ光電顕微鏡の様な
検知系で、検知系内とX、Y基準と十字線との差に応じ
た出力が行われる。検知系15と16はそれらの基準人
とBの中心が投影レンズ10の光軸0に関して対称にな
る様に配置し、光軸Oと各検知系の中心との間隔を基準
長りに決めてN・る。
15.1<5 and 17.18 are detection systems such as photoelectron microscopes, and output is performed according to the difference between the inside of the detection system, the X and Y references, and the crosshair. The detection systems 15 and 16 are arranged so that the centers of the reference person B are symmetrical with respect to the optical axis 0 of the projection lens 10, and the distance between the optical axis O and the center of each detection system is determined to be the reference length. N・ru.

そして中心AとBを結ぶ仮想線はX座標と平行にするの
か望ましい。
It is desirable that the imaginary line connecting centers A and B be parallel to the X coordinate.

また検知系17と18はそれらの中心人とBが投影レン
ズ10の光軸0に関して対称で、光軸0の各検知系の中
心との間隔をLに決め、中心CとDを結ぶ仮想線が中心
AとBを結ぶ仮想線と直交する様に配置する。但し1検
知系17と18は、検知系15と18がy座標方向に偏
倚したままで検定する場合、あるいはアライメントマー
クの位置をX座標とy座標で独立にrilll定する必
要がある場合以外は省略できる。
In addition, the detection systems 17 and 18 are symmetrical with respect to the optical axis 0 of the projection lens 10, and the distance between the centers of the optical axis 0 and the center of each detection system is set to L, and an imaginary line connecting the centers C and D is set. is arranged so that it is perpendicular to the imaginary line connecting centers A and B. However, 1 detection systems 17 and 18 are used unless the detection systems 15 and 18 are tested while being biased in the y-coordinate direction, or when it is necessary to independently determine the position of the alignment mark in the x-coordinate and y-coordinate direction. Can be omitted.

20と21はそれぞれ精密測長器で、XYステージ即ち
ウェハーのZ座標上してy座標に沿った距離を測定する
。22は制御装置で、操作器24の指令信号に応じて、
基準長りの2倍の移動指令やアライメント・マークと検
知系の基準との差量の測定の実行あるいは差量を零にす
る信号の発生、基準長の変動分を補償値とした修正基準
長に相当した信号の発生、更にはステップ移動の信号を
発生する等の機能を持つ。XYステージ14の移動は測
長器20と21の測定値が制御装置22にフィードバッ
クされ正確に制御される。26はXYステージ14の駆
動機構で、XYステージをX座標方向、y座標方向、回
転方向に移動する機能を持つ。
Reference numerals 20 and 21 each indicate a precision length measuring device, which measures the distance along the y-coordinate on the Z-coordinate of the XY stage, that is, the wafer. 22 is a control device which, according to the command signal from the operating device 24,
Command to move twice the reference length, measure the difference between the alignment mark and the detection system reference, generate a signal to make the difference zero, and correct the reference length using the variation in the reference length as a compensation value. It has functions such as generating signals corresponding to , and even generating signals for step movement. The movement of the XY stage 14 is accurately controlled by feeding back the measurement values of the length measuring devices 20 and 21 to the control device 22. Reference numeral 26 denotes a drive mechanism for the XY stage 14, which has a function of moving the XY stage in the X coordinate direction, the y coordinate direction, and the rotational direction.

今、この装置の基準長が何んらかの要因、例えば装置全
体の熱的な要因で変化するとしたらその影響は投影レン
ズ1と検知系15〜18との間の相対関係すべてに等方
的に効くと仮定できる。従ってその影響は検知系の間隔
を測定し、これから基準長りの2倍を引いた値(負信号
は検知系が接近した場合)の半分として現われる。例え
ばS座標方向の基準長の変化は投影レンズ10と検知系
15との間隔の変化となる。
Now, if the reference length of this device changes due to some factor, for example, a thermal factor of the entire device, the effect will be isotropic on all the relative relationships between the projection lens 1 and the detection systems 15 to 18. It can be assumed that it is effective. Therefore, the effect appears as half of the value obtained by measuring the distance between the sensing systems and subtracting twice the reference length from this (a negative signal occurs when the sensing systems are close together). For example, a change in the reference length in the S coordinate direction results in a change in the distance between the projection lens 10 and the detection system 15.

