JPS60145701A - Dielectric filter - Google Patents

Dielectric filter

Info

Publication number
JPS60145701A
JPS60145701A JP221384A JP221384A JPS60145701A JP S60145701 A JPS60145701 A JP S60145701A JP 221384 A JP221384 A JP 221384A JP 221384 A JP221384 A JP 221384A JP S60145701 A JPS60145701 A JP S60145701A
Authority
JP
Japan
Prior art keywords
dielectric
dielectric resonator
resonator
prismatic
resonators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP221384A
Other languages
Japanese (ja)
Inventor
Masayuki Ishizaki
石崎 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP221384A priority Critical patent/JPS60145701A/en
Publication of JPS60145701A publication Critical patent/JPS60145701A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure

Abstract

PURPOSE:To attain easily a desired frequency characteristic by constituting a dielectric filter with a columnar dielectric resonator and a prismatic dielectric resonator. CONSTITUTION:The waveguide mode propagated in a standard waveguide part 1 is intercepted by an intercepting waveguide part 3 and is not propagated there. However, only waves resonating to arranged and fixed dielectric resonators 2 in the waveguide part 3 pass through the waveguide part 3. The columnar dielectric resonator is arranged in the center of the waveguide part 3, and prismatic dielectric resonators 2 are arranged in both ends, and individual resonators are fixed by dielectric substrates 7 having a low dielectric constant.

Description

【発明の詳細な説明】 (al 発明の技術分野 本発明は誘電体ろ波器に係り、特にマイクロ波からミリ
波に及ぶ周波数帯で使用される誘電体ろ波の構造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a dielectric filter, and more particularly to the structure of a dielectric filter used in a frequency band ranging from microwaves to millimeter waves.

fbl 従来技術と問題点 最近、誘電体材料は盛んに開発が進められマイクロ波か
らミリ波に及ぶ周波数帯に於て損失が少なく温度特性の
良好なものが得られる様になってきた。
fbl Prior Art and Problems Recently, dielectric materials have been actively developed, and it has become possible to obtain materials with low loss and good temperature characteristics in frequency bands ranging from microwaves to millimeter waves.

従来、高周波帯に於ける共振器は金属製の容器を使った
空洞共振器や同軸共振器であったが、これらは形状が大
きく重量も重かっまた。
Conventionally, resonators in high frequency bands have been cavity resonators or coaxial resonators using metal containers, but these are large in size and heavy.

これに反して、誘電体共振器は小型軽量で構造が簡単で
、その上に加工費や材料費が安い為にマイクロ波からミ
リ波に及ぶ周波数帯域に於てろ波器や発振器の安定化共
振器として広く使用される様になってきた。
On the other hand, dielectric resonators are small and lightweight, have a simple structure, and have low processing and material costs, so they are suitable for stabilizing resonance in filters and oscillators in frequency bands ranging from microwaves to millimeter waves. It has come to be widely used as a vessel.

第1図はよく使用される誘電体共振器の形状とその基本
共振モードに於ける電磁界分布を示す。
FIG. 1 shows the shape of a commonly used dielectric resonator and the electromagnetic field distribution in its fundamental resonance mode.

同図に示す様に、誘電体共振器の形状は円柱形と角柱形
が主として用いられるが、その寸法は共振周波数に依っ
て異なり例えば20GIIzの共振周波数を持つ角柱形
の誘電体共振器の場合は材料の比誘電率が約30の時、
約3 x3 X (1〜1.5 ) mmである。 又
、電磁界分布は図に示す様に円柱形、角柱形共に同一で
あるが前者の場合はTE、Jモード、l&者の場合はT
E1+Jモードと言っている。
As shown in the figure, the shapes of dielectric resonators are mainly cylindrical and prismatic, but their dimensions vary depending on the resonant frequency. For example, in the case of a prismatic dielectric resonator with a resonant frequency of 20 GIIz, is when the dielectric constant of the material is about 30,
It is approximately 3 x 3 x (1-1.5) mm. Also, as shown in the figure, the electromagnetic field distribution is the same for both cylindrical and prismatic shapes, but in the former case it is TE mode, J mode, and in the case of 1 & 2 mode it is T mode.
It is called E1+J mode.

図中、■は電界が紙面上から下に抜りていることを示し
、Oはその逆である。
In the figure, ■ indicates that the electric field extends downward from the top of the paper, and O indicates the opposite.

