JPS601434Y2 - underwater discharge electrode - Google Patents

underwater discharge electrode

Info

Publication number
JPS601434Y2
JPS601434Y2 JP10350877U JP10350877U JPS601434Y2 JP S601434 Y2 JPS601434 Y2 JP S601434Y2 JP 10350877 U JP10350877 U JP 10350877U JP 10350877 U JP10350877 U JP 10350877U JP S601434 Y2 JPS601434 Y2 JP S601434Y2
Authority
JP
Japan
Prior art keywords
metal conductor
conductor
discharge electrode
discharge
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10350877U
Other languages
Japanese (ja)
Other versions
JPS5431001U (en
Inventor
鉄雄 西村
輝信 前田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP10350877U priority Critical patent/JPS601434Y2/en
Publication of JPS5431001U publication Critical patent/JPS5431001U/ja
Application granted granted Critical
Publication of JPS601434Y2 publication Critical patent/JPS601434Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は海底地層探査装置の音源に用いる水中放電電極
の構造に関するもので、水中放電電極は水中において瞬
間的に高圧大電流を放電させると、この電流が集中して
流れる放電面付近は瞬間的に高熱が発生して気泡を生じ
急激に膨張して強力な音波を発生する。
[Detailed description of the invention] This invention relates to the structure of an underwater discharge electrode used as a sound source for submarine geological exploration equipment. High heat is instantaneously generated near the flowing discharge surface, causing bubbles to expand rapidly and generate powerful sound waves.

またこの気泡が消滅するときも音波を発生する。Also, when these bubbles disappear, they generate sound waves.

このように水中放電電極は送信機からの放電ごとに、水
中で火花放電を行ない放電時に発生する音波を海底地層
探査装置の音源として使用するものである。
In this way, the underwater discharge electrode performs a spark discharge in the water every time the transmitter discharges, and the sound waves generated at the time of discharge are used as a sound source for the submarine geological exploration device.

従来、この種の水中放電電極は第1図に示す構造の同軸
型放電電極が使用されていた。
Conventionally, as this type of underwater discharge electrode, a coaxial type discharge electrode having the structure shown in FIG. 1 has been used.

図中、11は金属導体、12は絶縁物、13は外部導体
を示し、導体11と13間に高圧を印加したとき、水中
における導体11と13の端部間に生ずる火花放電を利
用しており、特に低周波(100H2)用の音源として
用いられている。
In the figure, 11 is a metal conductor, 12 is an insulator, and 13 is an external conductor. When high voltage is applied between the conductors 11 and 13, spark discharge is generated between the ends of the conductors 11 and 13 in water. It is particularly used as a sound source for low frequencies (100H2).

ところがこの構造では放電エネルギーが200ジユ一ル
程度までは放電面の部分が比較的安定して消滅している
が大エネルギ−(500ジユ一ル以上)になると放電面
の部分の絶縁樹脂が大きく破壊されて放電発音が不安定
になると同時に、放電電極自体が破壊されることが多く
連続的な使用ができない欠点があった。
However, with this structure, the portion of the discharge surface disappears relatively stably until the discharge energy reaches about 200 joules, but when the energy becomes large (over 500 joules), the insulating resin on the discharge surface portion becomes large. This has the disadvantage that the discharge electrode itself is often destroyed, making it impossible to use it continuously.

さらに大エネルギー用としては第2図のような水中放電
電極が試作使用されているが、この場合は導体21の外
周にネオブレンゴム22を焼付けた構造であり、第1図
の外部導体13に相当する帰線導体がこの近傍に配設さ
れている。
For larger energy applications, an underwater discharge electrode as shown in Figure 2 has been prototyped, but in this case it has a structure in which neoprene rubber 22 is baked on the outer periphery of a conductor 21, which corresponds to the outer conductor 13 in Figure 1. A return conductor is placed in this vicinity.

しかしながら、この構造は、ゴム22内に気泡が残るこ
とが多く材質が不均一なことと、接着力が弱いため大エ
ネルギーで放電した場合にハク離したり、先端の放電面
だけでなく、ゴムの途中に穴があいたりして連続的には
使用することができなかった。
However, with this structure, air bubbles often remain inside the rubber 22, making the material non-uniform, and the adhesive strength is weak, so it may flake off when a discharge is generated with a large amount of energy, and the rubber It was not possible to use it continuously because there was a hole in the middle.

本考案は、放電エネルギーが増大した場合でも常に安定
した放電を繰返し連続的に使用できる水中放電電極を提
供するものである。
The present invention provides an underwater discharge electrode that can be used repeatedly and continuously even when the discharge energy increases.

