JPS60143719A - Multiple-point contacting noncircular gear for rotary piston - Google Patents
Multiple-point contacting noncircular gear for rotary pistonInfo
- Publication number
- JPS60143719A JPS60143719A JP24767183A JP24767183A JPS60143719A JP S60143719 A JPS60143719 A JP S60143719A JP 24767183 A JP24767183 A JP 24767183A JP 24767183 A JP24767183 A JP 24767183A JP S60143719 A JPS60143719 A JP S60143719A
- Authority
- JP
- Japan
- Prior art keywords
- gear
- curve
- internal gear
- pitch curve
- external gear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F3/00—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
- G01F3/02—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
- G01F3/04—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls
- G01F3/06—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising members rotating in a fluid-tight or substantially fluid-tight manner in a housing
- G01F3/08—Rotary-piston or ring-piston meters
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は特に容積型流量針として用いるのに適した新規
な回転ピストン用多点接触非円形歯車に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel multi-point contact non-circular gear for a rotating piston, particularly suitable for use as a positive displacement flow needle.
容積型流量針には、非円形歯車式を代表例とする双回転
子型の外、ベーン型、回転ピストン型、揺動ピストン型
、往復ピストン型環各種のものが実用に供されているが
、例えば小流量で流れている気体や自動車の燃料消費量
を走行中直接に計測しエンジン制御に利用し得るような
高精度で鋭敏な流量針は提案されていない。In addition to the twin rotor type, which is typically a non-circular gear type, various types of positive displacement flow rate needles have been put into practical use, including vane type, rotating piston type, oscillating piston type, and reciprocating piston ring type. For example, a highly accurate and sensitive flow rate needle that can directly measure the gas flowing at a small flow rate or the fuel consumption of an automobile while driving and use it for engine control has not been proposed.
自動車燃料は粘性が低く、その玉数1/hr程度又はそ
れ以下の低流量であるので、小型の往復ピストン型流量
針か、特殊な回転子駆動制御装置を備えた微少流量計測
装置以外の流量針ではこのような領域に於ける測定は困
難であるが、これらの計器は車両用燃料針として適切な
ものではない。Automotive fuel has a low viscosity and a low flow rate of about 1/hr or less, so the flow rate cannot be measured using anything other than a small reciprocating piston type flow needle or a minute flow rate measuring device equipped with a special rotor drive control device. Although needles have difficulty measuring in these areas, these instruments are not suitable as fuel needles for vehicles.
一方、今日では、一般のトランク、バス、乗用車等の燃
費の節減、排気ガス公害対策、運転の安全性向上等を目
的とするカーエレクトロニクスは急速に進歩しているが
、その発展はエンジンへの燃料噴射量を正確に測定でき
ないと言う問題のため阻碍されている。On the other hand, today, car electronics for the purpose of reducing fuel consumption in general trunks, buses, passenger cars, etc., countering exhaust gas pollution, and improving driving safety is rapidly progressing. This has been hampered by the inability to accurately measure the amount of fuel injected.
このような燃料噴射針を一般の市販車に装備するために
は、流量計は安価なものでなくてはならず、その上、キ
ャブレタ及びエンジンの特性に影響を与えないよう圧力
損失が低く、而も、計測される液体中の夾雑物等により
機能を停止することがないようなものであることが要請
されるものである。然しなから、上記の往復ピストン型
流量針等ではこのような要求を満たし得ない。In order to equip a general commercial vehicle with such a fuel injection needle, the flow meter must be inexpensive, and must also have low pressure loss so as not to affect the characteristics of the carburetor and engine. However, it is required that the function will not stop due to contaminants in the liquid being measured. However, the above-mentioned reciprocating piston type flow needle cannot meet these requirements.
本発明は叙上′の観点に立って為されたものであって、
その目的とするところは、可動部が単一の部材でありそ
の質量が小さい上、その運動を規制する軸やパイロット
ギア、カム等を必要とせず、唯一その筐体の内壁である
内歯歯車のみにより拘束される外歯歯車として構成され
ており、且つそれら内歯歯車及び外歯歯車の歯形曲線が
いずれもそれぞれのピッチ曲線と近似した形状を持ち、
そのため、両歯車の歯面が殆ど相対滑り運動をすること
なく、理想的な噛合い運動をし、従って、これを容積型
流量計として用いた場合には、鋭敏に作動すると共に、
非常に正確で、微少な流量から大流量までの広い流量範
囲にわたって僅かな圧力損失で各種の高低粘度流体を計
測でき、夾雑物等により障害を受けることが少なく、安
価に製造し得る新規な回転ピストン用多点接触非円形歯
車を提供することにある。The present invention has been made from the viewpoint of the above,
The purpose of this is that the movable part is a single member, has a small mass, and does not require a shaft, pilot gear, cam, etc. to regulate its movement, and the only internal gear that is the inner wall of the casing. It is configured as an external gear restrained by a chisel, and the tooth profile curves of the internal gear and the external gear both have shapes similar to their respective pitch curves,
Therefore, the tooth surfaces of both gears perform ideal meshing motion with almost no relative sliding motion. Therefore, when this is used as a positive displacement flowmeter, it operates sharply and
A novel rotating system that is highly accurate, can measure various high and low viscosity fluids with little pressure loss over a wide flow range from minute flow rates to large flow rates, is less susceptible to interference from foreign objects, and can be manufactured at low cost. An object of the present invention is to provide a multi-point contact non-circular gear for a piston.