第2図は入出力部が導波管の場合の誘電体共振器の配置
の状態を説明する為の図で、第2図(alは導波管の上
面を、第2図tb+は側面をそれぞれ取除いた場合の図
である。
Figure 2 is a diagram for explaining the arrangement of dielectric resonators when the input/output section is a waveguide. It is a figure when each is removed.

図中、1は横中へ×縦中Bの標準導波管部を、2は円柱
形の誘電体共振器を、3は槽中ax縦中Bの遮断導波管
部をそれぞれ示す。
In the figure, 1 indicates a standard waveguide section of horizontal center x vertical center B, 2 indicates a cylindrical dielectric resonator, and 3 indicates a cut-off waveguide section of axial center x vertical center B.

第2図falに於て、横巾A×縦巾Bの標準導波管部l
を伝播してきた導波管モードは横IJa x 縦中Bの
遮断導波管部3で遮断されこの中を伝播することができ
ない。しかし、この遮断導波管部3に配列・固定された
誘電体共振器2と共振した波だけがこの遮断導波管部3
を通り抜りることができる。
In Fig. 2 fal, standard waveguide section l with width A x length B
The waveguide mode that has propagated is blocked by the cut-off waveguide section 3 with horizontal IJax and vertical center B, and cannot propagate therein. However, only the waves that resonate with the dielectric resonators 2 arranged and fixed in this cut-off waveguide section 3
can pass through.

第3図は入出力部がマイクロストリップ線路で構成され
た誘電体共振器の従来例の構成を説明する為の図で、第
3図falは平面図を、第3図fblは第3図+alの
A−A断面図をそれぞれ示す。
Figure 3 is a diagram for explaining the configuration of a conventional example of a dielectric resonator whose input/output section is composed of a microstrip line. Figure 3 fal is a plan view, and Figure 3 fbl is Figure 3 + al. AA cross-sectional views are shown, respectively.

図中、4は例えばアルミナ基板を、2は誘電体共振器を
、5及び7はは金属例えば金を蒸着して得られたマイク
ロストリップ線路を、6は全面に金属を蒸着した接地導
体面をそれぞれ示す。
In the figure, 4 is, for example, an alumina substrate, 2 is a dielectric resonator, 5 and 7 are microstrip lines obtained by vapor-depositing metal, such as gold, and 6 is a ground conductor surface whose entire surface is vapor-deposited with metal. Each is shown below.

第3図+a+に於て、この誘電体ろ波器の構成は一枚の
誘電体基板4の上に誘電体共振器2と結合させる為の入
出力線路5及び7を形成し、同時にその誘電体基板4は
誘電体共振器の支持板にもなっていた。そして、マイク
ロストリップ線路5及び7はは希望の中心周波数に対し
て開放部より約λg/4At[れた線路長の位置で誘電
体共振器2と磁界結合して共振回路を形成している。
In Fig. 3+a+, the configuration of this dielectric filter is to form input/output lines 5 and 7 for coupling with the dielectric resonator 2 on a single dielectric substrate 4, and at the same time, the dielectric filter The body substrate 4 also served as a support plate for the dielectric resonator. The microstrip lines 5 and 7 are magnetically coupled to the dielectric resonator 2 to form a resonant circuit at a line length distance of about λg/4At from the open portion with respect to the desired center frequency.

この様に、従来の誘電体ろ波器は使用する誘電体共振器
の形状が第1図に示す様な角柱形なら角柱形のみ、又は
円柱形なら円柱形のみで統一されているのが普通であっ
た。
In this way, in conventional dielectric filters, the shape of the dielectric resonator used is generally prismatic only, as shown in Figure 1, or cylindrical only. Met.

又、所望の周波数特性を持つ誘電体ろ波器の構成要素で
ある誘電体共振器の誘電率、形状等を理論的にめても、
実際の誘電体共振器の誘電率や形状・寸法はそれぞれ多
少バラツキを持っている。
Furthermore, even if we theoretically consider the permittivity, shape, etc. of the dielectric resonator, which is a component of a dielectric filter with desired frequency characteristics,
The permittivity, shape, and dimensions of actual dielectric resonators vary to some extent.

特に、゛共振周波数が高くなると誘電体共振器の形状・
寸法が小さくなるのでそのバラツキは大きくなる。そこ
で、設計条件と現物が異なる誘電体ろ波器の周波数特性
を所望の周波数特性に一致させる為には主として調整用
ネジのみでこれを1jなわなりればならいので調整工数
がかなり必要であった。
In particular, as the resonant frequency increases, the shape of the dielectric resonator
As the dimensions become smaller, the variation becomes larger. Therefore, in order to match the frequency characteristics of a dielectric filter with different design conditions and the actual product to the desired frequency characteristics, it was necessary to adjust the frequency characteristics using only adjusting screws, which required a considerable amount of adjustment man-hours. .

