JPS60143751A - Analysis information color display - Google Patents

Analysis information color display

Info

Publication number
JPS60143751A
JPS60143751A JP58252131A JP25213183A JPS60143751A JP S60143751 A JPS60143751 A JP S60143751A JP 58252131 A JP58252131 A JP 58252131A JP 25213183 A JP25213183 A JP 25213183A JP S60143751 A JPS60143751 A JP S60143751A
Authority
JP
Japan
Prior art keywords
color
brightness
information
peak
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58252131A
Other languages
Japanese (ja)
Other versions
JP2510147B2 (en
Inventor
Hiroyoshi Soejima
啓義 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP58252131A priority Critical patent/JP2510147B2/en
Publication of JPS60143751A publication Critical patent/JPS60143751A/en
Application granted granted Critical
Publication of JP2510147B2 publication Critical patent/JP2510147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Abstract

PURPOSE:To facilitate the estimation of contents of qualitative information by color displaying the distribution of several kinds of quantities like distribution state of several kinds of elements on the surface of a sample to indicate information on the distribution of kinds by colors and information on the size of the quantities depending on the brightness of parts in colors. CONSTITUTION:As the magnification of output varies with changes in the position of sliding elements on negative feedback resistances r1 and r3, the position of sliding elements on resistances r1, r2 and r3 is adjusted according to the ratio of R, G and B with respect to X ray wavelength at a peak to obtain a three primary color brightness signal in the detected X ray intensity for the peak A. Then, when the red brightness signal for each peak is applied to an addition circuit AdR, the red brightness signal is obtained as output of the circuit AdR and is applied to a brightness control grid of a red electron gun in a color Braun tube 2. Separate brightness signals are obtained with the same circuitry for other two primary colors.

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明はX線マイクロア、ナライザのような試料面を2
次元的に分析して分析結果を映像表示する機能を有する
分析装置における分析結果の表示方法に関する。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention is applicable to
The present invention relates to a method of displaying analysis results in an analysis device having a function of performing dimension analysis and displaying the analysis results as images.

口、従来技術 上述したX線マイクロアナライザでは表示手段として単
色のCRTを用いており、試料面の元素分析を行った場
合、一つの元素について、その分布状態及び濃度を明暗
の度合で映像表示できる1こ過ぎず、多種の元素の分布
状態等を同時に映像表示することはできなかった。
Prior Art The above-mentioned X-ray microanalyzer uses a monochromatic CRT as a display means, and when performing elemental analysis on a sample surface, it is possible to visually display the distribution state and concentration of a single element in terms of brightness and darkness. It was not possible to display images of the distribution states of various elements at the same time.

カラーCRTを用いて、例えばへ元素を赤、B元素を青
で同時に表示するようなことは行われているが、それは
オペレータが個人的にたまたまそのときそのように選択
しただけであり、赤がへ元素、青がB元素を示すと云う
必然性はなく、オペレータ本人でさえも、いつもそのよ
うに設定しているとも限らず、かつ表示すべき元素の種
類が多いときは色の選択に迷うものである。また人体表
面等の温度分布をカラー表示することが行われているが
、これは温度と云う一種類の量の大小をカラー化して表
示するもので、その本質は測定量の大小を明暗のレベル
に変換して表示しているのと同じであり、ただカラー表
示の方が明暗によるよりも温度の高低差が判り易く、同
じ温度の領を認識し易いと云う利点があるに過ぎない。
For example, color CRTs have been used to simultaneously display elements B in red and elements B in blue, but this is simply a personal choice made by the operator at the time; There is no necessity that blue indicates element B, and even operators themselves do not always set it that way, and when there are many types of elements to display, it is difficult to choose a color. It is. In addition, temperature distribution on the surface of the human body, etc., is displayed in color, but this is a way to colorize and display the magnitude of one type of quantity called temperature.The essence of this is to display the magnitude of the measured quantity in bright and dark levels. It is the same as converting and displaying the temperature, but the only advantage is that color display makes it easier to see differences in temperature than by bright and dark, and it is easier to recognize regions of the same temperature.