以下、作用を説明する。まず、ウェハー13の回メ0 転誤差を除去する0検集系15の基準人とアライメント
・マークAM1を合致させ、次いでXYステージ14を
y座標に沿って規定のマーク間隔<1だけ正確に移動す
ると検知系15は別のアライメント・マークAM2を捕
捉し、もし検知系15内の基準とアライメント・マーク
AM2との差異があれば差異に相当する信号を出力する
。この時、検知系自体で2座標方向の位置ずれを測定し
ても良いし、基準人と7ライメント拳!−り人M2が合
致するまでXYステージをS座標に沿って移動し、その
移動量で位置ずれΔXを測定しても良い。
The action will be explained below. First, align the alignment mark AM1 with the reference person of the zero detection system 15 that removes the rotation error of the wafer 13, and then move the XY stage 14 accurately by a specified mark interval <1 along the y coordinate. The detection system 15 then captures another alignment mark AM2, and if there is a difference between the reference within the detection system 15 and the alignment mark AM2, it outputs a signal corresponding to the difference. At this time, the detection system itself may measure the positional deviation in the two coordinate directions, or the reference person and the 7-line fist! - The XY stage may be moved along the S coordinate until the person M2 matches, and the positional deviation ΔX may be measured by the amount of movement.

ここで6− ’ran (Δ−1./l )として回転
誤差がめられ、この角度θだけXYステージ14を回転
させればウェハーの回転誤差は解消される。但し、以上
の過程は被加工物の位置決めが一次元の場合は不要であ
る。
Here, a rotational error is detected as 6-'ran (Δ-1./l), and if the XY stage 14 is rotated by this angle θ, the rotational error of the wafer is eliminated. However, the above process is unnecessary if the positioning of the workpiece is one-dimensional.

続いて、アライメント・マークAM2が検知系15の基
準に合致した状態から駆動機構26を作動させてXYス
テージ14をX座標に沿って基準ント・マークAM2か
一致するはずであるが、基が一′致するまでXYステー
ジ14を移動する時ノ移動量から偏倚量2ΔLがまる。
Next, when the alignment mark AM2 matches the reference of the detection system 15, the drive mechanism 26 is operated to move the XY stage 14 along the X coordinate so that the alignment mark AM2 matches the reference mark AM2. The deviation amount 2ΔL is subtracted from the amount of movement when the XY stage 14 is moved until the position is reached.

!準長の変動が等方的であるから投影レンズ15の光軸
から検出系15及び16の光軸までの基準長II′iL
+ΔL″′Cある。
! Since the semi-length variation is isotropic, the reference length II'iL from the optical axis of the projection lens 15 to the optical axes of the detection systems 15 and 16
There is +ΔL″′C.

制御装置22はこの結果L+ΔLを一時記憶し、予め記
憶したチップ−サイズやウェハー上のどの位置から露光
を開始するか等の情報とともに、XYステージ14を検
知系からX座標、y座標に沿ってどれだけ移動すれば良
いかを算出し、算出量に応じて駆動機構23を作動させ
XYステージ14を露光初期位置に設定し、露光を行っ
た後、周知のステップ愉アンド・リピート運動を行う。
The control device 22 temporarily stores this result L+ΔL, and moves the XY stage 14 from the detection system along the The amount of movement required is calculated, the drive mechanism 23 is operated according to the calculated amount, the XY stage 14 is set at the initial exposure position, and after exposure, a well-known step-and-repeat movement is performed.

また2枚目以降のウェハーは、検知系15又は16のど
ちらか一方を使って、ウェハーの回転を取った後その検
知系に72イメント・マークを合わせ、基準長L+ΔL
を考慮した情報に従って露光初期位置にウェハーを移動
するものである。
In addition, for the second and subsequent wafers, use either detection system 15 or 16 to rotate the wafer, then align the 72 moment mark with that detection system, and set the reference length L + ΔL.
The wafer is moved to the initial exposure position according to information that takes into account the