以ト説明した様に、従来の誘電体ろ波器の構成は設8]
性や調整の自由度が少ないので所望の周波数特性に誘電
体ろ波器のそれを一致さゼるにはかなりの時間が必要で
あると云う問題があった。
As explained above, the configuration of the conventional dielectric filter is as follows.
There is a problem in that it takes a considerable amount of time to match the desired frequency characteristics with those of the dielectric filter because there is little freedom in frequency characteristics and adjustment.

(C1発明の目的 本発明は上記従来技術の問題に鑑みなされたものであっ
て、所望の周波数特性により近すけて特性を向上させた
誘電体ろ波器を提供することを目的としている。
(C1 Purpose of the Invention The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a dielectric filter with improved characteristics closer to desired frequency characteristics.

ldl 発明の構成 上記発明の゛目的は一定空間内に少なくとも1j固以上
の誘電体共振器が配列・固定されてなる誘電体ろ波器に
於て、該誘電ろ波器が円柱形誘電体共振器と角柱形誘電
体共振器とから構成されたことを特徴とする誘電体ろ波
器を提供することにより達成される。
ldl Structure of the Invention The object of the above invention is to provide a dielectric filter in which at least 1j or more dielectric resonators are arranged and fixed in a certain space, in which the dielectric filter has a cylindrical dielectric resonator. This is achieved by providing a dielectric filter characterized in that it is comprised of a cylindrical dielectric resonator and a prismatic dielectric resonator.

(el 発明の実施例 一般に同じ高さの角柱形の誘電体共振器と円柱形の誘電
体共振器を使用した場合に、共振周波数を同じくする為
には角柱形誘電体共振器の一辺の長さWと円柱形誘電体
共振器の直径りとの間に■〕=1.082 Wの関係を
満足すればよい事がアメリカテ1982年6月に発行さ
れた雑誌“マイクロウェーブシステムニュース”のP、
133〜140に記載されている。
(el Embodiment of the Invention In general, when using a prismatic dielectric resonator and a cylindrical dielectric resonator of the same height, in order to make the resonant frequency the same, the length of one side of the prismatic dielectric resonator must be According to the American magazine "Microwave System News" published in June 1982, it is sufficient to satisfy the relationship between the diameter W and the diameter of the cylindrical dielectric resonator: ■] = 1.082 W. P,
133-140.

即ち、DとWを一致させた時にはその共振周波数が若干
円柱形誘電体共振器の方が角柱形誘電体共振器よりも高
くなる。しかし、角柱形誘電体共振器の晶さを若干短く
すれば2種類の誘電体共振器の共振周波数を一致させる
ことが可能である。
That is, when D and W are matched, the resonant frequency of the cylindrical dielectric resonator is slightly higher than that of the prismatic dielectric resonator. However, by slightly shortening the crystallinity of the prismatic dielectric resonator, it is possible to match the resonance frequencies of the two types of dielectric resonators.

この様な条件の下で2種類の誘電体共振器と結合線路と
の結合度及び誘電体共振器間の結合度を調査した結果、
角柱形誘電体共振器は円柱形誘電体共振器に比べてそれ
ぞれ約1.2(!!T強く結合する事が分かった。
As a result of investigating the degree of coupling between two types of dielectric resonators and coupled lines and the degree of coupling between dielectric resonators under these conditions, we found that:
It was found that the prismatic dielectric resonator has a stronger coupling of about 1.2 (!!T) than the cylindrical dielectric resonator.

第4図は結合線路と誘電体共振器間の距離に対する外部
Qeの関係を示す図で、点線は円柱形誘電体共振器の場
合を、実線は角柱形誘電体共振器の場合をそれぞれ示す
FIG. 4 is a diagram showing the relationship of external Qe with respect to the distance between the coupled line and the dielectric resonator, where the dotted line shows the case of a cylindrical dielectric resonator and the solid line shows the case of a prismatic dielectric resonator.

同図から誘電体ろ波器を構成する場合は角柱形誘電体共
振器と円柱形誘電体共振器を適宜混ぜて使えば、誘電体
ろ波器の周波数特性が比較的自由に変える事が出来る事
が分かった。
As shown in the figure, when configuring a dielectric filter, if you use a mixture of prismatic dielectric resonators and cylindrical dielectric resonators as appropriate, the frequency characteristics of the dielectric filter can be changed relatively freely. I found out what happened.