即ち明暗の差は隣接している領域間での相対的な差異は
認識できるが飛び離れている2領域が同じ明るさか否か
を認識する能力は低いので、一つの爪の分布状態をカラ
ー化して表示すると同レベル帯と云ったものが判り易い
のである。この同一量の大小をカラー化して表示すると
云うのは等高線を色分けして表わし、平地は緑に、高い
山程濃い棉色を用いた地形の表わし方と同じ考え方であ
る。
In other words, although it is possible to recognize relative differences in brightness and darkness between adjacent areas, the ability to recognize whether two areas that are far apart have the same brightness or not is low, so we colorize the distribution state of one nail. When displayed, it is easy to understand what is called the same level band. The idea of displaying the same magnitude in color is the same as the way contour lines are represented in different colors, and the topography is represented using green for flatlands and dark cotton for higher mountains.

ハ 目的 本発明は試料面における複数種の元素の分布状態のよう
な複数種の量の分布をカラー表示することにより、色に
よって種類の分布即ち定性的情報を、各色の部分の明る
さによって容量の大小即ち定量的清報を表わして、2次
元的な試料面の3次元的な情報を映像表示しようとする
ものである。
C. Purpose The present invention displays in color the distribution of quantities of multiple elements, such as the distribution state of multiple elements on a sample surface. This is intended to display three-dimensional information on a two-dimensional sample surface as an image by representing quantitative information.

二購成 X線マイクロアナライザによる分析では試料面の原子を
重子線で励起して試料を構成している原子から放射され
るX線を分光するので、直接測定される量はX線のエネ
ルギー或は波長である。またオージェ電子分光分析の場
合、電子線で励起された試料から放出される電子のエネ
ルギー分析を行うので、直接測定されている示は電子の
エネルギーである。また2次イオン質量分析では試料を
イオンビームで照射し、試料から放出される2次イオン
の質量分析を行うので、直接測定されている量は質量で
ある。他方可視光は約40ODAかとの間に一対一の対
応をつけることが可能である。
In analysis using a two-component X-ray microanalyzer, the atoms on the sample surface are excited with deuteron beams and the X-rays emitted from the atoms that make up the sample are spectrally analyzed, so the amount directly measured is based on the energy of the X-rays or is the wavelength. In addition, in the case of Auger electron spectroscopy, the energy of electrons emitted from a sample excited by an electron beam is analyzed, so what is directly measured is the energy of the electrons. In secondary ion mass spectrometry, the sample is irradiated with an ion beam and the secondary ions emitted from the sample are subjected to mass spectrometry, so the directly measured quantity is mass. On the other hand, it is possible to establish a one-to-one correspondence between visible light and approximately 40 ODA.

また上述したX線波長とか電子エネルギーとか質量と云
った量は天々特定の波長、エネルギー、質量が成る元素
を表わしており、そのX線波長、電子エネルギー、或は
質量Iこおける検出強度と云う量が付随していて、この
強度が元素の存在濃度を表わしているから、これを可視
光の明るさ【こ対応させることができる。
In addition, the quantities such as the X-ray wavelength, electron energy, and mass mentioned above represent an element with a specific wavelength, energy, and mass, and the detected intensity at that X-ray wavelength, electron energy, or mass I is Since this quantity is attached and this intensity represents the concentration of the element, this can be correlated to the brightness of visible light.

つまり、本発明は例えば成る波長範囲のX線を可視光の
波長範囲に変換して表示しているので、温度と云う単一
量をカラー化しているのと同じように見えるが、X線の
波長が元素の種類に対応しており、各波長におけるX線
の強度が夫々の元素の濃度を表わしていて、それを可視
光の成る波長の光の強度に対応させているのであり、温
度分布のカラー化の場合、成る温度を表わす色彩の明暗
のレベルがもはや何の意味も持っていないのとは全く異
った表示形態なのである。
In other words, the present invention converts X-rays in a wavelength range of The wavelength corresponds to the type of element, and the intensity of X-rays at each wavelength represents the concentration of each element, which corresponds to the intensity of light at the wavelength that makes up visible light, and the temperature distribution In the case of colorization, the level of brightness and darkness of the colors that represent the temperature no longer has any meaning, which is a completely different form of display.

