JPS60146165A - Infrared ray detector - Google Patents

Infrared ray detector

Info

Publication number
JPS60146165A
JPS60146165A JP59002264A JP226484A JPS60146165A JP S60146165 A JPS60146165 A JP S60146165A JP 59002264 A JP59002264 A JP 59002264A JP 226484 A JP226484 A JP 226484A JP S60146165 A JPS60146165 A JP S60146165A
Authority
JP
Japan
Prior art keywords
signal
infrared
state imaging
dimensional infrared
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59002264A
Other languages
Japanese (ja)
Inventor
Yasuaki Yoshida
保明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59002264A priority Critical patent/JPS60146165A/en
Publication of JPS60146165A publication Critical patent/JPS60146165A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/781Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/701Line sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/713Transfer or readout registers; Split readout registers or multiple readout registers

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To enable the detection and image pick up of a distant small object by performing a time-delayed integration of a signal to improve the S/N ratio. CONSTITUTION:A signal stored in an infrared rays detecting element 8 is read into a charge transfer device 9 simultaneously from all the elements 8 at a certain time interval. The signal thus read out is transferred downward sequentially and read into a charge transfer device 12. The signal thus read out is transferred to the left sequentially. The signal thus reaching the left end of the device 12 is further fed to the adjacent device 12 and at this point, it is added to the signal sent from the device 9 and transferred to the left to be fetched from an output amplifier 13. So to speak, the magnitude of the output signal is the simple sum of the magnitudes of signals from the elements 8 whereas the noise component is given the square root of the results obtained after they are squared and added up and thus, the S/N ratio becomes n<1/2> fold thereby improving it.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は熱源を有する物体全探知、撮像する赤外線探
知装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in an infrared detection device that detects and images all objects having a heat source.

〔従来技術〕[Prior art]

海上等金低窒で飛来する目標を探知するには。 To detect targets flying at sea, etc. with gold-low nitrogen.

電波を用いたレーダがあるが、海面からの反射等により
探知が難しい状況か多々ある。従って、目標が発生する
熱線を見ることかできる波長3〜5μm又は8〜13μ
m帯の赤外線探知装置がオリ用される。
There are radars that use radio waves, but detection is often difficult due to reflections from the sea surface. Therefore, the wavelength at which the target can see the generated heat rays is 3 to 5 μm or 8 to 13 μm.
M-band infrared detection equipment will be used.

第1図は、従来のこの柚の装置の概略図で、(1)はセ
ンサ・光学部、(2;は上記センサ・光学部を全周等速
回転させるための回転架台、(3)はセンサ・光学部か
ら出力される時系列電気係号を処理し。
Figure 1 is a schematic diagram of the conventional Yuzu device, in which (1) is a sensor/optical section, (2) is a rotating mount for rotating the sensor/optical section at a constant speed all around, and (3) is a Processes the time-series electrical coefficients output from the sensor/optical section.

目標を探知、撮像するための信号処理部である。This is a signal processing unit for detecting and imaging targets.

第2図は、上記センサ・光学部(liの構成図で。FIG. 2 is a configuration diagram of the sensor/optical section (li).

(4)は光学系、(51は光学系(4)の赤外線結像面
内に置かれた1次元赤外線面体撮像素子、(6)は縦方
向視野角、(7)はセンサ・光学部fliの回転軸であ
る。
(4) is an optical system, (51 is a one-dimensional infrared surface image sensor placed in the infrared imaging plane of optical system (4), (6) is a vertical viewing angle, and (7) is a sensor/optical section fli It is the axis of rotation.

第3図は、上記1次元赤外締固体撮像素子(5)の構成
図で、(8)は赤外線検出素子、(9)は′亀荷転送デ
ハ゛イス、aαは出力アンプで゛ある。
FIG. 3 is a block diagram of the one-dimensional infrared solid-state imaging device (5), in which (8) is an infrared detection element, (9) is a load transfer device, and aα is an output amplifier.

1次元赤外線画体撮像素子(5)は、赤外線棒”出素子
(8)の列が1回転軸(7)と平行になる様にINかれ
ている。
The one-dimensional infrared image sensor (5) is installed in such a way that the row of infrared bar "output elements (8)" is parallel to the one-rotation axis (7).

この様な赤外線探知装置6において、 MIII:方1
1・」の走査は1次元赤外線画体撮像素子(5)により
電子的におこなわれ、装置°の縦刃1h」視野角(6)
は赤外Nil検出素子(8)の列の長さに対応1−る。
In such an infrared detection device 6, MIII: Method 1
1.'' scanning is performed electronically by a one-dimensional infrared image sensor (5), and the vertical blade 1h'' viewing angle (6) of the device is
corresponds to the length of the row of infrared Nil detection elements (8).