第5図は第2図に示した入出力線路が導体管の場合に本
発明を通用した例で、第5図(alは導波管の上面を、
第5図(blは側面をそれぞれ取除いた場合の図である
FIG. 5 shows an example in which the present invention is applied when the input/output line shown in FIG. 2 is a conductor tube.
FIG. 5 (bl is a view with each side removed.

図中、lは標準導波管部を、2は誘電体共振器を、3は
遮断導波管部を、7は低誘電¥−誘電体基板をそれぞれ
示す。
In the figure, l indicates a standard waveguide section, 2 indicates a dielectric resonator, 3 indicates a cut-off waveguide section, and 7 indicates a low dielectric dielectric substrate.

同図に於て、真中に円柱形誘電体共振器を両端に角柱形
誘電体共振器を配列し、それぞれの誘電体共振器は厚さ
が一定の低誘電率の誘電体基板7で遮断導波管部3に固
定されている。
In the figure, a cylindrical dielectric resonator is arranged in the center and prismatic dielectric resonators are arranged at both ends, and each dielectric resonator is isolated and conductive by a dielectric substrate 7 with a constant thickness and a low permittivity. It is fixed to the wave tube section 3.

第6図は本発明の別の実施例で第5図と異なり低誘電率
誘電体基板7の厚さを変えた場合で、これにより誘電体
共振器間の結合係数を変える事ができる。
FIG. 6 shows another embodiment of the present invention in which, unlike FIG. 5, the thickness of the low-k dielectric substrate 7 is changed, thereby making it possible to change the coupling coefficient between dielectric resonators.

(fl 発明の詳細 な説明した様に円柱形誘電体共振器と角柱形誘電体共振
器を適当に混在さセ、又この誘電体共振器を厚さの異な
る低誘電率誘電体基板を分してケースに固定する事によ
り、結合線路と誘電体共振器間及び誘電体共振器間の結
合度を変える事が出来るので所望の周波数特性を持つ誘
電体ろ波器を比較的容易に得る事ができる。
(fl As described in the detailed explanation of the invention, a cylindrical dielectric resonator and a prismatic dielectric resonator are appropriately mixed, and the dielectric resonator is divided into low dielectric constant dielectric substrates having different thicknesses. By fixing it to the case, the degree of coupling between the coupling line and the dielectric resonator and between the dielectric resonators can be changed, making it relatively easy to obtain a dielectric filter with desired frequency characteristics. can.

誘電体ろ波器に対する股引性及び調整の自由度が増加す
る。
The flexibility and adjustment flexibility for the dielectric filter is increased.

叉、円柱形と角柱形を混在させるとTE6.Fモード以
外の不要モードの共振周波数をずらせる事が出来る為に
高域の減衰特性を良好にする事が出来る。
However, if cylindrical and prismatic shapes are mixed, TE6. Since the resonant frequency of unnecessary modes other than F mode can be shifted, high-frequency damping characteristics can be improved.

【図面の簡単な説明】 第1図は誘電体共振器の形状を説明する為の図を、第2
図は入出力部が導波管の場合の誘−電体共振器の配置を
説明する為の図を、第3図は入出力部がマイクロストリ
ップ線路の場合の誘電体共振器の構成例を説明する為の
図を、第4図は結合線路と誘電体共振器との間隔に対す
るQeとの関係を示す図を、第5図は第2図の配置に本
発明を適用した例を、第6図は本発明の別の適用例をそ
れぞれ示す。 図中、1は標準導波管部を、2は誘電体共振器を、3は
遮断導波管部を、7は低誘電率誘電体基板をそれぞれ示
す。 第1 督 〃 第2図 (す /J 第3目 (lz) 第4z
[Brief explanation of the drawings] Figure 1 is a diagram for explaining the shape of a dielectric resonator, and Figure 2 is a diagram for explaining the shape of a dielectric resonator.
The figure is a diagram to explain the arrangement of a dielectric resonator when the input/output section is a waveguide, and Figure 3 shows an example of the configuration of a dielectric resonator when the input/output section is a microstrip line. 4 is a diagram showing the relationship between Qe and the distance between the coupled line and the dielectric resonator, and FIG. 5 is a diagram showing an example in which the present invention is applied to the arrangement shown in FIG. 6 each shows another application example of the present invention. In the figure, 1 indicates a standard waveguide section, 2 indicates a dielectric resonator, 3 indicates a cut-off waveguide section, and 7 indicates a low dielectric constant dielectric substrate. 1st Director〃 Figure 2 (S/J) 3rd (lz) 4z

