JPS60144659A - Production of combustion detecting element - Google Patents

Production of combustion detecting element

Info

Publication number
JPS60144659A
JPS60144659A JP59000037A JP3784A JPS60144659A JP S60144659 A JPS60144659 A JP S60144659A JP 59000037 A JP59000037 A JP 59000037A JP 3784 A JP3784 A JP 3784A JP S60144659 A JPS60144659 A JP S60144659A
Authority
JP
Japan
Prior art keywords
platinum
film
rhodium
electrode
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59000037A
Other languages
Japanese (ja)
Inventor
Shigeru Yasuda
茂 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59000037A priority Critical patent/JPS60144659A/en
Publication of JPS60144659A publication Critical patent/JPS60144659A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To suppress the impedance of a combustion detecting element and to decrease the amt. of the costly electrode material to be used by sticking a rhodium film to a platinum electrode formed on the surface of a sintered ceramics constituting the combustion detecting element. CONSTITUTION:A sintered zirconia body 1 is dipped in a soln. contg. platinum prepd. by dissolving platinum chloride in ethanol except a part of the open port on one side thereof and thereafter said body is heat-treated. The sintered body is immersed in a chemical plating liquid of platinum and is then washed and dried to form a platinum film on the inside and outside surface of the body 1; A rhodium soln. prepd. by dissolving 0.5pt.wt. rhodium chloride into 100pts.wt. ethanol is coated on the platinum film and the body is heat-treated at 1,000 deg.C to form platinum electrodes 6, 7 stuck with the rhodium film. MgAl2O4 powder is plasma-sprayed on the surface of the electrode 7, by which a porous ceramic film 8 is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃焼機器の燃焼雰囲気中の酸素濃度を検知す
る燃焼検知素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a combustion detection element for detecting oxygen concentration in a combustion atmosphere of combustion equipment.

(従来例の構成とその問題点) 従来、この種の燃焼検知素子の代表的なものとして、酸
素イオン伝導性磁器であるZ ro 2とY2O5また
はZ r O2とCaOからなるジルコニア磁器を用い
たものがあげられる。
(Structure of conventional example and its problems) Conventionally, as a typical example of this type of combustion detection element, zirconia porcelain made of Z ro 2 and Y2O5 or Z r O 2 and CaO, which are oxygen ion conductive porcelains, was used. Things can be given.

第1図はこのようなジルコニア焼結体磁器を用いた燃焼
検知素子を示したものであり、片方の先端を封じた円筒
状のジルコニア焼結体磁器1の内面及び外面に白金電極
2,3がそれぞれ形成され、その白金電極2.3が導電
性金属端子4,5と電気的導通を得るように接続されて
いる。
FIG. 1 shows a combustion detection element using such a zirconia sintered ceramic. Platinum electrodes 2 and 3 are placed on the inner and outer surfaces of a cylindrical zirconia sintered ceramic 1 with one end sealed. are formed, and their platinum electrodes 2.3 are connected to conductive metal terminals 4, 5 for electrical continuity.

このような構造の燃焼検知素子において、焼結体磁器1
を約400℃以上の温度に保ち、白金電極2,3をもっ
た前記磁器】の隔壁の両側を相異なる分圧をもった酸素
ガスに接触させると、この隔壁間に起電力を生じ、これ
によシ酸素弱度を検出することができる。ここで導電性
金属端子4゜5間に生じる起電力Eは、 で表わされる。
In the combustion detection element having such a structure, the sintered ceramic 1
When the above-mentioned porcelain partition wall with platinum electrodes 2 and 3 is kept at a temperature of about 400°C or higher and both sides of the partition wall are brought into contact with oxygen gas having different partial pressures, an electromotive force is generated between the partition walls, and this Can detect oxygen weakness. Here, the electromotive force E generated between the conductive metal terminals 4.5 is expressed as follows.

この構造の燃焼検知素子の白金電極は、焼結体磁器とガ
ス雰囲気中の酸素分圧と焼結体磁器中の酸素イオンの濃
度平衡における酸素のやシとシに関係して、いる。
The platinum electrode of the combustion detection element having this structure is related to the oxygen concentration in the sintered porcelain, the oxygen partial pressure in the gas atmosphere, and the oxygen ion concentration equilibrium in the sintered porcelain.