而して、本発明の要旨とするところは、N葉形のピッチ
曲線を有し筐体となる内歯歯車と、その内部で回転し、
筐体出入口ボートの弁として作動する(N−1)葉形の
ピッチ曲線を有する外歯歯車とから成る回転ピストンに
於て、その歯形曲線がピンチ曲線と近似しており、その
ため滑り率が非常に小さく、実質的に略完全な転がり接
触をする新規な回転ピストン用多点接触非円形歯車を構
成することにある。Therefore, the gist of the present invention is to provide an internal gear having an N-shaped pitch curve and serving as a casing, and an internal gear that rotates inside the casing.
In a rotary piston consisting of an external gear with an (N-1) leaf-shaped pitch curve that operates as a valve for the inlet/outlet boat of the housing, the tooth profile curve is similar to a pinch curve, so the slip rate is extremely low. The object of the present invention is to construct a novel multi-point contact non-circular gear for a rotating piston that is small in size and has substantially perfect rolling contact.
而して、上記の目的は、内歯歯車の歯形曲線を、外歯歯
車のピッチ曲線が内歯歯車のビ・ソチ曲線上を滑ること
なく転がるときの外歯歯車のピッチ曲線の頂点の周囲に
画かれるピッチ曲線の外側に凸な小曲線と外歯歯車のピ
ッチ曲線との包絡線により定めると共に、外歯歯車の歯
形曲線を、外歯歯車に固定した平面に画かれる内歯歯車
の歯形曲線の包絡線により定めることに依って達成され
る。Therefore, the above purpose is to calculate the tooth profile curve of an internal gear by calculating the area around the apex of the pitch curve of the external gear when the pitch curve of the external gear rolls on the Bi-Sochi curve of the internal gear without slipping. The tooth profile of an internal gear is determined by the envelope of the pitch curve of the external gear and a small curve convex to the outside of the pitch curve drawn in This is achieved by defining the envelope of the curve.
以下図面に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.
第1図は本発明に係る回転ピストン用多点接触非円形歯
車を利用して構成した流量針の一実施例を示す正面図、
第2図は第1図中切断線A−Aに沿って切断した断面図
、第3図は内歯歯車のピッチ曲線及び外歯歯車のピッチ
曲線の説明図、第4図は内歯歯車の断面歯形の説明図、
第5図は内歯歯車の断面歯形の説明図、第6図はボート
の位置及び形状を示す説明図、第・7図は回転子に設け
た流路の形状を示す説明図、第8図乃至図11は回転子
の回動とボートとの関係を示す説明図である。FIG. 1 is a front view showing an embodiment of a flow rate needle constructed using a multi-point contact non-circular gear for a rotary piston according to the present invention;
Fig. 2 is a sectional view taken along section line A-A in Fig. 1, Fig. 3 is an explanatory diagram of the pitch curve of the internal gear and the pitch curve of the external gear, and Fig. 4 is a cross-sectional view of the internal gear. Explanatory diagram of cross-sectional tooth profile,
Figure 5 is an explanatory diagram of the cross-sectional tooth profile of the internal gear, Figure 6 is an explanatory diagram showing the position and shape of the boat, Figures 7 and 7 are explanatory diagrams showing the shape of the flow path provided in the rotor, and Figure 8 11 to 11 are explanatory diagrams showing the relationship between the rotation of the rotor and the boat.
各図中、1は計量室部材、2及び3は端面部材、2a、
3aはそれぞれ端面部材2及び3に設けたボート、4は
回転子、5及び6はそれぞれ配管接続部材、7.7はボ
ルト、8.8はナツト、9.9tよ0リングである。In each figure, 1 is a measuring chamber member, 2 and 3 are end members, 2a,
3a is a boat provided on the end members 2 and 3, respectively, 4 is a rotor, 5 and 6 are piping connection members, 7.7 is a bolt, 8.8 is a nut, and 9.9t is an O-ring.
計量二憾材1は後述する方法によってその歯形曲線が画
定される四葉の内歯を有する内I!i歯車であり、端面
部材2及び3によりその′両端開口部を閉鎖され、内歯
歯車内部の空所が計量室を形成する。The measuring material 1 has a four-lobed internal tooth whose tooth profile curve is defined by the method described later. It is an i-gear whose openings at both ends are closed by end face members 2 and 3, and a space inside the internal gear forms a measuring chamber.