Claims (1)

【特許請求の範囲】 1、一定空間内に少なくとも1個以上の誘電体共振器が
配列・固定されてなる誘電体ろ波器に於て、該誘電体ろ
波器が円柱形誘電体共振器と角柱形誘電体共振器とから
構成されたことを特徴とする誘電体ろ波器。 2、該円柱形誘電体共振器及び角柱形誘電体共振器は該
誘電体共振器の誘電率よりも低い値の誘電率を持ち該誘
電体共振器にそれぞれ対応する低誘電率誘電体基板を介
して該−電空間を形成するケースに固定された構造にし
たことを特徴とする特許請求の範囲第1項記載の誘電体
ろ波器。 3、該低誘電体重誘電体基板は任意の厚さを持つ誘電体
基板であることを特徴とする特許請求の範囲第2項記載
の誘電体ろ波器。
[Claims] 1. In a dielectric filter in which at least one dielectric resonator is arranged and fixed in a certain space, the dielectric filter is a cylindrical dielectric resonator. and a prismatic dielectric resonator. 2. The cylindrical dielectric resonator and the prismatic dielectric resonator each have a low dielectric constant dielectric substrate that has a dielectric constant lower than that of the dielectric resonator and corresponds to the dielectric resonator, respectively. 2. The dielectric filter according to claim 1, wherein the dielectric filter is fixed to a case forming the electric space via the dielectric filter. 3. The dielectric filter according to claim 2, wherein the low dielectric weight dielectric substrate is a dielectric substrate having an arbitrary thickness.
JP221384A 1984-01-10 1984-01-10 Dielectric filter Pending JPS60145701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP221384A JPS60145701A (en) 1984-01-10 1984-01-10 Dielectric filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP221384A JPS60145701A (en) 1984-01-10 1984-01-10 Dielectric filter

Publications (1)

Publication Number Publication Date
JPS60145701A true JPS60145701A (en) 1985-08-01

Family

ID=11523069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP221384A Pending JPS60145701A (en) 1984-01-10 1984-01-10 Dielectric filter

Country Status (1)

Country Link
JP (1) JPS60145701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086869A3 (en) * 2009-02-02 2011-01-20 Indian Space Research Organisation Filters utilizing combination of te and modified he mode dielectric resonators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086869A3 (en) * 2009-02-02 2011-01-20 Indian Space Research Organisation Filters utilizing combination of te and modified he mode dielectric resonators
US8830014B2 (en) 2009-02-02 2014-09-09 Indian Space Research Organization Filter utilizing combination of TE and modified HE mode dielectric resonators

Similar Documents

Publication Publication Date Title
US4578655A (en) Tuneable ultra-high frequency filter with mode TM010 dielectric resonators
US4506241A (en) Coaxial dielectric resonator having different impedance portions and method of manufacturing the same
CA2048404C (en) Dual-mode filters using dielectric resonators with apertures
US6002311A (en) Dielectric TM mode resonator for RF filters
US3899759A (en) Electric wave resonators
US4410868A (en) Dielectric filter
US4642591A (en) TM-mode dielectric resonance apparatus
US8242862B2 (en) Tunable bandpass filter
US5712605A (en) Microwave resonator
EP1091441A2 (en) Resonator device, filter, composite filter device, duplexer, and communication device
GB2165098A (en) Radio frequency filters
US4410865A (en) Spherical cavity microwave filter
US4992763A (en) Microwave resonator for operation in the whispering-gallery mode
US6320483B1 (en) Multi surface coupled coaxial resonator
US7075392B2 (en) Microwave resonator and filter assembly
EP1421646A1 (en) An electromagnetic window
US5939958A (en) Microstrip dual mode elliptic filter with modal coupling through patch spacing
US4077039A (en) Launching and/or receiving network for an antenna feedhorn
US7610072B2 (en) Superconductive stripline filter utilizing one or more inter-resonator coupling members
US4313097A (en) Image frequency reflection mode filter for use in a high-frequency receiver
CA2252145C (en) Dielectric filter, dielectric duplexer, and communication device
US7796000B2 (en) Filter coupled by conductive plates having curved surface
JPS60145701A (en) Dielectric filter
US5808526A (en) Comb-line filter
JPS6030441B2 (en) Dual frequency band shared phase shifter