従来このような構造を有する燃焼検知素子は、可燃性ガ
ス雰囲気中では白金電極の触媒作用による反応燃焼が白
金電極表面で起こりきわめて高温になる。このため熱に
よる白金電極の凝集が起こシ、焼結体磁器表面の白金電
極の面積が少なくなって、この燃焼検知素子の寿命劣化
となる内部インピーダンスの上昇が生qることがら、燃
焼検知素子として、燃焼機器での実用上、長期信頼性が
劣るという欠点を有していた。
Conventionally, in a combustion detection element having such a structure, reaction combustion occurs on the surface of the platinum electrode due to the catalytic action of the platinum electrode in a flammable gas atmosphere, resulting in extremely high temperatures. As a result, agglomeration of the platinum electrodes occurs due to heat, and the area of the platinum electrodes on the surface of the sintered porcelain decreases, leading to an increase in internal impedance that shortens the life of the combustion detection element. However, in practical use in combustion equipment, it had the disadvantage of poor long-term reliability.

この対策として、白金電斬の膜厚を厚くすることにより
白金電極の凝集を抑制することも可能であるが、きわめ
て高価な白金を多量に使用しなければならず、結果的に
燃焼検知素子の大幅なコストアラ7’になるため有効と
はいえなかった。
As a countermeasure to this problem, it is possible to suppress the agglomeration of the platinum electrode by increasing the thickness of the platinum electrode, but this requires the use of a large amount of extremely expensive platinum, and as a result, the combustion detection element It could not be said to be effective as it would result in a significant cost increase of 7'.

(発明の目的) 本発明は、このような従来の欠点を除去するものであシ
、燃焼雰囲気中での燃焼検知素子の内部インーーダンス
を抑制し、長期信頼性を向上することを目的とするもの
である。
(Object of the Invention) The present invention aims to eliminate such conventional drawbacks, and to suppress the internal impedance of a combustion detection element in a combustion atmosphere and improve long-term reliability. It is.

(発明の構成) この目的を達成するために、本発明による燃焼検知素子
の製造法は、燃焼検知素子を構成する焼結体磁器表面に
白金の化学めっきを施した後、ロジウム塩類05〜4.
5重量部を水まだは有機溶剤10・0重量部に溶解して
作成した溶液を塗布し1、これを1000℃〜1400
tl:の温度で熱処理する。
(Structure of the Invention) In order to achieve this object, the method for manufacturing a combustion detection element according to the present invention is to apply platinum chemical plating to the surface of the sintered porcelain constituting the combustion detection element, and then apply rhodium salts 05 to 0. ..
Apply a solution prepared by dissolving 5 parts by weight in water or 10.0 parts by weight of an organic solvent.
Heat treatment at a temperature of tl:.

さらにその上を多孔性セラミック材料でコーティングす
るものである。
Furthermore, a porous ceramic material is coated thereon.

(実施例の説明) 以下、本発明の実施例について図面を参照しながら説明
する。
(Description of Examples) Examples of the present invention will be described below with reference to the drawings.

第2図は、本発明の実施例における燃焼検知素子を示し
たものである。第2図において、1は片方の先端を封じ
た円筒状のジルコニア焼結体磁器、6.7はロジウム膜
を付着させた白金電極、8は多孔性セラミック膜である
FIG. 2 shows a combustion detection element in an embodiment of the present invention. In FIG. 2, numeral 1 is a cylindrical zirconia sintered ceramic with one end sealed, numeral 6.7 is a platinum electrode to which a rhodium film is attached, and numeral 8 is a porous ceramic film.