端面部材2及び端面部材3にはそれぞれ上記計量室に向
かって対向して開口する断面正方形のボート2a及び3
aと、これらのボート2a及び3aに通じる配管接続部
2C及び3Cが設けられており、これらの配管接続部2
C及び3Cにはそれぞれ適宜の配管接続部材5.6が取
り付けられる。The end members 2 and 3 are provided with boats 2a and 3 each having a square cross section and opening facing each other toward the measuring chamber.
a, and piping connections 2C and 3C leading to these boats 2a and 3a are provided, and these piping connections 2
Appropriate pipe connection members 5.6 are attached to C and 3C, respectively.
回転子4は、計量室部材1の内歯と噛み合う三葉の外歯
を有する外歯歯車であり、計量室部材1内に設けられ、
ボー)2a、3b間の流路を遮断すると共に、その間を
流通する流体の圧力を受け、計量室部材1内で一定方向
の公転と自転とを複合した遊星運動をするものである。The rotor 4 is an external gear having trilobal external teeth that mesh with the internal teeth of the measuring chamber member 1, and is provided within the measuring chamber member 1.
Bo) The flow path between 2a and 3b is blocked, and the pressure of the fluid flowing between them is applied to perform planetary motion in the metering chamber member 1, which is a combination of revolution in a certain direction and rotation.
回転子4の外側輪郭線と計量室内側輪郭線とは常時複数
の点で接触しており、このため、計量室部材1の内面と
回転子4の外面との間の空間は常時複数の計量室に区分
され、且つこれらの各室はそれぞれ回転子4の計量室部
材1に対する噛合運動により交互に膨張、収縮を繰り返
し、その膨張過程から収縮過程に移行する際には各室の
容量は最大となり、逆に収縮過程から膨張過程に移行す
る際に室の容量は実質上Oとなる。The outer contour line of the rotor 4 and the inner contour line of the weighing chamber are always in contact at a plurality of points, so that the space between the inner surface of the weighing chamber member 1 and the outer surface of the rotor 4 always has a plurality of measuring chambers. Each chamber is divided into chambers, and each of these chambers alternately expands and contracts by the meshing movement of the rotor 4 with the measuring chamber member 1, and when the expansion process changes to the contraction process, the capacity of each chamber reaches its maximum. On the other hand, when the contraction process changes to the expansion process, the capacity of the chamber becomes substantially O.
回転子4は、中央の仕切壁4Cを有し、この一方の側に
は計量室からボート2aに通じる三つの流路4a、、4
a’、4a“が回転対称に設けられ他の一方の側には、
上記流路4a、4a’、4a“と表裏反転同形、即ち、
三葉形の中心軸に対称に流路4b、4b’、4b“が設
けられる。The rotor 4 has a central partition wall 4C, on one side of which are three channels 4a, 4, leading from the metering chamber to the boat 2a.
a', 4a'' are provided rotationally symmetrically, and on the other side,
The same shape as the above-mentioned flow paths 4a, 4a', 4a'' with the front and back reversed, i.e.,
Channels 4b, 4b', and 4b'' are provided symmetrically about the central axis of the trilobal shape.
これらの流路とボートの形状は、上記計量室の複数の区
画のそれぞれが、回転子4の位相に応じて常時ボー)2
a又は3aのいずれか一方に、1ツイスレカ一方のみに
連通されるよう形成される。The shapes of these flow paths and boats are such that each of the plurality of sections of the measuring chamber is always in a bow position according to the phase of the rotor 4.
A or 3a is formed so as to be connected to only one of the twists.
計量室部材1の内面と回転子4の外面との間に形成され
る各室は、それが膨張過程にあるときは上記の流路によ
ってボート2aに、又、収縮過程にあるときはボート3
aに通じることとなり、このため回転子5は回転ピスト
ンとして円滑に回動することができ、流体がボー)2a
から同3aに輸送されることになる。Each chamber formed between the inner surface of the metering chamber member 1 and the outer surface of the rotor 4 is connected to the boat 2a through the above flow path when it is in the expansion process, and to the boat 3 when it is in the contraction process.
Therefore, the rotor 5 can rotate smoothly as a rotating piston, and the fluid flows to the bow) 2a.
It will be transported from there to 3a.
つまり、回転子4は、針量室内部を複数の室に区分し、
ボー)2aと3aとの間で流体が直接連通するのを遮断
、シールすると共に、上記計量室内で区分された複数の
室とボー)2a、3aとの連通を切り換える弁として作
動し、針量室内部を貫流する流体の容積流量に比例する
角速度で回動するものである。That is, the rotor 4 divides the inside of the needle amount chamber into a plurality of chambers,
It acts as a valve to cut off and seal direct fluid communication between bow) 2a and 3a, and to switch communication between bow) 2a and 3a with a plurality of chambers divided within the measuring chamber, and to adjust the needle amount. It rotates at an angular velocity proportional to the volumetric flow rate of the fluid flowing through the chamber.