横方向の走査は、センサ・光学f4B(1i?r回転1
1Til (7+を中心に全周等速回転することにより
おこなイつれ。
Horizontal scanning is performed using sensor/optical f4B (1i?r rotation 1
1Til (This is done by rotating around 7+ at a constant speed.

横方向視野角は360°である。The lateral viewing angle is 360°.

以上の様に、電子的9機械的方法により走イ糺され、セ
ンサー光学部(1)より出力される時系列゛電気信号は
、信号処理部(3)tζ送り込まれ1個号処理され、目
標物体の探知、撮像がおこなわれる。
As described above, the time-series electrical signals that are transmitted through electronic and mechanical methods and output from the sensor optical section (1) are sent to the signal processing section (3), where they are processed one by one, and Objects are detected and imaged.

この様な装置において、セン→ノー・光学部より出力さ
れる時系列電気イご号のs/n比は、 1161々の赤
外線検出素子(8)より出力される信号のS/N比と考
えてよい。
In such a device, the S/N ratio of the time-series electric signal output from the optical section is considered to be the S/N ratio of the signals output from the 1161 infrared detection elements (8). It's fine.

遠方の物体を見たときの、赤外線検出素子(8)のs 
/ N比は。
s of the infrared detection element (8) when viewing a distant object
/ N ratio is.

で与えられる。ただし、目標が光学系(41に対しはる
立体角ωtが、1ケの赤外線検出素子(8)がはる立体
角ωdより小さい(ω1<<ωd)とし。
is given by However, assume that the solid angle ωt of the target optical system (41) is smaller than the solid angle ωd of one infrared detection element (8) (ω1<<ωd).

N(TI;) :目標の放射輝度 N(Tb) :背景の放射輝度 At:目標の面積 R:目標とセンサ・光学部(1)の距離τa :大気透
過率 τ0 :光学系(41の透過率 Do=光学系(4)の開口径 NA:MS学系+41の開口数 台 :センサ・光学部(1)の単位時間あたりの回転数 V :パルス・ビジビリティ・ファクタD*:赤外線検
出素子(8)の比検出率である。
N(TI;): Target radiance N(Tb): Background radiance At: Target area R: Distance between target and sensor/optical section (1) τa: Atmospheric transmittance τ0: Optical system (transmission of 41) Rate Do = aperture diameter NA of optical system (4): MS system + 41 numerical aperture unit: number of rotations per unit time of sensor/optical section (1) V: pulse visibility factor D*: infrared detection element ( 8) is the specific detection rate.

より遠方の物体を確笑に探知するには、上記s / y
比を大きくする必要があるが、その仙は。
To reliably detect objects further away, use the above s/y
It is necessary to increase the ratio, but that immortal.

光学系(41の諸元τO+ DO+ ”A+および、セ
ンサ・光学部(1)の回転数台により制限される。
It is limited by the specifications of the optical system (41 τO+DO+"A+) and the number of revolutions of the sensor/optical section (1).

〔発明の概要〕[Summary of the invention]

この発明は、1次元赤外線II体撮像素子(51にかわ
り、1次元赤外線画体撮像素子(5)葡複数個並列に並
べたもの全光学系(4)の赤外線結像面内に配置し、赤
外線検出器の出力信号を時間遅延積分1−ることにより
、光学系(41の諸元、および、センサ・光学部(1)
の回転数台に無関係に、センサ・光学部(liより出力
される時系列電気信号のS/N比全改善すること全提案
するものである。
In this invention, in place of the one-dimensional infrared II image sensor (51), a plurality of one-dimensional infrared image sensor (5) arranged in parallel are arranged in the infrared imaging plane of the entire optical system (4), By time-delay integrating the output signal of the infrared detector, the optical system (41 specifications and sensor/optical section (1)
Our proposal is to completely improve the S/N ratio of the time-series electrical signals output from the sensor/optical section (LI), regardless of the number of revolutions.

〔発明の実施例〕[Embodiments of the invention]

以下9図を用いて、この発明の実施例′(il−説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

第4図は、この発明の実施例の関連部の6を示すもので
、第2図の1次元赤外糾固体撮像素子(5)に代わり用
いられる部分である。なお、センサφ光学部(1)のそ
の他の構成品である光学系(4)1回転軸(7)、およ
び、赤外線探知装置を構成するその他の構成品である回
転架台(2)、信号処理部(3)は、従来のものと同一
である。
FIG. 4 shows a related part 6 of the embodiment of the present invention, which is a part used in place of the one-dimensional infrared solid-state imaging device (5) in FIG. In addition, the optical system (4), which is the other component of the sensor φ optical part (1), the single rotation axis (7), the rotation mount (2), which is the other component of the infrared detection device, and the signal processing Part (3) is the same as the conventional one.