〔実施例1〕 先ず、ジルコニア焼結体磁器10片方の開放口の一部分
を残して、塩化白金酸1.0重量部をエタノール100
重量部に溶解した白金溶液中に浸漬した後、500℃で
30分間熱処理した。次に、これを市販の白金の化学め
っき液中に40℃で24時間浸漬した後十分に水洗、乾
燥し、焼結体磁器1の内面及び外面に膜厚1. 、O1
1mの白金膜をそれぞれ形成した。次いで焼結体磁器1
の内、外面に形成した白金膜上に、塩化ロジウム0.5
重量部をエタノール100重量部に溶解したロジウム溶
液(塩化ロジウム1.0重量%)を塗布した後、これを
1000℃で2時間熱処理し、ロジウム膜を付着させた
白金電極6,7を形成した。この時の膜厚は約1.2μ
mであった。
[Example 1] First, leaving a part of the open opening on one side of the zirconia sintered porcelain 10, 1.0 parts by weight of chloroplatinic acid was added to 100 parts by weight of ethanol.
After being immersed in a solution of platinum dissolved in parts by weight, it was heat-treated at 500° C. for 30 minutes. Next, this was immersed in a commercially available platinum chemical plating solution at 40° C. for 24 hours, thoroughly washed with water, and dried to coat the inner and outer surfaces of the sintered porcelain 1 with a film thickness of 1. , O1
A 1 m platinum film was formed in each case. Next, sintered porcelain 1
On the platinum film formed on the outer surface, rhodium chloride 0.5
After applying a rhodium solution (1.0% by weight of rhodium chloride) dissolved in 100 parts by weight of ethanol, this was heat-treated at 1000° C. for 2 hours to form platinum electrodes 6 and 7 with rhodium films attached. . The film thickness at this time is approximately 1.2μ
It was m.

さらに、ロジウム膜を付着させた白金電極7の表面にM
gAt2o4粉末をプラズマ溶射し、多孔性セラミ、り
膜8を形成した。
Furthermore, M
A porous ceramic film 8 was formed by plasma spraying gAt2o4 powder.

最後に、前記ロジウム膜を付着させた白金電極6.7の
電気導通を得るために、導電性金属端子4.5を接続し
、燃焼検知素子とした。
Finally, in order to obtain electrical continuity of the platinum electrode 6.7 to which the rhodium film was attached, a conductive metal terminal 4.5 was connected to form a combustion detection element.

〔実施例2〕 先ず、ジルコニア焼結体磁器1の片方の開放口の一部分
を残して、塩化白金酸1.0重量部をエタノール100
重量部に溶解した白金溶液中に浸漬した後、500℃で
30分間熱処理した。
[Example 2] First, 1.0 parts by weight of chloroplatinic acid was added to 100 parts of ethanol, leaving a part of the open opening on one side of the zirconia sintered porcelain 1.
After being immersed in a platinum solution dissolved in parts by weight, it was heat-treated at 500° C. for 30 minutes.

次いで、これを市販の白金の化学めっき液中に40℃で
24時間浸漬した後十分に水洗、乾燥し、焼結体磁器1
の内面及び外面に膜厚1.011mの白金膜を形成した
Next, this was immersed in a commercially available platinum chemical plating solution at 40°C for 24 hours, thoroughly washed with water, and dried to obtain sintered porcelain 1.
A platinum film with a thickness of 1.011 m was formed on the inner and outer surfaces of.

次に、焼結体磁器lの内、外面に形成した白金膜上に、
硝酸ロジウム4.5重量部を水100重量部に溶解した
ロジウム溶液(硝酸ロジウム4.5重量%)を塗布した
後、これを1400℃で2時間熱処理し、ロジウム膜を
付着させた白金電極6.7を形成した。この時の膜厚は
約2.5μmであった。
Next, on the platinum film formed on the inner and outer surfaces of the sintered porcelain l,
After applying a rhodium solution (4.5% by weight of rhodium nitrate) in which 4.5 parts by weight of rhodium nitrate was dissolved in 100 parts by weight of water, this was heat-treated at 1400°C for 2 hours to form a platinum electrode 6 with a rhodium film attached. .7 was formed. The film thickness at this time was about 2.5 μm.

さらに、ロジウム膜を付着させた白金膜f!i17の表
面にMgAt204粉末をプラズマ溶射し、多孔性セラ
ミックi18を形成した。
Furthermore, a platinum film f! with a rhodium film attached! MgAt204 powder was plasma sprayed on the surface of i17 to form porous ceramic i18.