一方、検知系17及び18と投影レンズ1との基準長変
動の検定も前述と同様の手続きで実行できる。即ち、検
知系17の基準Cに7ツイメント拳マ一クAM2を合わ
せ、そこからウェハーをy座標に沿って2 L’だけ移
動し、検知系18の基準と72イメント・マークとの偏
倚を測定する。この時の誤差の半分を修正値として制御
装置22に記憶し、アライメントマークの検出に検知系
17あるいは18を使用した時にはこの値を使って移動
量を決める。また、この修正値とX座標方向の修正値だ
けウェハーを直交移動し、検知糸15でアライメント・
i−りを探査した時、もしy座標方向に誤差があれば検
知系15が投影レンズの光軸を通る仮想線から位置ずれ
していることがわかるから、その補償に利用できる。前
述の検定は1日に1回あるいは1時間に1回実施される
On the other hand, the verification of reference length variations between the detection systems 17 and 18 and the projection lens 1 can also be performed using the same procedure as described above. That is, align the 7-point mark AM2 with the reference C of the detection system 17, move the wafer 2 L' along the y-coordinate, and measure the deviation between the reference of the detection system 18 and the 72-point mark. do. Half of the error at this time is stored in the control device 22 as a correction value, and when the detection system 17 or 18 is used to detect the alignment mark, this value is used to determine the amount of movement. In addition, the wafer is moved orthogonally by this correction value and the correction value in the X coordinate direction, and the alignment is performed using the detection thread 15.
When searching for the i-axis, if there is an error in the y-coordinate direction, it can be seen that the detection system 15 is deviated from the virtual line passing through the optical axis of the projection lens, and this can be used to compensate for it. The aforementioned test is performed once a day or once an hour.

(効 果) 以上述べてきた様にオフアクシスの位1σ合せの場合に
最も重要な基準長は本発明の方法に従えば常にチェック
を受けている事になり、長期にわたっての変動分も容易
に補正される事になる。またオフアクシス顕微鏡の配置
を投影レンズに対して対称に置く事により、&準長の変
化の補正を精度良く行5事が可能である。基準長の変w
Jカi非対称に生じた場合でも、基準長の変化量の計算
は2つのベアとなる顕微鏡での検出値の平均となるので
、ききfitが1/2となり、系の安定性に寄与する所
が大であると言える。尚、以上の例では投影レンズの光
軸を通る線上に検知系の光軸を配しているが1投影レン
ズの光軸を挾んで2本の検知系を設けた場合には、投影
レンズの光軸を通る直線に対称に検知系を配すれば、本
発明の効果を分有し得る0
(Effects) As stated above, the reference length, which is the most important in off-axis 1σ alignment, is constantly checked by the method of the present invention, and long-term fluctuations can be easily addressed. It will be corrected. Furthermore, by arranging the off-axis microscope symmetrically with respect to the projection lens, it is possible to correct changes in the & semi-length with high accuracy. Change in standard length lol
Even in the case where J is asymmetric, the amount of change in the reference length is calculated by averaging the values detected by the two bare microscopes. can be said to be large. In the above example, the optical axis of the detection system is arranged on a line passing through the optical axis of the projection lens, but if two detection systems are installed across the optical axis of one projection lens, If the detection system is arranged symmetrically with respect to a straight line passing through the optical axis, the effects of the present invention can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

(A)(Bン 第1図叫榊は従来例を説明するための図。第2図は本発
明の実施例の平面図で、第3図は斜視図。 図中10は投影レンズ(主系)、11t;tレチクル、
16はウェハー、14はXYステージ、15〜18は検
知系、22は制御装置である。 出願人 キャノン株式会社 (A) 堵?図
(A) (B) Figure 1 is a diagram for explaining a conventional example. Figure 2 is a plan view of an embodiment of the present invention, and Figure 3 is a perspective view. In the figure, 10 is a projection lens (main system), 11t;t reticle,
16 is a wafer, 14 is an XY stage, 15 to 18 are detection systems, and 22 is a control device. Applicant Canon Co., Ltd. (A) To? figure

Claims (6)