第4図において、αDは1次元赤外糾固体撮像素子列で
、従来装置の1次元赤外線画体撮像素子(5)を、抜数
個並列に並べたものであり、 (12は電荷転送テバイ
ス、 Q31は出力アンプである。
In FIG. 4, αD is a one-dimensional infrared solid-state image sensor array, in which several one-dimensional infrared image sensors (5) of the conventional device are arranged in parallel, (12 is a charge transfer device , Q31 is an output amplifier.

上記1次元赤外線面体撮像素子列α1)は、第2図の1
次元赤外線画体撮像素子(5)にかわり、赤外線結像面
内Kyかれる。
The above-mentioned one-dimensional infrared surface solid image sensor array α1) is 1 in FIG.
In place of the dimensional infrared image sensor (5), an infrared image is captured in the infrared imaging plane.

この様にして2次元に配置された赤外線検出素子(8)
の内、@方向に隣あつに素子からの信号金時1it+遅
延績分することν(より加え合わせ、S/N比を改善す
る、 以下、第4図によって、信号の胱出し方法を説明する。
Infrared detection elements (8) arranged two-dimensionally in this way
Among them, the signals from adjacent elements in the @ direction are divided by 1it + delay time ν (twisted and added to improve the S/N ratio. The method for outputting signals will be explained below with reference to Fig. 4. .

ます、赤外線検出素子(8)に蓄えられた信号は。The signal stored in the infrared detection element (8) is.

時間△t1 ごとに1丁べての赤外線検出素子(8)か
ら同時に、′電荷転送デバイス(9)に読み出される。
The data are simultaneously read out from all the infrared detecting elements (8) to the charge transfer device (9) every time Δt1.

ここで、△t1 は、ある点の像が1次元赤外締固体撮
像素子(51’i1列横切るのに必要な時間と1−る。
Here, Δt1 is the time required for the image of a certain point to cross one row of the one-dimensional infrared solid-state image sensor (51'i).

又、電荷転送デバイス(9)は、シフトレジスタとして
機能し、シフトレジスタの徐は赤外線検出素子(8)の
縦方向の数に等しいものとする。
Further, the charge transfer device (9) functions as a shift register, and the number of shift registers is equal to the number of infrared detection elements (8) in the vertical direction.

電荷転送デバイス(9)に読み出された信号は、順次、
下向きに転送され、電荷転送デバイスtI7Iに読み出
される。
The signals read out to the charge transfer device (9) are sequentially
It is transferred downward and read out to charge transfer device tI7I.

電荷転送デバイスazもシフトレジスタとして機能し、
電荷転送デバイス02に読み出された(N号は。
The charge transfer device az also functions as a shift register,
The charge was read out to the charge transfer device 02 (number N is.

順次、左向きに転送される。They are sequentially transferred to the left.

ここで、電荷転送デバイス(9)とtlりのシフトレジ
スタの数は等しいものとするう 又9以上の動作は時間△t1の間におこなわれ。
Here, it is assumed that the number of charge transfer devices (9) and tl shift registers are equal, and the operations 9 and above are performed during time Δt1.

ある時刻ti K赤外1#検出素子(8)から霜、荷転
送テバイス(9)に読み出された信号は9次に赤外線検
出素子(8)から読み出しがおこなわれる時刻t1+Δ
t1までに1丁べて、電荷転送デバイスO2へ転送され
ている。
At a certain time ti, the signal read out from the K infrared 1# detection element (8) to the frost and load transfer device (9) is at the time t1+Δ when the signal is read out from the 9th infrared detection element (8).
By t1, all charges have been transferred to the charge transfer device O2.

ある電荷転送デバイスα2の左端に到達した信号は、さ
らに隣の電荷転送デバイス(+2に送られるがこのとき
、電荷転送デバイス(91から送られてきた信号とたし
合わされ、左向きに転送され、最後に出力アンツブQ3
より出力される。
The signal that has reached the left end of a certain charge transfer device α2 is further sent to the adjacent charge transfer device (+2), but at this time, it is added to the signal sent from the charge transfer device (91), transferred to the left, and finally Output to Antsubu Q3
It is output from

以上の様にして、ある点の像の1時刻t1゜t1+△t
1.t1+込t1・・・tl−1−n△t1(nは1次
元赤外線画体撮像素子列α9の列の数〕の信号かたし合
イつされ、ノ順次、出力されるが、出力信号の大きさが
それぞれの赤外線検出素子(8)からの信号の大きさの
単純和であるのに対し、ノイズ成分は2乗して加えたも
のの平方根であるから、s/Nは6倍となる。
As described above, one time t1゜t1+△t of the image of a certain point
1. The signals of t1+t1...tl-1-n△t1 (n is the number of columns of the one-dimensional infrared image sensor array α9) are combined and output in sequence, but the size of the output signal is the simple sum of the signal magnitudes from the respective infrared detection elements (8), whereas the noise component is the square root of the squared product, so the s/N is six times as large.