流量針として用いる場合には、この回転子40回動を公
知のピックアップにより検知し、これを計数装置により
カウントして瞬時流量若しくは積算流量を表示すること
ができる。When used as a flow rate needle, this rotation of the rotor 40 can be detected by a known pickup and counted by a counting device to display the instantaneous flow rate or cumulative flow rate.
次に、計量室部材1の内側輪廓線、即ち、内歯歯車の軸
直角断面歯形の一例を第3図及び第4図を参照して説明
する。Next, an example of the inner contour line of the metering chamber member 1, that is, the tooth profile of the internal gear in a cross section perpendicular to the axis, will be described with reference to FIGS. 3 and 4.
以下の図面中、計量室部材1の軸直角断面上で、計量室
部材1の中心を0とし、点0を原点とする計量室部材1
に固定した座標軸をX軸及びY軸とする。In the following drawings, the center of the metering chamber member 1 is set to 0, and the metering chamber member 1 has the origin at point 0 on the axis-perpendicular cross section of the metering chamber member 1.
The coordinate axes fixed to are the X axis and Y axis.
内歯歯車の断面歯形を定めるには、先ず、計量室部材1
の軸直角断面上で原点Oを対角線の交点とする適宜の正
方形を設定し、これを内歯歯車のピンチ曲線とする。To determine the cross-sectional tooth profile of the internal gear, first, measure chamber member 1
An appropriate square is set on the axis-perpendicular cross section with the origin O as the intersection of the diagonals, and this is defined as the pinch curve of the internal gear.
次に、この正方形の一辺と等しい長さで外側に湾曲した
三個の円弧によって囲まれ、且つ、各頂点に於いて引い
た、互いに隣り合う二つの円弧の接線のなす角が上記正
方形の一つの内角、即ち90度となるような三葉図形を
定め、これを外歯歯車のピッチ曲線■とする。Next, it is surrounded by three outwardly curved arcs with a length equal to one side of this square, and the angle formed by the tangents of two adjacent arcs drawn at each vertex is one side of the square. A trefoil shape with two interior angles, that is, 90 degrees, is determined, and this is defined as the pitch curve (■) of the external gear.
このような三葉図形は、上記正方形の一辺の長さ21と
等しい弧の長さを持つ半径rの円弧を描き、この円弧の
両端の二点を結んだ線分を一辺とする正三角形PQRを
描き、この正三角形の各頂点を通る半径rの円弧により
この正三角形を囲んで得られる。Such a trefoil figure is an equilateral triangle PQR that draws an arc with a radius r and has an arc length equal to the length 21 of one side of the square, and whose side is a line segment connecting two points at both ends of this arc. It is obtained by drawing this equilateral triangle and surrounding it with a circular arc of radius r passing through each vertex of this equilateral triangle.
2αを上記円弧に対する中心角とすると、r=It/α であり、上記二つの条件よりαはn/12となる。If 2α is the central angle for the above circular arc, then r=It/α From the above two conditions, α becomes n/12.
次に、このようにして得られた上記三葉図形をその一つ
の円弧QRの中点が上記正方形の一辺の中点と一致する
ようこれに内接させ(第3図に示す位置)、上記の円弧
QRと向い合う頂点Pの周囲に小さい曲線を画く。Next, the above-mentioned trefoil figure obtained in this way is inscribed in this so that the midpoint of one of the arcs QR coincides with the midpoint of one side of the above-mentioned square (the position shown in FIG. 3), and the above-mentioned Draw a small curve around the vertex P that faces the arc QR.
図示されている実施例では、この小曲線は頂点Pを中心
とし、上記正方形に内接する小円弧Sである。In the illustrated embodiment, this small curve is a small circular arc S centered on the vertex P and inscribed in the square.
次いで更に、上記図形の各頂点を中心としてこの小円S
弧と同一半径の小円弧T及びUを書き加え、この図形を
■とする。Next, furthermore, this small circle S is centered around each vertex of the above figure.
Add small arcs T and U with the same radius as the arc, and call this figure ■.
本実施例にといては、この小曲線として上記正方形に内
接する小円弧を示したが、この曲線は円弧に限定される
ものでなく、楕円その他の二次曲線、正弦曲線等であっ
てもよく、又螺旋等三葉形の中心軸に対し非対称のもの
であってもよく、又これらの曲線は上記正方形に接する
ことを必須とするものではない。In this embodiment, a small arc inscribed in the square is shown as the small curve, but this curve is not limited to a circular arc, and may be an ellipse or other quadratic curve, a sine curve, etc. Alternatively, the curves may be asymmetrical with respect to the central axis of the trilobal shape, such as a spiral, and these curves are not necessarily required to be tangent to the square.
而して、内歯歯車の断面歯形は、上記の外歯歯車のピッ
チ曲線■が内歯歯車のピッチ曲線1上を滑ることなく転
がるときの上記の図形■の包絡線により決定されるもの
である。Therefore, the cross-sectional tooth profile of the internal gear is determined by the envelope of the above figure ■ when the pitch curve ■ of the external gear rolls on the pitch curve 1 of the internal gear without slipping. be.