かかる目的を遠戚するため、本考案は、細長い円柱状の
金属導体の外周が絶縁物で覆われ、前記金属導体とは電
気的に絶縁された位置に設けられた外部電極と前記金属
導体との間で放電させる氷中放電電極において、前記金
属導体の外周に、非金属繊維を含む絶縁物層が形成され
、且つ前記非金属繊維は前記金属導体の外周を囲むよう
に所定ピッチ間隔で形成され、その繊維形成方向が前記
金属体の長さ方向に対する直角面に略平行である構成を
有する。
In order to achieve this object distantly, the present invention provides an arrangement in which the outer periphery of an elongated cylindrical metal conductor is covered with an insulator, and an external electrode provided at a position electrically insulated from the metal conductor and the metal conductor. In the in-ice discharge electrode, an insulating layer containing non-metal fibers is formed around the outer periphery of the metal conductor, and the non-metal fibers are formed at predetermined pitch intervals so as to surround the outer periphery of the metal conductor. The fiber forming direction is substantially parallel to a plane perpendicular to the longitudinal direction of the metal body.

したがって放電に伴い電極が消耗した場合であっても、
電極の消耗部分を囲むリング状の非金属繊維に沿って脱
落するので放電面積が急激に増大して電流密度の急激な
抵下も起り難く、電流密度の一定維持ができ、発音維持
が容易に可能となる利点かある。
Therefore, even if the electrodes are worn out due to discharge,
Since the electrode falls off along the ring-shaped non-metallic fibers that surround the consumable part of the electrode, the discharge area increases rapidly and a sudden drop in current density is less likely to occur, making it possible to maintain a constant current density and easily maintain sound production. There are advantages to being able to do so.

以下本考案の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図を参照すると金属導体31とこの導体31に巻き
つけた樹脂を含浸したガラス繊維の絶縁物32と、さら
に外側に巻きつけたポリエステルテープ33から構成さ
れる。
Referring to FIG. 3, it is composed of a metal conductor 31, a resin-impregnated glass fiber insulator 32 wrapped around the conductor 31, and a polyester tape 33 wrapped around the outside.

この場合にも第2図と同様に帰線導体が近傍に配設され
ている。
In this case as well, a return conductor is provided nearby as in FIG.

金属導体31はガラス繊維の樹脂が接着しやすいよう面
積を大きくするためネジまたはナール加工を施こしても
よい。
The metal conductor 31 may be threaded or knurled to increase its area so that the glass fiber resin can easily adhere to it.

次に絶縁物32は繊維方向が金属導体31の長さ方向に
ほぼ直角方向になるように形成する。
Next, the insulator 32 is formed so that the fiber direction is approximately perpendicular to the length direction of the metal conductor 31.

ここで繊維方向が金属導体31の長さ方向にほぼ直角方
向になるように形成するとは、例えはリング状の非金属
繊維が金属導体31の外周に導体31の長さ方向との直
角面上において所定間隔て略平行に配置される場合や、
金属導体31の外周に1本の非金属繊維が所定ピッチで
螺旋状に巻き付けられている場合のように、非金属繊維
が金属導体31の外周を囲むように形成され、その繊維
形成方向が金属導体の長さ方向に対する直角面に略平行
であることを意味する。
Here, forming the fibers so that the fiber direction is substantially perpendicular to the length direction of the metal conductor 31 means that, for example, ring-shaped non-metal fibers are formed on the outer periphery of the metal conductor 31 on a plane perpendicular to the length direction of the conductor 31. When arranged approximately parallel to each other at a predetermined interval,
As in the case where one non-metal fiber is spirally wound around the outer periphery of the metal conductor 31 at a predetermined pitch, the non-metal fiber is formed to surround the outer periphery of the metal conductor 31, and the direction of the fiber formation is the same as that of the metal conductor. This means that it is approximately parallel to a plane perpendicular to the length direction of the conductor.

したがって放電時にこの繊維でハク離を防止する効果と
金属導体31の放電面が消耗したとき絶縁物32が金属
導体31とほぼ同じように破壊されるので常に放電面が
同一形状で放電される。
Therefore, the fibers have the effect of preventing peeling during discharge, and when the discharge surface of the metal conductor 31 is consumed, the insulator 32 is destroyed in almost the same way as the metal conductor 31, so that the discharge surface is always discharged with the same shape.

つまり、絶縁物32が消耗する際、金属導体31の長さ
方向と直角方向に巻き付けられた繊維が障害となるから
、消耗はこの繊維の配列間隔毎に生ずる。
That is, when the insulator 32 wears out, the fibers wound in the direction perpendicular to the length direction of the metal conductor 31 become an obstacle, so that the wear occurs at every arrangement interval of the fibers.

ポリエステルチーブ33は加熱加工時に絶縁物32に含
浸されている接着性樹脂が溶解して融着する除外に流れ
出さないためのものである。
The polyester tube 33 is used to prevent the adhesive resin impregnated into the insulator 32 from melting and flowing out during heat processing.

また、金属導体31は直径を変えることによって、放電
エネルギーの大小にともなう金属導体の消耗率と、放電
面の大きさによる放電効率を考慮している。
Further, by changing the diameter of the metal conductor 31, consideration is given to the consumption rate of the metal conductor depending on the magnitude of discharge energy and the discharge efficiency depending on the size of the discharge surface.