【特許請求の範囲】[Claims] (1)主系と主系に関して対称に配置された物体の位置
を検知するための複数本の検知系と物体を廣定量移動す
るための移動手段と検知系の出力に関連して主系と検知
系の間隔誤差を算出する手段を具備する処理装置訂
(1) Main system and multiple detection systems for detecting the position of an object arranged symmetrically with respect to the main system, a moving means for moving the object in a wide fixed amount, and a main system related to the output of the detection system. A processing device equipped with means for calculating the interval error of the detection system.
(2)前記検知系社4本配置されている特許請求の範囲
第1項記載の処理装置0
(2) The processing device 0 according to claim 1, in which four detection systems are arranged.
(3)前記検知系の2本づつを結ぶ仮想線は直交する特
許請求の範囲第1項記載の処理装置。
(3) The processing device according to claim 1, wherein the virtual lines connecting two of the detection systems are perpendicular to each other.
(4)前記主系は集積回路パターンを投影する投影系で
ある特許請求の範囲第1項記載の処理装置。
(4) The processing device according to claim 1, wherein the main system is a projection system that projects an integrated circuit pattern.
(5)主系に関して物体の位置を゛検知するための複数
本の検知系を対称に配する段階と、対称に配された検知
系の間隔を測定す□る段階を含む主系と測定系との間隔
偏倚を監視□する監視方法。
(5) Main system and measurement system, including a step of symmetrically arranging multiple detection systems for detecting the position of an object with respect to the main system, and a step of measuring the interval between the symmetrically arranged detection systems. □ Monitoring method for monitoring interval deviation between
(6)前記主系社集積回路パターンを投影する投影系で
ある特許請求の範囲第1項記載の監視方法0
(6) The monitoring method 0 according to claim 1, which is a projection system that projects the main integrated circuit pattern.
JP59003999A 1984-01-12 1984-01-12 Processor and its monitoring method Pending JPS60147741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59003999A JPS60147741A (en) 1984-01-12 1984-01-12 Processor and its monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59003999A JPS60147741A (en) 1984-01-12 1984-01-12 Processor and its monitoring method

Publications (1)

Publication Number Publication Date
JPS60147741A true JPS60147741A (en) 1985-08-03

Family

ID=11572697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59003999A Pending JPS60147741A (en) 1984-01-12 1984-01-12 Processor and its monitoring method

Country Status (1)

Country Link
JP (1) JPS60147741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056735A1 (en) * 2006-11-09 2008-05-15 Nikon Corporation Holding unit, position detecting system and exposure system, moving method, position detecting method, exposure method, adjusting method of detection system, and device producing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056735A1 (en) * 2006-11-09 2008-05-15 Nikon Corporation Holding unit, position detecting system and exposure system, moving method, position detecting method, exposure method, adjusting method of detection system, and device producing method
JP5151989B2 (en) * 2006-11-09 2013-02-27 株式会社ニコン HOLDING DEVICE, POSITION DETECTION DEVICE, EXPOSURE DEVICE, AND DEVICE MANUFACTURING METHOD
US8432534B2 (en) 2006-11-09 2013-04-30 Nikon Corporation Holding apparatus, position detection apparatus and exposure apparatus, moving method, position detection method, exposure method, adjustment method of detection system and device manufacturing method

Similar Documents

Publication Publication Date Title
US7362436B2 (en) Method and apparatus for measuring optical overlay deviation
KR19980042558A (en) Projection exposure apparatus and projection exposure method
JPH0789534B2 (en) Exposure method
JP2646412B2 (en) Exposure equipment
JP2610815B2 (en) Exposure method
US6141108A (en) Position control method in exposure apparatus
JPS60147741A (en) Processor and its monitoring method
JP2868548B2 (en) Alignment device
JPH04333213A (en) Alignment mark
JP3198718B2 (en) Projection exposure apparatus and method for manufacturing semiconductor device using the same
JPS6380529A (en) Semiconductor printing apparatus
JPS6154622A (en) Pattern transfer process and device and applicable prealigner and mask holder
JPS59161815A (en) Device for detecting rotational deflection of exposing equipment
JP2860567B2 (en) Exposure equipment
JP2829649B2 (en) Alignment device
JP2794593B2 (en) Projection exposure equipment
JP2785141B2 (en) Alignment device
JPS63155722A (en) Aligner
JPH1058174A (en) Laser beam machine
JP2823227B2 (en) Positioning device
JP2646595B2 (en) Laser processing equipment
JP3274959B2 (en) Semiconductor exposure equipment
JP2977307B2 (en) Sample height measurement method
JPH09275060A (en) Positioning method and aligner
JPH01286420A (en) Stage position controlling equipment