JPS6014432A - Manufacture of amorphous semiconductor - Google Patents

Manufacture of amorphous semiconductor

Info

Publication number
JPS6014432A
JPS6014432A JP58122758A JP12275883A JPS6014432A JP S6014432 A JPS6014432 A JP S6014432A JP 58122758 A JP58122758 A JP 58122758A JP 12275883 A JP12275883 A JP 12275883A JP S6014432 A JPS6014432 A JP S6014432A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen atoms
magnetic field
flow
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58122758A
Other languages
Japanese (ja)
Inventor
Kazushi Sugawara
菅原 和士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58122758A priority Critical patent/JPS6014432A/en
Publication of JPS6014432A publication Critical patent/JPS6014432A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To control the characteristics of physical properties easily by reacting hydrogen atoms polar-differentiated with a-Si or a-Si containing impurities. CONSTITUTION:Hydrogen gas 2 is flowed into a glass pipe 1, and plasma is excited under a high-frequency electric field by a coil 3 for high-frequency power. When the flow of plasma is passed in the enequal magnetic field of magnets 4, 5, the flow 6 of hydrogen atoms polar-differentiated is obtained through a Stern-Gerlach method, and hydrogen atoms react with a-Si 8 to generate a-Si:H. A magnet consisting of an N pole 10 and an S pole 11 and a solenoid 14 are mounted, a magnetic field in the arbitrary direction is generated at the position of a substance 8 to be reacted, the direction of the spin of hydrogen atoms is controlled, and hydrogen is added. Since a hydrogen atom flow is used, a reaction rate is fast, and the temperature of a substrate can be lowered.

Description

【発明の詳細な説明】 (産業上の利用分野) 不発明は、半導体材料の製造方法に、よりa1′細には
、水素を添カロしたアモルファス半導体材:+4i1の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The invention relates to a method of manufacturing a semiconductor material, and more particularly to a method of manufacturing an amorphous semiconductor material added with hydrogen: +4i1.

〔従来技術〕[Prior art]

純粋のアモルファスシリコン(以下λ〜Si と称する
)に水素を添加し1こ7J(素糸アモルファスシリコン
(以下λ−s;:I−I)と称する〕は、各f中のデバ
イスZに応用されていて、最近非常に庄[コされている
。a−5i:I(l]%jの形成は、例えば、プラズマ
反応法やスパッタリング法が用いられる。
Hydrogen is added to pure amorphous silicon (hereinafter referred to as λ~Si) and 1 to 7J (hereinafter referred to as thread amorphous silicon (hereinafter referred to as λ-s;:I-I)) is applied to the device Z in each f. For example, a plasma reaction method or a sputtering method is used to form a-5i:I(l)%j.

前者では、例えば、真空の反応炉にモノシラン〔5iI
(4〕を導入し−この厚相ガスを直流ま1こは高周波電
界中で分解し、基板上にa−8i :H膜を生成する。
In the former case, for example, monosilane [5iI
(4) is introduced and this thick phase gas is decomposed in a direct current or high frequency electric field to produce an a-8i:H film on the substrate.

後者では、シリコンをスパッタリング・ターゲットとし
、水素とアルゴン等の混合ガスをイオン化してこれに衡
突させてシリコン原子をはじき出し、基板上にa−3i
:I(膜を生成する。
In the latter method, silicon is used as a sputtering target, and a mixed gas such as hydrogen and argon is ionized and collided with it to eject silicon atoms, and a-3i is deposited on the substrate.
:I (produces a film.

プラズマ反応やスパッタリングを利用して生成されj、
za−8i :H膜については、非常に多くの研究がな
されているが、反応機構の詳細はまだわかっていない。
Generated using plasma reactions and sputtering,
Although a great deal of research has been conducted on za-8i:H films, the details of the reaction mechanism are still unknown.