最後に、前記、ロジウム膜を付着させた白金電極6,7
の電気導通を得るために導を性金属端子4.5を接続し
燃焼検知素子とした。
Finally, the platinum electrodes 6 and 7 to which the rhodium film was attached
In order to obtain electrical continuity, a conductive metal terminal 4.5 was connected to form a combustion detection element.

なお、第3図(a)は、従来の製造法による燃焼検知素
子の白金電極2の表面を示したものであシ、第3図(b
)は、本発明の前記〔実施例1〕による燃焼検知素子の
ロジウム膜を刺着させた白金電極60表面を示したもの
である。この第3図(a) 、 (b)から明らかなよ
うに、本発明によるロジウム膜を付着させた白金電極6
11−1:、従来の製造法の白金電極2に比べて電極の
凝集が殆んどなく、均一な膜状になっていることがわか
る。
Note that FIG. 3(a) shows the surface of the platinum electrode 2 of the combustion detection element manufactured by the conventional manufacturing method, and FIG.
) shows the surface of the platinum electrode 60 on which the rhodium film of the combustion detection element according to the above-mentioned [Example 1] of the present invention is stuck. As is clear from FIGS. 3(a) and 3(b), the platinum electrode 6 to which the rhodium film according to the present invention is attached
11-1: It can be seen that there is almost no agglomeration of the electrode compared to platinum electrode 2 manufactured by the conventional method, and the electrode has a uniform film shape.

ちなみに、本発明の〔実施例1〕と〔実施例2〕による
燃焼検知素子および従来の製造法による燃焼検知素子と
を石油ストーブ中に実装し、市販の白灯油による連続燃
焼耐久試験を行ない、導電性金属端子4,5間の内部イ
ンピーダンスを測定したところ、第4図に示すような結
果になった。図中・ Aは従来例、Bは〔実施例1〕、
Cは〔実施例2〕による各素子の特性である。このこと
からも、明らかに本発明による燃焼検知素子は内部イン
ピーダンスの止弁が抑制され、長期信頼性が向上してい
ることがわかる。
Incidentally, the combustion detection elements according to [Example 1] and [Example 2] of the present invention and the combustion detection elements manufactured by the conventional manufacturing method were mounted in an oil stove, and a continuous combustion durability test using commercially available white kerosene was conducted. When the internal impedance between the conductive metal terminals 4 and 5 was measured, the results were as shown in FIG. In the figure, A is the conventional example, B is [Example 1],
C is the characteristic of each element according to [Example 2]. This clearly shows that the combustion detection element according to the present invention suppresses internal impedance shutoff and improves long-term reliability.

なお、本発明の〔実施例1〕と〔実施例2〕において白
金の化学めっきを施した後、塩化ロジウムまたは硝酸ロ
ジウムをエタノールまだは水に溶解した溶液を塗布した
後、1000℃〜1400℃で熱処理しているが、これ
はこの処理温度領域において最も強固な電極膜を形成で
きるためである。
In addition, in [Example 1] and [Example 2] of the present invention, after chemical plating with platinum was applied, a solution of rhodium chloride or rhodium nitrate dissolved in ethanol or water was applied, and then the temperature was 1000°C to 1400°C. This is because the strongest electrode film can be formed in this treatment temperature range.

すなわち1000℃以下では強固な電極膜の形成ができ
ず、逆に、1400℃以上になると熱によって電極膜が
劣化するため好ましくないことによるものである。
That is, if the temperature is below 1000°C, a strong electrode film cannot be formed, and if the temperature is above 1400°C, the electrode film will deteriorate due to heat, which is undesirable.

また、本発明の〔実施例1〕と〔実施例2〕において塩
化ロジウムまたは硝酸ロジウムを0.5重量部〜45重
量部溶解した溶液を塗布しているが、とへは、0.5重
量部〜45重量部の含有・ml域において、白金の凝集
の抑制が可能で、かつ、ロジウム膜を付着させた白金電
極のコストが従来の製造法による白金電極コスト以下に
なるためである。
In addition, in [Example 1] and [Example 2] of the present invention, a solution containing 0.5 parts by weight to 45 parts by weight of rhodium chloride or rhodium nitrate was applied. This is because platinum aggregation can be suppressed in the content/ml range of 1.5 to 45 parts by weight, and the cost of a platinum electrode to which a rhodium film is attached is less than the cost of a platinum electrode produced by a conventional manufacturing method.