ホ 実施例 X線マイクロアナライザに本発明を適用した例について
述べる。第1図は電子線で励起された試料面から放出さ
れるX線スペクトルの一例を示す。
E. Example An example in which the present invention is applied to an X-ray microanalyzer will be described. FIG. 1 shows an example of an X-ray spectrum emitted from a sample surface excited by an electron beam.

ており、A、B、C等のピークが元素A、B、Cを表わ
している。このスペクトルは一つのX線分光器で波長走
査を行って得られたものであるが、X線マイクロアナラ
イザでは試料の周囲に複数台のX線分光器を配置し、そ
れらのX線分光器を、ピークA、B、C等の波長に固定
しておくことによって、A、B、C各元素の存否、濃度
を同時検出できるようになっている。しかるに従来の単
色のCRTでは同時に複数種の元素の分布を映像表示す
ることはできなかった。
The peaks such as A, B, and C represent the elements A, B, and C. This spectrum is obtained by scanning wavelengths with a single X-ray spectrometer, but with an X-ray microanalyzer, multiple X-ray spectrometers are placed around the sample, and these X-ray spectrometers are By fixing the wavelengths of the peaks A, B, C, etc., it is possible to simultaneously detect the presence or absence and concentration of the elements A, B, and C. However, conventional monochrome CRTs cannot display images of the distribution of multiple types of elements at the same time.

本発明では第1図におけるX線のlAから10DAまで
の波長範囲を第2図に示すように可視光色を用いて色を
再現する場合、厳密には3原色以外の波長では純粋なそ
の波長の色を再現することはできないが、感覚的にはX
線の波長と可視光のスペクトル色との間に充分な対応が
つけられる。
In the present invention, when reproducing colors using visible light colors in the wavelength range of X-rays from 1A to 10DA in Figure 1 as shown in Figure 2, strictly speaking, wavelengths other than the three primary colors are pure wavelengths. Although it is not possible to reproduce the color of
There is a good correspondence between the wavelength of the line and the spectral color of visible light.

第3図は単位強度のX線のX線波長とカラーブラウン管
の3原色電子比に与える輝度信号との関係を示す。Bは
青、Gは緑、Rは赤の各電礒の輝度信号である。
FIG. 3 shows the relationship between the X-ray wavelength of X-rays of unit intensity and the luminance signal given to the three primary color electron ratios of a color cathode ray tube. B is the luminance signal of each of blue, G is green, and R is red.

金弟19でピークAの波長の単位強度のX線に対応する
3原色の輝度信号をB a + G a + Raとし
、同様にしてピークBの3原色輝度信号をB1)。
In Kintetsu 19, the luminance signal of the three primary colors corresponding to the unit intensity X-ray of the wavelength of peak A is set as B a + Ga + Ra, and similarly, the luminance signal of the three primary colors of peak B is B1).

Gb、Rb、更にピークCの3原色輝度信号をBc、G
c、Rcとし、A、B、C各ピークの強度をα、β、γ
とすると、3原色各電子他に印加する輝度信号は 青色 αBa+βB b −1−7B C緑色 αGa
十βGb十γGc 赤色 αRa+βRb 十r Rc となる。
Gb, Rb, and the three primary color luminance signals of peak C are Bc, G
c, Rc, and the intensities of the A, B, and C peaks are α, β, and γ.
Then, the luminance signal applied to each of the three primary color electrons is blue αBa + βB b -1-7B C green αGa
10βGb10γGc Red αRa+βRb 10r Rc.

第4図は各原色輝度信号作成回路を示す。lは第1図の
ピークAのX線を検出するように設定されたX線分光器
で、DはそのX線検出器、Aはプリアンプで、AR,A
G、ABは夫々定倍数回路で非反転端子にプリアンプA
の出力が印加される。
FIG. 4 shows each primary color luminance signal generating circuit. l is an X-ray spectrometer set to detect the X-ray of peak A in Figure 1, D is its X-ray detector, A is a preamplifier, AR, A
G and AB are constant multiplier circuits, and preamplifier A is connected to the non-inverting terminal.
The output of is applied.