a−3i:I(中ニハ、5i−)I結合以外に、通常−
5i−H2や5i−I(a等の望ましくない結合があり
、後者の含有量はa−3i:I(の生成条件に左右され
る。例えば、プラズマ反応法でa−5i:Hを生成する
場合、プラズマを磁界中におくと、生成したa−3i 
:I(中に含まれる上記の望ましくない結合が少なくな
り、光伝導度の高い膜が得られる。 +M、Tan i
 gu ch i、M、Hi rose、’l、I−I
amasaki、and Y、0saka、Appli
ed Physics Letters Vol、3L
 p−787C]980)を参照せよ。)a−5i:I
−Iの生成に重要な影響を与えるのは、プラズマ中の水
素原子であり、水素分子ではない。このことは、スパッ
ク法でa−5i :I(を生成する場合もあてはまる。
a-3i: I (medium niha, 5i-) In addition to the I bond, usually -
There are undesirable bonds such as 5i-H2 and 5i-I(a), and the content of the latter depends on the production conditions of a-3i:I(.For example, when a-5i:H is produced by a plasma reaction method) If the plasma is placed in a magnetic field, the generated a-3i
:I (The above-mentioned undesirable bonds contained therein are reduced, and a film with high photoconductivity is obtained. +M, Tan i
gu ch i, M, Hi rose,'l, I-I
amasaki, and Y, 0saka, Appli
ed Physics Letters Vol, 3L
p-787C]980). )a-5i:I
It is the hydrogen atoms in the plasma, not the hydrogen molecules, that have an important influence on the production of -I. This also applies when a-5i :I( is generated by the spacking method.

この磁界効果については、磁界中でプラズマが空間的に
多少閉じ込められ、プラズマと反応炉との衝突が減少し
、そのため、反応炉から出る不純物分−7(ま1こはガ
ス)量が減り、良好なa−5i :■−Tが得られると
言われているが、物理的詳細についてははっきりわかっ
ていない。
Regarding this magnetic field effect, the plasma is spatially confined to some extent in the magnetic field, the collision between the plasma and the reactor is reduced, and as a result, the amount of impurities -7 (or gas) coming out of the reactor is reduced. It is said that a good a-5i:■-T can be obtained, but the physical details are not clear.

通常、プラズマやスパッタリング装@雰囲気中には水素
原子の他に水素分子が存在するが1両者の比はプラズマ
条件とスパッタ条件に大きく左右され一一定ではなく、
生成し1こa−3i:I−Iの物性特性も同じではない
。a−5i :T−Tの生成には主として水素原子が害
鳥するが、H−5i:Hの特性が各研究所によって大き
く異って報告されている原因の一つはこの比によるもの
と考えられる。
Normally, in plasma and sputtering equipment @atmosphere, hydrogen molecules exist in addition to hydrogen atoms, but the ratio of the two is greatly influenced by plasma conditions and sputtering conditions and is not constant.
The physical properties of the produced 1-a-3i:I-I are also not the same. Hydrogen atoms are mainly harmful to the production of a-5i:T-T, but this ratio is thought to be one of the reasons why the properties of H-5i:H are reported to vary widely between laboratories. It will be done.

(発明の目的) 不発明は、この問題点を解決するためになされたもので
、偏極した水素原子をa−5iや不純物を含んだa−3
i と反応させることにより、物性特性の制御しやすい
、アモルファス半導体製造方法を提供することである。
(Purpose of the invention) The invention was made to solve this problem, and the invention was made to solve this problem by converting polarized hydrogen atoms into a-5i and a-3 containing impurities.
An object of the present invention is to provide a method for manufacturing an amorphous semiconductor whose physical properties can be easily controlled by reacting with i.

(実施例) 本発明は磁気効果を利用して、a −Si等に水素を添
加する方法であり、はじめに、水素原子の分子結合に対
する磁気効果について説明する。
(Example) The present invention is a method of adding hydrogen to a-Si, etc. using magnetic effects. First, the magnetic effects on molecular bonds of hydrogen atoms will be explained.