すなわち、0.5重量部以下になると、白金の凝集を抑
制する効果がなく、逆に4.5重量部以上になるとロジ
ウムによシコストアップとなるため好ましくない。
That is, if it is less than 0.5 parts by weight, there is no effect of suppressing agglomeration of platinum, and if it is more than 4.5 parts by weight, rhodium costs increase, which is not preferable.

また、本発明に使用できるロジウム塩類としては塩化ロ
ジウム、硝t;i7 ロジウムの他硫酸ロジウムなどが
ある。
Rhodium salts that can be used in the present invention include rhodium chloride, rhodium nitrate, and rhodium sulfate.

また、有・殿溶剤としてば2−nブタノール、エチレン
グリコールなどのアルコール系やn−ブチルカルピトー
ルなどのエーテル系のものが使用できる。
Further, alcohol-based solvents such as 2-n-butanol and ethylene glycol, and ether-based solvents such as n-butylcarpitol can be used.

まだ、多孔性セラミ、り材料のコーティングは、MgA
t204の他、At206. ZrO2などの粉末をプ
ラズマ溶射または、無機バインダーを混ぜ塗布、焼成す
る方法で形成することもできる。
However, the coating of the porous ceramic material is MgA
In addition to t204, At206. It can also be formed by plasma spraying a powder such as ZrO2 or by mixing and applying an inorganic binder and baking.

(発明の効果) 以上の説明から明らかなように、本発明の製造法は、従
来の白金電極を用いたものとに比べ燃焼機器中での長期
実装における内部インピーダンスの抑制効果が顕著であ
り、燃焼検知素子として、長期信頼性を向上するもので
ある。
(Effects of the Invention) As is clear from the above description, the manufacturing method of the present invention has a remarkable effect of suppressing internal impedance during long-term installation in combustion equipment, compared to methods using conventional platinum electrodes. This improves long-term reliability as a combustion detection element.

また、本発明のロジウム膜を付着させた白金電極の膜厚
は約12〜2.5μmであるのに対し従来の白金電極の
膜厚が約2.8μmであシ、高価な電極材料の使用量を
減少させることができ、従ってコストの低減に貢献する
ことができる。
In addition, the film thickness of the platinum electrode to which the rhodium film of the present invention is attached is about 12 to 2.5 μm, whereas the film thickness of the conventional platinum electrode is about 2.8 μm, and expensive electrode materials are used. The amount can be reduced, thus contributing to cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の燃焼検知素子の断面図、!l@2図は
、本発明の実施例により得られた燃焼検知素子の断面図
、第3図(a)は、従来の製造法による白金電極の表面
を示す図、第3図(b)il−j:、本発明の実施例に
よるロジウム膜を付着させた白金電極の表面を示す図、
第4図は燃焼検知素子の連続燃焼耐久試験による内部イ
ンピーダンス特性を示す図であシ、Aは従来ν11、B
は本発明の〔実施例1〕、Cは〔実施例2〕の各素子の
特性である。 1・・・焼結体磁器、4,5・・・導電性金属グM子、
6.7・・・ロジウム膜を付着させた白金電極、8・多
孔性セラミック膜。 第1因 第2図 (a) (b) 第4図
Figure 1 is a cross-sectional view of a conventional combustion detection element. Figure 1@2 is a cross-sectional view of a combustion detection element obtained by an example of the present invention, Figure 3 (a) is a diagram showing the surface of a platinum electrode produced by a conventional manufacturing method, and Figure 3 (b) -j: A diagram showing the surface of a platinum electrode to which a rhodium film is attached according to an embodiment of the present invention,
Figure 4 is a diagram showing the internal impedance characteristics of the combustion detection element through a continuous combustion durability test, where A is the conventional ν11, B
is the characteristic of each element of [Example 1] of the present invention, and C is the characteristic of each element of [Example 2]. 1... Sintered porcelain, 4, 5... Conductive metal glue,
6.7...Platinum electrode with rhodium membrane attached, 8. Porous ceramic membrane. First cause Figure 2 (a) (b) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 燃焼検知素子を構成する焼結体磁器表面に白金の化学め
っきを施す工程と、そのメッキ膜上に、ロジウム塩類0
,5〜45重量部を水まだは有機溶剤100重量部に溶
解して作成した溶液を塗布した後、1000℃〜140
0 ℃の温度で熱処理する工程と、さらにその上に多孔
性セラミック材料でコーティングする工程とからなるこ
七を特徴とする燃焼検知素子の製造法。
The process of chemically plating platinum on the surface of the sintered porcelain that constitutes the combustion detection element, and the process of applying rhodium salt-free on the plating film.
After coating a solution prepared by dissolving 5 to 45 parts by weight of water or organic solvent in 100 parts by weight of organic solvent,
A method for manufacturing a combustion sensing element, comprising the steps of heat treatment at a temperature of 0° C. and further coating with a porous ceramic material.
JP59000037A 1984-01-05 1984-01-05 Production of combustion detecting element Pending JPS60144659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000037A JPS60144659A (en) 1984-01-05 1984-01-05 Production of combustion detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000037A JPS60144659A (en) 1984-01-05 1984-01-05 Production of combustion detecting element