即ち、上記図形■をその隣り合う二つの円弧を上記正方
形の隣り合う二辺に内接させ、この位置から上記図形H
に上記正方形に対して転がり運動を与えたとき、計量室
部材1に固定した軸直角平面上に生じる包絡線が内歯歯
車の断面歯形を定める曲線である。In other words, the two adjacent circular arcs of the above figure (■) are inscribed in the two adjacent sides of the above square, and from this position the above figure H is inscribed.
When a rolling motion is applied to the square, an envelope generated on a plane perpendicular to the axis fixed to the metering chamber member 1 is a curve that defines the cross-sectional tooth profile of the internal gear.
第4図は上記の方法に基づいて図形■を定め、回転子4
が順次15度宛時計方向に回動したときの状態を、実線
、一点鎖線、二点鎖線及び破線で示したものであり、こ
れから直ちに内歯歯車の断面歯形が理解されよう。Figure 4 shows the shape ■ determined based on the above method, and the rotor 4
The solid line, one-dot chain line, two-dot chain line, and broken line show the state when the gear is sequentially rotated clockwise by 15 degrees, and the cross-sectional tooth profile of the internal gear can be immediately understood from this.
本実施例に於ては、内歯歯車の歯形曲線は上記小円弧P
SQ、Hのみによって決定されることが判明する。In this embodiment, the tooth profile curve of the internal gear is the small arc P.
It turns out that it is determined only by SQ and H.
次に、回転子4の軸直角断面に於ける外側輪廓線、即ち
、外歯歯車の断面歯形について説明する。Next, the outer contour line in the axis-perpendicular cross section of the rotor 4, that is, the cross-sectional tooth profile of the external gear will be explained.
外歯歯車の断面歯形は、外歯歯車のピッチ曲線■が内歯
歯車のピッチ曲線■上を滑ることなく転がるとき、回転
子4に固定した平面に於て内歯歯車の断面歯形の包絡線
として得られるものである。The cross-sectional tooth profile of the external gear is the envelope of the cross-sectional tooth profile of the internal gear on the plane fixed to the rotor 4 when the pitch curve of the external gear rolls on the pitch curve of the internal gear without slipping. This is obtained as follows.
第5図は上記の方法に基づいて計量室部材1の内側輪郭
線を定め、回転子4が順次15度宛反時計方向に回動し
たときに回転子4に固定した軸直角断面上に表れる計量
室部材1の内側輪郭線をそれぞれ、実線、一点鎖線、二
点鎖線及び破線で示したものであり、これから直ちに回
転子4の外側輪廓線の形状が理解されよう。FIG. 5 shows the inner contour line of the metering chamber member 1 determined based on the above method, which appears on a cross section perpendicular to the axis fixed to the rotor 4 when the rotor 4 sequentially rotates 15 degrees counterclockwise. The inner contour lines of the metering chamber member 1 are shown by solid lines, one-dot chain lines, two-dot chain lines, and broken lines, respectively, from which the shape of the outer contour line of the rotor 4 can be immediately understood.
次にポートの位置及び形状と回転子4に設けられた流路
の位置及び形状との関係についてを第6図を参照して説
明する。Next, the relationship between the position and shape of the port and the position and shape of the flow path provided in the rotor 4 will be explained with reference to FIG. 6.
第6図は、計量室部材1の内側輪郭線に端面部材2に設
けたポートの形状を書き加えたものである。In FIG. 6, the shape of the port provided in the end face member 2 is added to the inner contour line of the metering chamber member 1.
ポー)2aは端面部材2に計量室部材1の中心0を中心
とし、各頂点をX軸、Y軸上に持つ正方形である。The end face member 2a has a square shape with the center 0 of the measuring chamber member 1 as the center and each vertex on the X axis and the Y axis.
ポート3aは端面部材3に設けられており、ポート2a
と対称な位置関係にある。The port 3a is provided in the end member 3, and the port 2a
It is in a symmetrical position.
而して、回転子4に設けられた流路の形状は、回転子4
が前述した噛み合い運動をするときの、ポート2a及び
3aとの関係によって決定されるものである。Therefore, the shape of the flow path provided in the rotor 4 is
This is determined by the relationship between the ports 2a and 3a when the above-mentioned meshing movement occurs.
第7図は回転子4が前述した噛み合い運動をして30度
宛回動したときに、回転子4に固定した平面上に生ずる
内歯歯車の断面歯形を実線、一点鎖線及び点線で示すと
共に1、それぞれの状態に於けるポートの位置を破線で
示したものである。FIG. 7 shows the cross-sectional tooth profile of the internal gear that occurs on the plane fixed to the rotor 4 when the rotor 4 performs the above-mentioned meshing motion and rotates by 30 degrees, using a solid line, a dashed-dotted line, and a dotted line. 1. The positions of ports in each state are shown with broken lines.