水素原子は電気的に中性で、その原子核のまわりを一個
の電子がまわっている。電子は大きさがンのスピンを、
したがって磁気モーメントを持つている。磁界中では−
このスピンは磁界に平行かまたは反平行になる。2個の
水素原子A1とA2とを考える。この2個の原子が接近
した時、結合して水素分子となる可能性は、両者のスピ
ンの相対的方向に依存する。これはパウリの排他律に基
づくものであり、第1図を用いて定性的に説明する。こ
の図において、横軸は両原子A1とA2 との間の距離
をボーア半径aOて除し1こ換算距離であり、縦軸は両
原子間のポテンシャルエネルギーる シャルエネルギーは曲線Aで示されるように常に正であ
り、即ちA1とA2との間には斥力が働き、両者は分子
になりにくい。−万、A1 とA2のスピンが反平行の
場合、曲線Sて示されるようにA1とA2の間のポテン
シャルに極小が存在し、安定な水素分子が生成しうる。
Hydrogen atoms are electrically neutral, with one electron orbiting around the nucleus. An electron has a spin with a size of
Therefore, it has a magnetic moment. In a magnetic field -
This spin can be either parallel or antiparallel to the magnetic field. Consider two hydrogen atoms A1 and A2. When these two atoms come close to each other, the possibility that they will combine to form a hydrogen molecule depends on the relative directions of their spins. This is based on Pauli's exclusion law, and will be explained qualitatively using FIG. In this figure, the horizontal axis is the distance between the two atoms A1 and A2 divided by the Bohr radius aO, and the vertical axis is the potential energy between the two atoms, as shown by curve A. is always positive, that is, a repulsive force acts between A1 and A2, making it difficult for them to form molecules. - If the spins of A1 and A2 are antiparallel, a minimum exists in the potential between A1 and A2, as shown by curve S, and stable hydrogen molecules can be generated.

し1こかって、A1 とA2とが十分な高磁界中に置か
れると、両者のスピンの方向は同一となり、A1とA2
とは水素分子を生成し難い。
Therefore, if A1 and A2 are placed in a sufficiently high magnetic field, their spin directions will be the same, and A1 and A2 will
It is difficult to generate hydrogen molecules.

偏極した水素原子の集団を形成するため一不発明では、
シュテルンーゲルラツハ(Stcrn−Gerlach
lの方法を用いTこ。第2図に示すように、この方法で
は、水素原子と水素分子との混合ガスのX方向の流れに
− Z方向に不均一磁界を加える。ここで磁界はZ方向
に増大しているとする。上記のガス流は、不均一磁場を
通ると、Z方向に三つの流れに分れる。水素分子は磁気
モーメントを持1こないので、その流れは磁界に影響さ
れないが、磁界に平行なスピンを持つ水素原子の流れは
図の下方向に、反平行なスピンを持つ水素原子の流れは
上方向に曲げられる。このようにして、シュテルンーゲ
ルラツハの方法により、偏極した水素原子の流れを得る
ことが出来る。
In order to form a population of polarized hydrogen atoms,
Stcrn-Gerlach
T using the method of 1. As shown in FIG. 2, in this method, a nonuniform magnetic field is applied in the -Z direction to the flow of a mixed gas of hydrogen atoms and hydrogen molecules in the X direction. Here, it is assumed that the magnetic field is increasing in the Z direction. When the above gas flow passes through a non-uniform magnetic field, it splits into three flows in the Z direction. Since hydrogen molecules do not have a magnetic moment, their flow is not affected by the magnetic field, but hydrogen atoms with spins parallel to the magnetic field flow downward in the diagram, and hydrogen atoms with antiparallel spin flow upward. be bent in the direction In this way, a stream of polarized hydrogen atoms can be obtained by the Stern-Gerlatzha method.

次に、a−3iに水素を添加する実施例について以下に
説明する。第3図に示す水素添加装置において、ガラス
管lの中に適M&減圧圧力下で水素ガス2を流す。高周
波電力用コイル3を用いて発生した高周波電界下でプラ
ズマを励起する。このプラズマの流れを、磁石4,5で
発生させた不均一磁界中を通すと、第2図で示したシュ
テルンーゲルラツハの方法により、偏極した水素原子の
流れ6が得られる。水素分子や6とは反対方向に偏極し
た水素原子の流れ6′は、真空ポンプ7を用いて排気さ
れる。偏極した水素原子流6は、前もってガラス管1内
に設置したa−3i3と反応して、a−5i :Hが生
成する。残った未反応の水素原子は真空ポンプ9により
排気される。
Next, an example in which hydrogen is added to a-3i will be described below. In the hydrogenation apparatus shown in FIG. 3, hydrogen gas 2 is flowed into a glass tube 1 under appropriate pressure and reduced pressure. Plasma is excited under a high frequency electric field generated using the high frequency power coil 3. When this plasma flow is passed through a nonuniform magnetic field generated by magnets 4 and 5, a polarized hydrogen atom flow 6 is obtained according to the Stern-Gerlach method shown in FIG. A flow 6' of hydrogen atoms polarized in the opposite direction to that of hydrogen molecules and 6 is evacuated using a vacuum pump 7. The polarized hydrogen atomic stream 6 reacts with a-3i3 previously placed in the glass tube 1, producing a-5i:H. The remaining unreacted hydrogen atoms are evacuated by the vacuum pump 9.