負帰還抵抗γl、γ2.γ3の摺動子の位置を変えると
、出力の倍率が変るから第3図のグラフによりピークA
のX線波長に対するR、 G、Hの比率に応じてγl、
γ2.γ3各抵抗の摺動子の位置を調節すると、ピーク
Aに対する検出X線強度の3原色輝度信号が得られる。
Negative feedback resistors γl, γ2. If you change the position of the slider of γ3, the output magnification will change, so the graph in Figure 3 shows that peak A
γl, depending on the ratio of R, G, H to the X-ray wavelength of
γ2. By adjusting the position of the slider of each γ3 resistor, three primary color luminance signals of the detected X-ray intensity with respect to peak A can be obtained.

他のピークB、C8と対しても、同様な回路があり、各
ピークに対する赤色輝度信号を加算回路AdRに印加す
ると、AdRの出力として赤色輝度信号が得られ、これ
をカラーブラウン管2の赤色電子句、の輝度制呻グリッ
ドに印加する。他の2原色についても同じ回路構成で夫
々の輝度信号を得る。
Similar circuits exist for other peaks B and C8, and when the red luminance signal for each peak is applied to the adder circuit AdR, a red luminance signal is obtained as the output of AdR, and this is sent to the red electrons of the color cathode ray tube 2. The brightness of the phrase is applied to the suppressing grid. Luminance signals for the other two primary colors are obtained using the same circuit configuration.

へ 効果 本発明は分析装置により得られる情報が波長と強度、エ
ネルギーと強度、質量と強度と云うように質的情報(元
素の種類等)と量的情報(濃度等)とよりなっており、
かつ試料面について二次元的にこれらの情報が得られる
場合に、質的情報を可視光の各波長と一対一に対応させ
てカラー映像として表示するもので、質的差異の2次元
的分布(複数元素の分布状態等)と同質部分の濃度の分
布とが一つ映像によって感覚的に直接認識でき、かつ色
の違いが単なる思つきとか配色的に美しいと云った主観
的なものでなく、可視光の波長を表わす数値の大小と、
質的情報の質に対応する数値データの大小(波長、エネ
ルギー、質量等)とを連続的に一対一に対応させている
ので、映像の色相から質的情報の内容を知るのに一定の
物理的な原則が存在していることになり、対応表のよう
なものがなくても、色相から質的情報の内容を容易に推
測することができる。
EFFECT In the present invention, the information obtained by the analyzer consists of qualitative information (type of element, etc.) and quantitative information (concentration, etc.), such as wavelength and intensity, energy and intensity, mass and intensity.
When this information is obtained two-dimensionally about the sample surface, the qualitative information is displayed as a color image in one-to-one correspondence with each wavelength of visible light, and the two-dimensional distribution of qualitative differences ( The distribution state of multiple elements, etc.) and the concentration distribution of homogeneous parts can be directly recognized intuitively through a single image, and the difference in color is not a subjective thing such as a mere idea or a beautiful color scheme. The size of the numerical value representing the wavelength of visible light,
Since there is a continuous one-to-one correspondence between the size of numerical data (wavelength, energy, mass, etc.) that corresponds to the quality of qualitative information, it takes a certain amount of physics to know the content of qualitative information from the hue of the image. This means that a principle exists, and the content of qualitative information can be easily inferred from the hue, even without something like a correspondence table.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料から得られるX線スペクトルの一例、第2
図はX線の波長と可視光の波長との対応関係のグラフ、
第3図は本発明の一実施例におけるX線波長と3原色輝
度信号との関係を示すグラフ、第4図は上記実施例の輝
度信号形成回路の要部を示す回路図である。 l・・・・X線分光器、D・・・・X線検出器、AR,
AG。 AB・・・・定倍数回路、AdR等、加算器、2・・・
・CR0 代理人 弁理士 昧 浩 介
Figure 1 is an example of an X-ray spectrum obtained from a sample, Figure 2
The figure is a graph of the correspondence between the wavelength of X-rays and the wavelength of visible light.
FIG. 3 is a graph showing the relationship between the X-ray wavelength and the three primary color luminance signals in one embodiment of the present invention, and FIG. 4 is a circuit diagram showing the main part of the luminance signal forming circuit of the above embodiment. l...X-ray spectrometer, D...X-ray detector, AR,
A.G. AB... Constant multiplier circuit, AdR, etc., adder, 2...
・CR0 Agent Patent Attorney Kosuke Mai

Claims (1)