以上に示した如く本発明による水中放電電極は常に放電
面が金属導体の断面の大きさとなり安定した発音ができ
、かつ手入れが不要となる効果がある。
As described above, the underwater discharge electrode according to the present invention has the advantage that the discharge surface always has the size of the cross section of the metal conductor, so stable sound can be produced and no maintenance is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来から使用している同軸型水中放電電極の一
部断面側面図、第2図は試作の大エネルギー甲水中放電
電極の一部断面側面図、第3図は本考案による水中放電
電極の一部断面側面図である。 11・・・・・・金属導体、12・・・・・・絶縁物(
ポリエチレン)、13・・・・・・外部導体、21・・
・・・・金属導体、22・・・・・・絶縁物(ネオブレ
ンゴム)、31・・・・・・金属導体(ネジ又はナール
加工)、32・・・・・・絶縁物(樹脂含浸繊維)、3
3・・・・・・ポリエステルテープ。
Figure 1 is a partially sectional side view of a coaxial underwater discharge electrode that has been used conventionally, Figure 2 is a partially sectional side view of a prototype high-energy underwater discharge electrode, and Figure 3 is an underwater discharge according to the present invention. FIG. 3 is a partially cross-sectional side view of an electrode. 11...Metal conductor, 12...Insulator (
polyethylene), 13...outer conductor, 21...
... Metal conductor, 22 ... Insulator (neobrene rubber), 31 ... Metal conductor (screw or knurl processing), 32 ... Insulator (resin-impregnated fiber) ,3
3...Polyester tape.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 細長い円柱状の金属導体の外周が絶縁物で覆われ、前記
金属導体とは電気的に絶縁された位置に設けられた外部
電極と前記金属導体との間で放電させる水中放電電極に
おいて、前記金属導体の外周に、非金属繊維を含む絶縁
物層が形成され、且つ前記非金属繊維は前記金属導体の
外周を囲むように所定ピッチ間隔で形成され、その繊維
形成方向が前記金属導体の長さ方向に対する直角面に略
平行であることを特徴とする水中放電電極。
In an underwater discharge electrode, the outer periphery of an elongated cylindrical metal conductor is covered with an insulating material, and a discharge is caused between the metal conductor and an external electrode provided at a position electrically insulated from the metal conductor. An insulating layer containing non-metallic fibers is formed on the outer periphery of the conductor, and the non-metallic fibers are formed at a predetermined pitch so as to surround the outer periphery of the metal conductor, and the direction in which the fibers are formed is the same as the length of the metal conductor. An underwater discharge electrode characterized by being substantially parallel to a plane perpendicular to the direction.
JP10350877U 1977-08-01 1977-08-01 underwater discharge electrode Expired JPS601434Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10350877U JPS601434Y2 (en) 1977-08-01 1977-08-01 underwater discharge electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10350877U JPS601434Y2 (en) 1977-08-01 1977-08-01 underwater discharge electrode

Publications (2)

Publication Number Publication Date
JPS5431001U JPS5431001U (en) 1979-03-01
JPS601434Y2 true JPS601434Y2 (en) 1985-01-16

Family

ID=29044082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10350877U Expired JPS601434Y2 (en) 1977-08-01 1977-08-01 underwater discharge electrode

Country Status (1)

Country Link
JP (1) JPS601434Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57672A (en) * 1980-05-31 1982-01-05 Konishiroku Photo Ind Co Ltd Copying device
JPS5723975A (en) * 1980-07-18 1982-02-08 Konishiroku Photo Ind Co Ltd Intermediate copying body

Also Published As

Publication number Publication date
JPS5431001U (en) 1979-03-01

Similar Documents

Publication Publication Date Title
US3742301A (en) Corona generator
US3859506A (en) Constant wattage heating element
DE60003157D1 (en) COOLING ANTENNA FOR FREQUENCIES OVER 200 MHz
US4238800A (en) Whip antenna with capacitive loading
JPS601434Y2 (en) underwater discharge electrode
US3286226A (en) Underwater spark discharge sound-producing system
US2591794A (en) Gas-filled power cable with embossed tape
US3982144A (en) Directional low-frequency ring hydrophone
JPH08195605A (en) Waveguide
US2239695A (en) Capacitive target-emitter for electric discharge devices
JPS589521B2 (en) Namigatano Kinzokushisuo Gubishita Denki Cable
US4092646A (en) Flexible antenna with capacative plate coupling
US3601721A (en) Low loss coaxial conductor using overlapped and insulated helical wound strips
US2903657A (en) Wave conductor, particularly for travelling wave tubes
JP6265623B2 (en) Ionizer
GB922593A (en) High-frequency air-dielectric cable
JPH02192608A (en) Discharge tube structure
US4070579A (en) X-ray tube transformer
JP2004181423A (en) Electrode for disintegrator and disintegrator
CA3001388A1 (en) Low electromagnetic field electrosurgical cable
JP2642383B2 (en) Power cable for welding torch
US3259781A (en) Method of and means for distributing the electrical field around the bushing of lightning arrestors
US2396268A (en) Buoyant electrode
US2409531A (en) Electrode for buoyant cables
SU862392A2 (en) Acoustic wave radiator