以上で説明したように、不発明による水素添加法におい
ては、a −Si と反応するのは偏極した水素原子で
ある。通常のプラズマ反応法やスパッタリング法におい
ては、磁界がない場合−a−8iと反応するのはで1こ
らめな方向を向いたスピンを持つ水素原子であり、また
水素分子も再現性の困離な不定の割合で含まれている。
As explained above, in the inventive hydrogenation method, it is the polarized hydrogen atoms that react with a-Si. In normal plasma reaction methods and sputtering methods, in the absence of a magnetic field, it is hydrogen atoms with spins oriented in one direction that react with -a-8i, and hydrogen molecules also have difficulty in reproducibility. It is included in an undetermined proportion.

一方、磁界下では・水素分子については同じ状況である
が、水素i(1:lJjい・不発明による水素添加装置
においては、水素分子の存在比はほとんど無視でき、再
現性の高い水素添加が可能である。
On the other hand, under a magnetic field, the situation is the same for hydrogen molecules, but in the uninvented hydrogenation device, the abundance ratio of hydrogen molecules is almost negligible, and highly reproducible hydrogenation is possible. It is possible.

ある種の物質に水素を添加する場合・添加が水素原子の
スピン゛の方向に依存することも考えられる。上記の不
均一磁界を通ってきたスピンはこの不均一磁界の方向を
向いている。第3図に示すように・外部磁界はN極10
とS極]lとからなる磁石と、電源112.12’から
スイッチ13.13’を開閉することにより電流を供給
されるソレノイド]4とを設けて、反応すべき物質8の
位置に、任意の方向の磁界を発生できる。この外部磁界
は水素原子のスピンの方向を変えることが出来る。
When hydrogen is added to a certain kind of substance, it is also possible that the addition depends on the direction of the spin of the hydrogen atom. The spins that have passed through the above-mentioned non-uniform magnetic field are oriented in the direction of this non-uniform magnetic field. As shown in Figure 3, the external magnetic field is N pole 10
and a solenoid] 4, which is supplied with current by opening and closing a switch 13.13' from a power source 112. It can generate a magnetic field in the direction of . This external magnetic field can change the direction of the spin of hydrogen atoms.

こうして、スピンの方向を制御して水素が添加できる。In this way, hydrogen can be added by controlling the spin direction.

次に水素原子流6のスピン偏極への水素原子流の密度の
影響について述べる。この密度が小さい場合は、水素原
子間の衝突は少ない。水素原子間の衝突によりスピンの
極性は反転し得る。水素原子流6の密度が増すにつれ、
この反転の機会が増し、水素原子流の全体としての偏極
の大きさが小さくなる。一方、上記のように外部磁界も
偏極に式 素原子流の密度と外部磁界とを変えることにより制御で
きる。
Next, the influence of the density of the hydrogen atomic flow on the spin polarization of the hydrogen atomic flow 6 will be described. When this density is small, there are few collisions between hydrogen atoms. Collisions between hydrogen atoms can reverse the spin polarity. As the density of the hydrogen atomic flow 6 increases,
The chance of this reversal increases, and the overall polarization of the hydrogen atomic flow becomes smaller. On the other hand, as described above, the external magnetic field can also be controlled by changing the polarization of the elemental flow density and the external magnetic field.

水素原子とa −Si との化学反応はa−3iの温度
に依存する。a−8i全体に均一に水素を添加する場合
は、第4図に示すように、a−5i全体を− a−8i
に熱を伝えるように設けられたヒーター20で電源21
を用いて加熱する。ま1こ、a−3iの特定の部分に水
素を添加するには、例えば、第4図に示すようにレーザ
ー光22をレンズ23で絞って照射する。ここに反射鏡
24はレーザー光22の方向を変える。こうしてレーザ
ー光を用いると微細加工が可能になる。
The chemical reaction between hydrogen atoms and a-Si depends on the temperature of a-3i. When adding hydrogen uniformly to the entire a-8i, as shown in Figure 4, the entire a-5i is -a-8i
A power source 21 is connected to a heater 20 provided to transfer heat to a power source 21.
Heat using. In order to add hydrogen to a specific portion of a-3i, for example, as shown in FIG. 4, a laser beam 22 is focused with a lens 23 and irradiated. Here, the reflector 24 changes the direction of the laser beam 22. In this way, microfabrication becomes possible using laser light.