なお、上記実施例では、電荷転送デバイスミ2ヲ用いて
、信号の時間遅延積分をおこなったが、LC遅延素子な
どの遅延素子や他の遅延回路を用いても、同様の動作を
期待できる。
In the above embodiment, the charge transfer device Mi2 was used to perform time delay integration of the signal, but similar operation can be expected by using a delay element such as an LC delay element or other delay circuit.

又、1次元固体撮像素子列住9のかわりに、2次元赤外
線面体撮像素子を用いることもできる。この場合、電荷
転送デバイス0zも含めてLSI化することにより、装
置の小型化を期待できる。
Further, instead of the one-dimensional solid-state image sensor array 9, a two-dimensional infrared surface image sensor may be used. In this case, by incorporating the charge transfer device 0z into an LSI, it is possible to expect the device to be miniaturized.

〔発明の効果〕 この発明は以上説明しf5−とおり、360”0 の視
野を持つ並列走査型の赤外線探知装置Kお(71で。
[Effects of the Invention] As explained above, this invention is a parallel scanning type infrared detection device KO (71) having a field of view of 360"0.

信号の時間遅延積分をおこなうことによりs/n比を改
善し、より遠方の小物体を探知、撮像できるという効果
を有する・
It has the effect of improving the S/N ratio by performing time delay integration of the signal, making it possible to detect and image small objects further away.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の並列走査型の赤外線探知装置の概略図
、第2図は、上記赤外&I探知装櫛の1音すであるセン
サ光学部の構成図、第3図は従来の装置に用いられる1
次元赤外締固体撮像素子を示す構成図、第4図はこの発
明の実施例の要部をヲ曾丁構成図である。 図において、(1)はセンサ#光学部、(21は−)転
架台、(3)は信号処理部、(4)は光学系、(51は
1次元赤外線面体撮像素子、(6)は縦方向視野角、 
+71&ま回転軸、(8)は赤外線検出素子、(9)は
電荷転送デバイス。 帥は出力アンプ、(Inは1次元赤外脚固体撮像素子列
、uzは′電荷転送デバイス、 ([31は出力アンツ
ブである。 なお1図中、同一符号は同−又は、和尚部分を示すもの
とする。 代理人大岩増雄 第1IXI 第2図 第3図
Fig. 1 is a schematic diagram of a conventional parallel scanning type infrared detection device, Fig. 2 is a configuration diagram of the sensor optical section, which is one part of the above-mentioned infrared & I detection device comb, and Fig. 3 is a conventional device. 1 used for
FIG. 4 is a block diagram showing a three-dimensional infrared solid-state image pickup device. FIG. In the figure, (1) is the sensor #optical section, (21 is -) the mount, (3) is the signal processing section, (4) is the optical system, (51 is the one-dimensional infrared surface image sensor, and (6) is the vertical direction viewing angle,
+71&mar rotation axis, (8) is an infrared detection element, (9) is a charge transfer device. 3 is an output amplifier, (In is a one-dimensional infrared leg solid-state image sensor array, uz is a charge transfer device, Agent Masuo Oiwa No. 1IXI Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 入射ii集元し結像するための光学系と、結像した光の
像全元電変換し鉛直方向の走査金おこなうための一次元
赤外線固体撮像素子と、上記光学系、1次元赤外線固体
撮像素子の糸全水平面内に全周等速回転させ、水平方向
の走査をおこなうための回転架台と、1次元赤外紳固体
撮f象累子よりの時系列電気信号を処理し、目標を探知
、撮像するための信号処理部とにより構成される並列定
直型の赤外線探知装#において、上記1次元赤外脚固体
撮像素子にかわり、1次元赤外締固体撮像素子を複数個
並列に並べた1次元赤外細筒体撮像素子列全元学系の結
像面内に配置し、横方向K11ilF合った赤外線検出
素子よりの信号全時間か延禎分したことを特徴とする。 赤外線探知装置。
[Scope of Claims] An optical system for concentrating and imaging the incident light, a one-dimensional infrared solid-state imaging device for converting the image of the imaged light into an electric field and performing vertical scanning, and the above-mentioned optical system. , a one-dimensional infrared solid-state imaging device, and a rotating stand for rotating the thread of a one-dimensional infrared solid-state imaging device at a constant speed all around the entire horizontal plane to perform horizontal scanning, and a time-series electric signal from a one-dimensional infrared solid-state imaging element. In the parallel fixed type infrared detection device #, which is composed of a signal processing unit for processing, detecting and imaging a target, a one-dimensional infrared solid-state imaging device is used instead of the one-dimensional infrared leg solid-state imaging device. A plurality of one-dimensional infrared narrow cylindrical image pickup elements arranged in parallel are placed in the imaging plane of a full-element system, and the signal from the infrared detection elements aligned in the lateral direction K11ilF is divided over the entire time. Features. Infrared detection device.
JP59002264A 1984-01-10 1984-01-10 Infrared ray detector Pending JPS60146165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59002264A JPS60146165A (en) 1984-01-10 1984-01-10 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59002264A JPS60146165A (en) 1984-01-10 1984-01-10 Infrared ray detector