回転子4に設けられた流路の形状は、第7図に示す如く
、回転子4が30度宛回動したときの状態に於けるポー
)2aと重なる輪郭線を図示する如く結んで画定する。The shape of the flow path provided in the rotor 4 is defined by connecting the contour lines that overlap with the port 2a in the state when the rotor 4 has rotated to 30 degrees, as shown in FIG. 7, as shown in the figure. do.
ポートをこのように設けると、上記の各室の膨張、収縮
が円滑に行われ、回転子5が回転ピストンとして作動し
得るようになる。Providing the ports in this way allows the above-mentioned respective chambers to smoothly expand and contract, allowing the rotor 5 to operate as a rotating piston.
ここで第8図乃至第11図を参照して回転子4の回動と
ポートとの関係を説明する。Here, the relationship between the rotation of the rotor 4 and the ports will be explained with reference to FIGS. 8 to 11.
第8図乃至第11図は回転子4が計量室部材1内で15
度宛回動したときの状態を示す説明図である。8 to 11, the rotor 4 is located within the measuring chamber member 1.
It is an explanatory view showing a state when it rotates to a certain degree.
第8図乃至第11図に示す如く、回転子4は計量室部材
1内を常にその内壁と3点或いは4点で接触して計量室
内部を複数の室に区分しつ−噛み合い運動を行う。この
とき各室は膨張過程にあるときは端面部材2に設けたポ
ート2aに通じ、収縮過程にあるときは端面部材3に設
けたポート3aに通じるようになり、流体がポート2a
から同3aに輸送され・ることになる。As shown in FIGS. 8 to 11, the rotor 4 always makes contact with the inner wall of the measuring chamber member 1 at three or four points to divide the inside of the measuring chamber into a plurality of chambers and perform meshing motion. . At this time, each chamber communicates with the port 2a provided on the end member 2 when it is in the expansion process, and communicates with the port 3a provided on the end member 3 when it is in the contraction process, so that the fluid flows through the port 2a.
It will be transported from there to 3a.
このようにして回転子4はポート2aと3aとの間で流
体が直接連通するのを遮断、シールすると共に、上記針
量室内で区分された複数の室とポート2a及び3aとの
連通を切り換える弁として作動し、針量室内部を貫流す
る流体の容積流量に比例する角速度で回動する。In this way, the rotor 4 blocks and seals direct fluid communication between the ports 2a and 3a, and switches communication between the ports 2a and 3a and a plurality of chambers divided within the needle volume chamber. It operates as a valve and rotates with an angular velocity that is proportional to the volumetric flow rate of the fluid flowing inside the needle metering chamber.
回転子40回転を検出するには、回転子5の−つの軸直
角断面に沿って等間隔に磁極が並ぶ多数の永久磁石を設
け、計量室部材1又は端面部材2または3に適宜のピッ
クアップを設け、これらの永久磁石がピックアップを通
過する都度、パルス信号として取り出し、この信号を計
数装置によりカウントすればよい。In order to detect 40 rotations of the rotor, a large number of permanent magnets with magnetic poles arranged at equal intervals along a cross section perpendicular to the axis of the rotor 5 are provided, and an appropriate pickup is placed on the measuring chamber member 1 or the end face member 2 or 3. Each time these permanent magnets pass through the pickup, it is extracted as a pulse signal, and this signal is counted by a counting device.
回転子4は極めて軽量に構成され、且つ、これを回転自
在に支承し、遊星運動をさせるためにも他の部品は一切
必要としない。The rotor 4 is extremely lightweight and does not require any other parts to rotatably support it and make it perform planetary motion.
又、本発明に係る回転ピストン用多点接触非円形歯車を
利用して流量針を構成した場合には、計量室内壁に対し
回転子が略完全に転がり接触をすることとなるので、回
転子は極めて鋭敏に作動し、然も計測流体中に多少夾雑
物等があってもそれらにより機能を停止することが少な
く、ガソリン、液化ガス等の低粘性流体であっても相当
の大流量から微少流量迄、広い流量レンジに亙って正確
に計測し得るものである。Furthermore, when the flow rate needle is constructed using the multi-point contact non-circular gear for a rotary piston according to the present invention, the rotor comes into almost complete rolling contact with the wall of the metering chamber. It operates extremely sensitively, and even if there is some foreign matter in the fluid to be measured, it is unlikely to stop functioning due to foreign matter, and even with low viscosity fluids such as gasoline and liquefied gas, it can be used with a large flow rate to a very small flow rate. It is possible to accurately measure the flow rate over a wide range of flow rates.
尚、本発明の構成は、畝上の実施例に限定されるもので
ない。Note that the configuration of the present invention is not limited to the embodiment on the ridge.