以上の実施例では− a−8iへの水素添加について説
明したが、不純物(例えばCye、P、B。
In the above examples, hydrogenation to -a-8i was explained, but impurities (e.g. Cye, P, B.

C等)を含んだa −Siへの添加も、同様に実施でき
る。
C, etc.) can be added to a-Si containing C, etc.) in a similar manner.

(発明の効果) (月本発明は、水素原子流を用いるので、反応速度が早
く、また基板の温度を低くすることも可能である。
(Effects of the Invention) (Since the present invention uses a flow of hydrogen atoms, the reaction rate is fast and it is also possible to lower the temperature of the substrate.

(2)水素原子のスピンの方向を制御できる。(2) The direction of spin of hydrogen atoms can be controlled.

(3)水素分子を分離できるので、a−8i :I−1
の物性特性の再現性が高い。
(3) Hydrogen molecules can be separated, so a-8i:I-1
High reproducibility of physical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、二個の水素原子間のポテンシャルエネルギー
を示すグラフである。 第2図は、シュテルンーケルラツハの方法を示す図式で
ある。 第3図は、不発明によるa−5iへの水素添加の実施例
を示す図式である。 第4図は、1−3i への水素添加の際の加熱方法を示
す図式である。 2・・・・・・水素ガス、3・・・・・・水素原子を生
成する1こめの高周波コイル、4,5・・・・・不均一
磁界を作る磁石、6・・・・・・スピンが偏極し1こ水
素原子流、8・・・・・・水素を添加すべきアモルファ
ス物質、10・】1・・・・・磁石、14 ・・−−ソ
レノイド、22・・・・・・レーザー光。 特許出願人 シャープ株式会社 代理人弁理士青山 葆ほか2名 第1 図 源等Ifl 項互舊飯 (単イ立a、Oン第2図 (1ビンナプニン 第4図
FIG. 1 is a graph showing the potential energy between two hydrogen atoms. FIG. 2 is a diagram illustrating the Sternkerlatzha method. FIG. 3 is a diagram showing an example of hydrogenation to a-5i according to the invention. FIG. 4 is a diagram showing a heating method during hydrogenation of 1-3i. 2... Hydrogen gas, 3... One high frequency coil that generates hydrogen atoms, 4, 5... Magnet that creates a non-uniform magnetic field, 6... Spin is polarized, 1 hydrogen atom flow, 8... amorphous material to which hydrogen should be added, 10...1... magnet, 14... solenoid, 22...・Laser light. Patent Applicant Sharp Co., Ltd. Representative Patent Attorney Aoyama Fuki and 2 others No. 1 Zugen et al.

Claims (1)

【特許請求の範囲】 (1)スピンの方向がある方向に偏極し1こ水素原子を
アモルファス物質と反応させて、水素を含んだアモルフ
ァス物質を生成することを特徴とする製造法。 (2、特許請求の範囲第1項に記載した製造法において
、上記のアモルファス物質がアモルファスシリコンであ
る製造法。 (3〕特許請求の範囲第1項に記載した製造法において
、上記のアモルファス物質が、不純物として、JR素、
ゲルマニウム、リンおよび硼素のうち、一種類一または
二種類を含んでいるアモルファスシリコンである製造法
。 (4)特許請求の範囲第1項に記載した製造法において
、上記の偏極し1こ水素原子を得るために一部くとも水
素原子を含んだ気体の流れを不均一磁界の中を通して、
スピンの方向がある方向に偏極した水素原子を分離する
製造法。 (5)特許請求の範囲第1項に記載した製造法において
一上記の偏極した水素原子と上記のアモルファス物質の
両方を、方向と大きさとを変え得る磁界中において反応
させる製造法。 (6)特許請求の範囲第1項に記載し1こ製造法におい
て、上記のアモルファス物質の一部をレーザー光を用い
て加熱して上記の水素原子と反応させる製造法。
[Scope of Claims] (1) A production method characterized in that the spin direction is polarized in a certain direction and one hydrogen atom is reacted with an amorphous substance to produce an amorphous substance containing hydrogen. (2. The manufacturing method described in claim 1, in which the amorphous material is amorphous silicon. (3) The manufacturing method described in claim 1, in which the amorphous material is amorphous silicon. However, as impurities, JR element,
A method for producing amorphous silicon containing one or two of germanium, phosphorus, and boron. (4) In the manufacturing method described in claim 1, in order to obtain the polarized hydrogen atoms, a gas flow containing at least a portion of hydrogen atoms is passed through a non-uniform magnetic field,
A production method that separates hydrogen atoms whose spin direction is polarized in a certain direction. (5) A manufacturing method according to claim 1, in which both the polarized hydrogen atoms and the amorphous substance are reacted in a magnetic field whose direction and magnitude can be changed. (6) A manufacturing method according to claim 1, in which a part of the amorphous substance is heated using a laser beam and reacts with the hydrogen atoms.
JP58122758A 1983-07-05 1983-07-05 Manufacture of amorphous semiconductor Pending JPS6014432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58122758A JPS6014432A (en) 1983-07-05 1983-07-05 Manufacture of amorphous semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122758A JPS6014432A (en) 1983-07-05 1983-07-05 Manufacture of amorphous semiconductor