Publications (1)

Publication Number Publication Date
JPS60146165A true JPS60146165A (en) 1985-08-01

Family

ID=11524508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59002264A Pending JPS60146165A (en) 1984-01-10 1984-01-10 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPS60146165A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013919A (en) * 1989-10-17 1991-05-07 Grumman Aerospace Corporation Detector element signal comparator system
FR2666714A1 (en) * 1990-09-07 1992-03-13 Thomson Composants Militaires PIXEL IMAGE SENSOR WITH LARGE DIMENSIONS.
US5200623A (en) * 1991-12-04 1993-04-06 Grumman Aerospace Corp. Dual integration circuit
JPH06303498A (en) * 1993-04-14 1994-10-28 Nec Corp Automatic object detection type image pickup device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013919A (en) * 1989-10-17 1991-05-07 Grumman Aerospace Corporation Detector element signal comparator system
FR2666714A1 (en) * 1990-09-07 1992-03-13 Thomson Composants Militaires PIXEL IMAGE SENSOR WITH LARGE DIMENSIONS.
US5481301A (en) * 1990-09-07 1996-01-02 Thomson Composants Militaires Et Spatiaux Method of detecting electromagneto radiation in a large-sized pixel image detector having matrices of small-sized photomos pixel networks
US5600369A (en) * 1990-09-07 1997-02-04 Thomson Composants Militaires Et Spatiaux Large-sized pixel image detector
US5200623A (en) * 1991-12-04 1993-04-06 Grumman Aerospace Corp. Dual integration circuit
JPH06303498A (en) * 1993-04-14 1994-10-28 Nec Corp Automatic object detection type image pickup device

Similar Documents

Publication Publication Date Title
US4794262A (en) Method and apparatus for measuring profile of three-dimensional object
US4601053A (en) Automatic TV ranging system
US6310345B1 (en) Polarization-resolving infrared imager
US5283551A (en) Intrusion alarm system
US4547677A (en) Radiation detecting apparatus for detecting a brief radiation signal
US4596930A (en) Arrangement for multispectal imaging of objects, preferably targets
EP4016018A1 (en) Combined multi-spectral and polarization sensor
JPH0625653B2 (en) Shape measuring method and device
RU2381521C2 (en) Method of measuring object range and linear dimensions by television images
JPS60146165A (en) Infrared ray detector
US20060169904A1 (en) Active polarization-resolving infrared imager
US3784816A (en) Method for executing time-determined analysis in physical or chemical examination of substances and an apparatus for executing the method
JPS60229900A (en) Star and solar sensor for position regulating system
US11195285B2 (en) Moving object detection using a digital read-out integrated circuit and degree of polarization and angle of polarization at the pixel level
JPH0249111A (en) Astronomical observation by scanning and method for measuring angular velocity of spacecraft, observation device for executing said method and spacecraft with said observation device
US4747574A (en) Apparatus for acquisition of the surface shape of a distant object by means of picture element scanning
JPS5518652A (en) Imaging state detecting system of image
US4737642A (en) Arrangement for multispectral imaging of objects, preferably targets
JPS58196412A (en) Distance measuring device
US20120041705A1 (en) Method and Apparatus for the Corrected Radiometric Measurement of Object Points on Surfaces of Astronomical Bodies
US4274353A (en) Acoustic imaging system for wire guided torpedo
US5317523A (en) Integrated reflective image sensor
JPS63241415A (en) Star sensor
JPH0479567B2 (en)
US9118849B1 (en) Two source active sensor system for three-dimensional vision