JPS60143268A - Controller for slip of torque converter - Google Patents

Controller for slip of torque converter

Info

Publication number
JPS60143268A
JPS60143268A JP58251160A JP25116083A JPS60143268A JP S60143268 A JPS60143268 A JP S60143268A JP 58251160 A JP58251160 A JP 58251160A JP 25116083 A JP25116083 A JP 25116083A JP S60143268 A JPS60143268 A JP S60143268A
Authority
JP
Japan
Prior art keywords
slip
control
torque converter
load condition
control constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58251160A
Other languages
Japanese (ja)
Other versions
JPS6211231B2 (en
Inventor
Yasuhiro Niikura
新倉 靖博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58251160A priority Critical patent/JPS60143268A/en
Priority to US06/687,291 priority patent/US4725951A/en
Publication of JPS60143268A publication Critical patent/JPS60143268A/en
Publication of JPS6211231B2 publication Critical patent/JPS6211231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/1819Propulsion control with control means using analogue circuits, relays or mechanical links
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed

Abstract

PURPOSE:To prevent the occurrence of hunting and an answering lag, by a method wherein a control constant for slip control is varied according to the load condition of a power source and so as to always match such condition. CONSTITUTION:A load detecting means 6 for detecting the load condition of a power source 1 and a combining force control constant varying means 7 for varyilng a control constant for slip control according to a load condition signal from the means 6 are provided, and the control constant is varied according to the load condition of the power source 1 and so as to always match such condition. This enables the slip amount of a troque converter to be prevented from high hunting because of the control constant being too high under a high load condition or permits prevention of the occurrence of a fact that a long time elapses until the slip amount of the torque converter is regulated to a set value because of the control constant being too low under a low load condition.

Description

【発明の詳細な説明】 (1)技術分野 本発明は車両用自動変速機等の動力伝達系に挿入して用
いるトルクコンバータ、特にその入出力要素間の相対回
転(スリップ)を適宜設定値にするようなスリップ制御
が可能なトルクコンバータのスリップ制御装置に関する
ものである。
Detailed Description of the Invention (1) Technical Field The present invention relates to a torque converter used by being inserted into a power transmission system such as an automatic transmission for a vehicle, and in particular, to a torque converter that is used to adjust the relative rotation (slip) between its input and output elements to an appropriate setting value. The present invention relates to a slip control device for a torque converter that is capable of such slip control.

(2)従来技術 トルクコンバータはその入出力要素間で作動油を介し動
力の受渡しを行ない、トルク増大機能及びトルク変動吸
収機能を持つが、その反面入出力要素間で相対回転(ス
リップ)を避けられず、動力伝達効率が悪い。そこで、
トルク変動は未だ問題になるもののトルク増大機能がほ
とんど不要な状態下では、入出力要素間を相対回転がト
ルク変動吸収のための必要最少限(設定値)となるよう
スリップ制御可能として、トルクコンバータのトルク変
動吸収機能を必要なだけ確保しつつ動力伝遅効率を高め
得るようにしたスリップ制御式トルクコンバータが既に
一部で実用されている。
(2) Conventional torque converters transfer power between their input and output elements via hydraulic oil and have a torque increasing function and a torque fluctuation absorption function, but on the other hand, they avoid relative rotation (slip) between input and output elements. power transmission efficiency is poor. Therefore,
Although torque fluctuations are still a problem, under conditions where the torque increase function is almost unnecessary, the torque converter can be used to perform slip control so that the relative rotation between the input and output elements is the minimum necessary (set value) to absorb torque fluctuations. Slip control type torque converters that can increase power transmission and delay efficiency while ensuring the necessary torque fluctuation absorption function are already in practical use in some areas.