例えば上記の説明に於て、実施例として計量室部材の軸
直角断面に於ける内側輪郭線を定めるために内歯歯車の
ピッチ曲線として設定したN葉形が正方形であるものを
示したが、これは各辺が直線でない凸又は凹の適宜の曲
線、例えば正弦曲線、二次曲線その他任意の曲線から成
る糸巻形、鼓形等としてもよく、又、正N角形の各頂点
は先鋭なものでなく適宜の丸みのあるものとしてもよく
、又、内歯歯車のピッチ曲線を、例えば正方形とした上
記の実施例に於ても、外歯歯車のピッチ曲線の形状は転
がり条件を満たすものであれば、如何なる形状のもので
あってもよく、その頂点、即ちピッチ曲線と多葉形の中
心軸との交点の周囲に画く小曲線に就いても格別の制約
はない。要するにこれらの形状、寸法は本発明の目的の
範囲内で自由に選択し得るものである。For example, in the above description, the N-shaped shape set as the pitch curve of the internal gear in order to define the inner contour line in the axis-perpendicular cross section of the metering chamber member was shown as a square as an example. This may be any convex or concave curve with non-straight sides, such as a pincushion shape, a drum shape, etc., consisting of a sine curve, a quadratic curve, or any other curve, and each vertex of a regular N-gon has a sharp point. In addition, even in the above embodiment in which the pitch curve of the internal gear is square, for example, the shape of the pitch curve of the external gear satisfies the rolling condition. If so, it may be of any shape, and there are no particular restrictions on the small curve drawn around the apex, that is, the intersection of the pitch curve and the central axis of the multilobed shape. In short, these shapes and dimensions can be freely selected within the scope of the purpose of the present invention.
更に又、Nは4に限定されるものでなく、3以上の任意
の整数を採用し得るものであり、これらを基にして上記
実施例と同様に回転ピストンを構成することができ、そ
のときはボート及び回転子に設けた流路となる空所の形
状は適宜に変更されるものである。Furthermore, N is not limited to 4, but any integer of 3 or more can be adopted, and based on these, a rotating piston can be constructed in the same manner as in the above embodiment, and in that case, The shape of the space provided in the boat and the rotor, which serves as a flow path, is changed as appropriate.
又、他の構成要素の形状、結合方法等も、本発明の目的
の範囲内で自由に設計変更し得るものであり、例えば、
上記実施例に於ては、計量室部材と両端両部材を別々の
部材としたが、これら番よ適宜組合せ一体的に複合させ
ることができ、又、これらは特に流量針に通してはいる
が、流量計以外にも、例えばポンプ、モータその他の機
械に利用できるものであって、本発明はそれらの総てを
包摂するものである。In addition, the shapes of other components, coupling methods, etc. can be freely changed within the scope of the purpose of the present invention. For example,
In the above embodiment, the metering chamber member and both end members are separate members, but they can be combined as appropriate and integrated into a composite. In addition to flowmeters, the present invention can also be used in pumps, motors, and other machines, and the present invention encompasses all of them.
第1図は本発明に係る回転ピストン用多点接触非円形歯
車を利用して構成した流量針の一実施例を示す正面図、
第2図は第1図中切断@A−Aに沿って切断した断面図
、第3WJは内命歯車のピッチ曲線及び外歯歯車のピッ
チ曲線の11Av!A図、第4図は内歯歯車の断面歯形
の説明図、第5mは内歯歯車の断面歯形の説明図、第6
wAはボートの位置及び形状を示す説明図、第7IIl
は一転子に設けた″流路の形状を示す説明図、第8図乃
至図11は回転子の回動とボートとの関係を示す説明図
である。
1・・−・−・−・・・・−−−−m−計量室部材2.
3−・・・−−−一・−・・端面部材4−・−−−−・
−・・−−一−−−−回転子特許出願人 長 1)重
慶
代理人(7524)最上正太部
第2図
32
第1図
第4図
第3図
第6図
■
第7図
\ノ゛
第5図
、第10図
、7第8図FIG. 1 is a front view showing an embodiment of a flow rate needle constructed using a multi-point contact non-circular gear for a rotary piston according to the present invention;
FIG. 2 is a cross-sectional view taken along the line @A-A in FIG. Figure A, Figure 4 is an explanatory diagram of the cross-sectional tooth profile of the internal gear, No. 5m is an explanatory diagram of the cross-sectional tooth profile of the internal gear, and No. 6 is an explanatory diagram of the cross-sectional tooth profile of the internal gear.
wA is an explanatory diagram showing the position and shape of the boat, No. 7IIl
1 is an explanatory diagram showing the shape of a flow path provided in one trochanter, and FIGS. 8 to 11 are explanatory diagrams showing the relationship between the rotation of the rotor and the boat. 1. ...---m-Measuring chamber member 2.