【特許請求の範囲】[Claims] 試料面の各点における元素分布等の質的情報とその点の
元素濃度等の量的情報を検出する分析装置において、質
的情報の内容である質1こ対応する数値データの大小と
可視光の波長とを連続的1こ一対一に対応させて質的情
報をカラー化し、量的情報ヲ各カラーの輝度膠こ対応さ
せて表示することを特徴とする分析情報のカラー表示方
法。
In an analyzer that detects qualitative information such as element distribution at each point on the sample surface and quantitative information such as element concentration at that point, the content of the qualitative information is 1. The size of the corresponding numerical data and visible light. A method for color displaying analytical information, characterized in that qualitative information is colored in a continuous one-to-one correspondence with the wavelength of each color, and quantitative information is displayed in a continuous one-to-one correspondence with the brightness of each color.
JP58252131A 1983-12-30 1983-12-30 Analytical information color display method Expired - Lifetime JP2510147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58252131A JP2510147B2 (en) 1983-12-30 1983-12-30 Analytical information color display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58252131A JP2510147B2 (en) 1983-12-30 1983-12-30 Analytical information color display method

Publications (2)

Publication Number Publication Date
JPS60143751A true JPS60143751A (en) 1985-07-30
JP2510147B2 JP2510147B2 (en) 1996-06-26

Family

ID=17232904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58252131A Expired - Lifetime JP2510147B2 (en) 1983-12-30 1983-12-30 Analytical information color display method

Country Status (1)

Country Link
JP (1) JP2510147B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205550A (en) * 1987-02-20 1988-08-25 Shimadzu Corp Analysis of charged particle ray
JPS63208900A (en) * 1987-02-25 1988-08-30 日本電子株式会社 Color display for cyclic data
US5253283A (en) * 1991-12-23 1993-10-12 American Science And Engineering, Inc. Inspection method and apparatus with single color pixel imaging
JP2012028284A (en) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp Sample stage device and charged particle radiation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555384A (en) * 1978-10-04 1980-04-23 Bosch Gmbh Robert Method and device for converting audio signal into optical signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555384A (en) * 1978-10-04 1980-04-23 Bosch Gmbh Robert Method and device for converting audio signal into optical signal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205550A (en) * 1987-02-20 1988-08-25 Shimadzu Corp Analysis of charged particle ray
JPS63208900A (en) * 1987-02-25 1988-08-30 日本電子株式会社 Color display for cyclic data
US5253283A (en) * 1991-12-23 1993-10-12 American Science And Engineering, Inc. Inspection method and apparatus with single color pixel imaging
JP2012028284A (en) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp Sample stage device and charged particle radiation device

Also Published As

Publication number Publication date
JP2510147B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
JP3314182B2 (en) Apparatus and method for displaying a visual image of an x-ray response of a specimen
Hunt The specification of colour appearance. I. Concepts and terms
Berns et al. CRT colorimetry. part II: Metrology
US4631576A (en) Nonuniformity correction system for color CRT display
US7088478B2 (en) Chromaticity conversion device and chromaticity conversion method
US6933501B2 (en) Ultimate analyzer, scanning transmission electron microscope and ultimate analysis method
JPS60143751A (en) Analysis information color display
MacDonald et al. Factors affecting the appearance of coloured images on a video display monitor
Connolly et al. Colour measurement by video camera
Berns Color tolerance feasibility study comparing crt‐generated stimuli with an acrylic‐lacquer coating
PRINS et al. Investigations in colored radiography
Winch The measurement of light and colour
Luo Colour science
Lang Color displays
Whitaker Principles of Light, Vision, and Photometry
JPS63205550A (en) Analysis of charged particle ray
Jackson Colorimetry of the Banana-Tube colour-television display system
O'Brien CBS color-television staging and lighting practices
Sproson et al. Some fundamental aspects of colour television
Berns Computer-controlled crt colorimetry: A view from cie
Lee et al. Color enhancement of TV picture using RGB sensor
Pearson et al. Studies of two systems for color reproduction with a white primary
JP2830214B2 (en) Sample image display
Attridge et al. Gamuts in colour reproduction
Kuriki et al. Two Classes of Color Constancy: Perfect Color Constancy and Partial Color Constancy