この糧トルクコンバータは一般に、動力源によシ駆動さ
れる入力要素と、これによシかき廻された作動油によっ
て駆動される出力要素と、これら入出力要素間のスリッ
プ量を適宜制限するクラッチ(直結クラッチ又はロック
アツプクラッチと属称される)とを具え、該クラッチの
結合力を加減することによ9入出力要素間のスリップ量
が設定値となるようスリップ制御可能に構成するのが普
通である。
This torque converter generally includes an input element driven by a power source, an output element driven by hydraulic oil circulated by the input element, and a clutch that appropriately limits the amount of slip between these input and output elements. (generically referred to as a direct coupling clutch or lock-up clutch), and is configured to be capable of slip control so that the amount of slip between the nine input and output elements becomes a set value by adjusting the coupling force of the clutch. It's normal.

そして、このスリップ制御に当っては通常、上記のクラ
ッチを油圧式とし、チューティ制御される電磁弁によシ
フラッチの結合力を決定する油圧をフィードバック又は
フィードフォワード制御して当該スリップ制御を行なう
のか普通でろる。一方この場合、テユーテ(%)に対す
るトルクコンバータスリップ量の変化割合は第10図に
示す如く動力源の負荷状態に応じて異なることが知られ
ておシ、低負荷状態から中負荷状態、高負荷状態になる
につれ、同じデユティ(%)の変化によってもトルクコ
ンバータスリラフ−量の変化幅が大きくなる。
For this slip control, the above-mentioned clutch is usually a hydraulic type, and the slip control is usually performed by feedback or feedforward control of the hydraulic pressure that determines the coupling force of the shift latch using a solenoid valve controlled by a tutee. Deroru. On the other hand, in this case, it is known that the rate of change in torque converter slip amount with respect to torque converter slip (%) varies depending on the load condition of the power source, as shown in Figure 10. As the condition changes, the range of change in torque converter slip roughness increases even with the same change in duty (%).

しかして従来のスリップ制御装置にりっては、制御定数
が動力源の負荷状態に関係なく一定であったため、これ
を中負荷状態に合せて決定子ると、この中負荷状態では
第11図に示すようにトルクコンバータスリップ量がハ
ンチングを生じi#)長時間を蛍することなく安定して
速やかに設定値に持ち米たされるものの、高負荷状態で
は制御定数が太き過きてトルクコンバータスリップ量が
同じく第11図に示す如くにハンチングを生じ、低負荷
状態では制御定数が小さ過さてトルクコンバータスリン
グ蓋が同じく第11図に示す如く設定値に達する迄に長
時間を要する。このことは鵠10図につき前述したよう
に、重負荷状態でチューティに対するトルクコンバータ
スリップ量の変化割合が急になシ、低負荷状態で当該変
化割合が緩やかになる事実に起因する。茜負荷状態での
ハンチングは、トルクコンバータスリップ量が設定値よ
シ大きく下まわった時点で、トルクコンバータのスリッ
プ不足によシ振動を生じるという問題を生じ、低負荷状
態での応答遅れは、トルクコンバータスリップ量が長時
間設定値を大きく上まわってトルクコンバータをスリッ
プ制御式としたことによる動力源の燃費同上効果を阻害
するという問題を生じ、いずれの場合も好ましくない。
However, in the conventional slip control device, the control constant was constant regardless of the load condition of the power source, so if this is used as a determiner in accordance with the medium load condition, then in this medium load condition, Fig. 11 As shown in Figure 2, the torque converter slip amount causes hunting and although the torque converter slip amount is stably and quickly brought to the set value without flashing for a long time, under high load conditions the control constant becomes too thick and the torque The converter slip amount also causes hunting as shown in FIG. 11, and in a low load state, the control constant is too small and it takes a long time for the torque converter sling lid to reach the set value as shown in FIG. 11. This is due to the fact that, as described above with reference to Figure 10, the rate of change in the amount of torque converter slip with respect to the tute is sudden in a heavy load condition, and becomes gradual in a low load condition. Hunting under load conditions causes a problem in which vibration occurs due to insufficient slip in the torque converter when the amount of torque converter slip falls significantly below the set value, and response delay under low load conditions causes torque A problem arises in that the amount of converter slip greatly exceeds the set value for a long period of time, impeding the same effect on fuel efficiency of the power source due to the use of a slip-controlled torque converter, and either case is undesirable.