Publications (1)

Publication Number Publication Date
JPS6014432A true JPS6014432A (en) 1985-01-25

Family

ID=14843881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122758A Pending JPS6014432A (en) 1983-07-05 1983-07-05 Manufacture of amorphous semiconductor

Country Status (1)

Country Link
JP (1) JPS6014432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101920B2 (en) 2005-12-28 2012-01-24 Takashi Suzuki Spin isolation apparatus, spin asymmetric material producing method, current source, and signal processing method
JP2012132928A (en) * 2005-12-28 2012-07-12 Takashi Suzuki Spin separation device, manufacturing method of spin asymmetric matter, current source, and signal processing method
JP5122978B2 (en) * 2005-12-28 2013-01-16 隆史 鈴木 Spin separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101920B2 (en) 2005-12-28 2012-01-24 Takashi Suzuki Spin isolation apparatus, spin asymmetric material producing method, current source, and signal processing method
JP2012132928A (en) * 2005-12-28 2012-07-12 Takashi Suzuki Spin separation device, manufacturing method of spin asymmetric matter, current source, and signal processing method
JP5122978B2 (en) * 2005-12-28 2013-01-16 隆史 鈴木 Spin separator

Similar Documents

Publication Publication Date Title
US4932331A (en) Novel single-bond carbon film and process for the production thereof
KR910000509B1 (en) Process for photochemical vapor deposition of oxide layers at enhanced deposition rates
Thimsen Beyond equilibrium thermodynamics in the low temperature plasma processor
KR20050004777A (en) Method for carrying out homogenous and heterogeneous chemical reactions using plasma
JPS62163311A (en) Formation of deposit film
JPS6014432A (en) Manufacture of amorphous semiconductor
Kan et al. Hot precursor reactions during the collisions of gas-phase oxygen atoms with deuterium chemisorbed on Pt (100)
JPH0131453B2 (en)
CN100564252C (en) Bag soccerballene in manufacturing installation, manufacture method and the gas atom of bag soccerballene in the gas atom
US20070110644A1 (en) System for manufacturing a fullerene derivative and method for manufacturing
Hara et al. Etching of aluminum film by hydrogen atoms
JP2660244B2 (en) Surface treatment method
JPH05109631A (en) Method for manufacturing amorphous silicon alloy film
Tanaka A Review of New Development of Functional Induction Thermal Plasmas and its Applications to Materials Processing
JPS60218474A (en) Film forming method
Tanaka et al. Development of a loop-type of inductively coupled thermal plasmas with molecular gas injection for large-area uniform materials processings
JPS6254083A (en) Formation of film
JPH01184278A (en) Depositing method for high-purity metal
Kawai et al. Selenium cluster formation using a new corona discharge-assisted cluster ion source
JPS60223113A (en) Forming method of thin-film
JPWO2009157179A1 (en) Manufacturing method and manufacturing apparatus of semiconductor having wire structure
JPS61185919A (en) Formation of deposited film
JPS6150151B2 (en)
JPS63107899A (en) Formation of thin film
JPH04167405A (en) Method and apparatus for formation of iron nitride thin film of high saturation flux density