Publications (1)

Publication Number Publication Date
JPS60144659A true JPS60144659A (en) 1985-07-31

Family

ID=11463127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000037A Pending JPS60144659A (en) 1984-01-05 1984-01-05 Production of combustion detecting element

Country Status (1)

Country Link
JP (1) JPS60144659A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130760A (en) * 1984-07-24 1986-02-13 Toyota Central Res & Dev Lab Inc Oxygen sensor and manufacture thereof
US4863583A (en) * 1987-04-24 1989-09-05 Ngk Insulators, Ltd. Electrode structure of an oxygen sensing element
EP0441329A2 (en) * 1990-02-09 1991-08-14 Osaka Gas Co., Ltd. A fuel electrode for solid electrolyte fuel cells and a method for manufacture of the electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130760A (en) * 1984-07-24 1986-02-13 Toyota Central Res & Dev Lab Inc Oxygen sensor and manufacture thereof
JPH0442625B2 (en) * 1984-07-24 1992-07-14 Toyoda Chuo Kenkyusho Kk
US4863583A (en) * 1987-04-24 1989-09-05 Ngk Insulators, Ltd. Electrode structure of an oxygen sensing element
EP0441329A2 (en) * 1990-02-09 1991-08-14 Osaka Gas Co., Ltd. A fuel electrode for solid electrolyte fuel cells and a method for manufacture of the electrode

Similar Documents

Publication Publication Date Title
US4957615A (en) Oxygen sensor
JPS61108953A (en) Electrical connecting terminal of sensor element using ceramics
JPS62277547A (en) Gas sensor
WO2020246174A1 (en) Method for manufacturing gas sensor element, gas sensor element, and gas sensor
US11391688B2 (en) Sensor element for a potentiometric sensor
JPS60144659A (en) Production of combustion detecting element
US20220380906A1 (en) Method for producing a sensor element for a potentiometric sensor, and sensor element
US7244316B2 (en) Methods of making gas sensors and sensors formed therefrom
CN116124686A (en) Dinitrogen tetroxide environment electrochemical test device and test method
US5969232A (en) Catalytic layer system
JPS625165A (en) Thick film type gas sensitive element and making thereof
JPH05501297A (en) electrochemical measurement sensor
JPH0147740B2 (en)
US4292157A (en) Solid pole oxygen sensor and its manufacturing process
JPH01185440A (en) Oxygen sensor element
JP4402282B2 (en) Method for manufacturing flammable gas sensor element
JPS60115844A (en) Production of combustion detecting element
JPH02222830A (en) Oxygen sensor for prevention of poisoning from si
JPH02126149A (en) Corrosion resistant gas concentration sensor
JP2560031B2 (en) Exhaust gas sensor
JP2536064B2 (en) Thin film moisture sensitive element
JPS5865775A (en) Ion contact preventing membrane
JPS5910843A (en) Dew condensation sensor
JPS6066144A (en) Production of electrode of element for oxygen concentration detector
JPS6210380B2 (en)