3-...----1... End member 4------
−・・−−1−−−−Rotor patent applicant Length 1) Heavy
Kei Agent (7524) Mogami Shota Section Figure 2 32 Figure 1 Figure 4 Figure 3 Figure 6■ Figure 7\;Figure 5, Figure 10, 7 Figure 8
Claims (1)
る内歯歯車と、(N−1)葉形のピッチ曲線を有し、上
記内歯歯車に内接し噛み合い運動する外歯歯車とから成
り、上記内歯歯車の歯形曲線を、上記外歯歯車のピッチ
曲線が上記内歯歯車のピンチ曲線上を滑ることなく転が
るときの上記外歯歯車のピンチ曲線の頂点の周囲に画か
れるピッチ曲線の外側に凸な小曲線と上記外歯歯車のピ
ッチ曲線との包絡線により定め、上記外歯歯車の歯形曲
線を、上記外歯歯車に固定した平面に画かれる上記内歯
歯車歯形曲線の包絡線により定めたことを特徴とする回
転ピストン用多点接触非円形歯車。 (2)Nが4である特許請求の範囲第1項記載の回転ピ
ストン用多点接触非円形歯車。 (3) 内歯歯車のピッチ曲線が正方形である特許請求
の範囲第2項記載の回転ピストン。 (4) 外歯歯車のピッチ曲線の頂点の周囲に画かれる
ピッチ曲線の外側に凸な小曲線が小円弧である特許請求
の範囲第1項乃至第3項のいずれか−に記載の回転ピス
トン用多点接触非円形歯車。[Scope of Claims] (An internal gear having an 11N lobe-shaped pitch curve (N is an integer of 3 or more); and an internal gear having an (N-1) lobe-shaped pitch curve, which is inscribed in the internal gear and meshes with the above-mentioned internal gear. and a moving external gear, and the peak of the pinch curve of the external gear when the pitch curve of the external gear rolls without slipping on the pinch curve of the internal gear. is defined by the envelope of a small curve convex to the outside of a pitch curve drawn around the pitch curve of the external gear, and the tooth profile curve of the external gear is drawn on a plane fixed to the external gear. A multi-point contact non-circular gear for a rotating piston, characterized in that it is defined by an envelope of a tooth profile curve of an internal gear. (2) A multi-point contact non-circular gear for a rotating piston according to claim 1, wherein N is 4 Circular gear. (3) The rotary piston according to claim 2, wherein the pitch curve of the internal gear is square. (4) A convex portion on the outside of the pitch curve drawn around the apex of the pitch curve of the external gear. The multi-point contact non-circular gear for a rotary piston according to any one of claims 1 to 3, wherein the small curved line is a small circular arc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24767183A JPS60143719A (en) | 1983-12-30 | 1983-12-30 | Multiple-point contacting noncircular gear for rotary piston |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24767183A JPS60143719A (en) | 1983-12-30 | 1983-12-30 | Multiple-point contacting noncircular gear for rotary piston |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60143719A true JPS60143719A (en) | 1985-07-30 |
JPH0371053B2 JPH0371053B2 (en) | 1991-11-11 |
Family
ID=17166924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24767183A Granted JPS60143719A (en) | 1983-12-30 | 1983-12-30 | Multiple-point contacting noncircular gear for rotary piston |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60143719A (en) |
-
1983
- 1983-12-30 JP JP24767183A patent/JPS60143719A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0371053B2 (en) | 1991-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8312785B2 (en) | Involute gear teeth for fluid metering device | |
US6244844B1 (en) | Fluid displacement apparatus with improved helical rotor structure | |
CN102914338B (en) | High-pressure resistant two-way cycloid rotameter | |
EP0746670B1 (en) | Meshing type rotors | |
US7520738B2 (en) | Closed system rotary machine | |
JP3827655B2 (en) | Volumetric flow meter using non-circular gear and non-circular gear | |
US5248246A (en) | Orbiting ball meter-motor-pump | |
JPS60143719A (en) | Multiple-point contacting noncircular gear for rotary piston | |
JP6166483B2 (en) | Rotary motor with gear transmission using compression medium drive | |
US8128389B2 (en) | Positive-displacement machine design (variants) | |
US5131270A (en) | Sliding rotor pump-motor-meter | |
US2407698A (en) | Fluid pressure device | |
JPS60105919A (en) | Planetary ring gear type flow meter | |
Hill | Kinematics of gerotors | |
JPH0331204B2 (en) | ||
CN1057835C (en) | Rotor positive-displacement flow-meter | |
JPS6058518A (en) | Single-valve-ring type, volumetric flowmeter | |
CN1153903A (en) | Positive displacement flowmeter | |
CA2068640A1 (en) | Dual revolving vane meter-motor-pump | |
CA1201306A (en) | Internal gate rotary vane fluid meter with controlled rotor vane inner diameter | |
CA1209370A (en) | Internal gate rotary vane fluid meter with contoured inlet and outlet passages | |
CN2239017Y (en) | Rotor volume flowmeter | |
Edison | A semi-determinate CAM problem requiring unusual mathematical treatment | |
JPS60182379A (en) | Noncircular rotor | |
EP0132469A1 (en) | Rotary motor |