(8) 発 明 の 目 的 本発明は動力源の負荷状態に応じ、これに常時マツチす
るよう制御定数を変更可能にスリップ制御装置を構成し
て、上述の問題を解決することを目的とする。
(8) Purpose of the Invention The purpose of the present invention is to solve the above-mentioned problems by configuring a slip control device so that the control constant can be changed to always match the load condition of the power source. .

(4)発明の構成 この目的のため本発明スリップ制御装置は第1図の如く
、動力源lによ多駆動される入力要素2と、これによシ
かき処された作動油によって駆動される出力要素8と、
これら入出力要素間のスリップ量金適宜制限するクラッ
チ4とを具え、該クラッチの結合力を制御定数に応じ制
御して前記スリップ蓋を設定値に持ち来たすクラッチ制
御手段5を設けたスリップ制御式トルクコンバータにお
いて、前記動力源1の負荷状態を検出する負荷検出手段
6と、該手段からの負荷状態信号に応じ前記制御定数を
変更する結合力制御定数変更手段7とを設けてなること
を特徴とする。
(4) Structure of the Invention For this purpose, the slip control device of the present invention, as shown in FIG. Output element 8;
A slip control type comprising a clutch 4 that appropriately limits the amount of slip between these input and output elements, and a clutch control means 5 that controls the coupling force of the clutch according to a control constant to bring the slip lid to a set value. The torque converter is characterized by being provided with a load detecting means 6 for detecting the load state of the power source 1, and a coupling force control constant changing means 7 for changing the control constant according to a load state signal from the means. shall be.

(5)実施例 以下、本発明の実施例を図面に基づき説明する。(5) Examples Embodiments of the present invention will be described below based on the drawings.

第2図は本発明スリップ制御装置を、これにより制御す
べき車両用自動変速機内のトルクコンバータと共に示し
、図中lOは動力源としてのエンジン、11はそのクラ
ンクシャフト、12はフライホイル、18はトルクコン
バータ、14は)ルクコンバータ出力軸である。エンジ
ン10はその運転中クランクシャフト11をフライホイ
ル12と共に回転しておシ、トルクコンバータ18はフ
ライホイル12を介しクランクシャツ)11に駆動結合
されて常時エンジン駆動されるポンプイン゛ペラ(入力
要素)18aと、これに対向させたタービンランチ(出
力要素)1.9bと、ステータ(反力要素)18cとの
8要素で栴成し、タービンランナ18bを出力軸14に
駆動結合し、ステータ18cは一方向クラッチ15を介
し中空固定軸16上に置く。トルクコンバータ18はそ
の内部コンバータ室18dにポンプ17からの作動流体
を供給路18を経て供給され、この作動流体を戻シ路1
9を経てリザーバ20に戻すと共に、その途中に設けた
放熱器21によシ冷却する。なお、戻、b路19には図
示せざる保圧弁が挿入されておシ、これによシコンバー
タ室18d内を成る値以下の圧力(コンバータ圧) P
cに保つ。かくて上述の如くエンジン駆動されるポンプ
インペラ18aは内部作動流体をかき廻し、これをター
ビンランナ18bに衝突させた後ステータ18cに通流
させ、この間ステータ13cの反力下でタービンランナ
18bをトルク増大させつつ回転させる。
FIG. 2 shows the slip control device of the present invention together with a torque converter in an automatic transmission for a vehicle to be controlled by the slip control device, in which lO is an engine as a power source, 11 is its crankshaft, 12 is a flywheel, and 18 is a Torque converter, 14) is a torque converter output shaft. During operation of the engine 10, the crankshaft 11 rotates together with the flywheel 12, and the torque converter 18 is drivingly connected to the crankshaft 11 via the flywheel 12 and is connected to a pump impeller (input element) which is constantly driven by the engine. ) 18a, a turbine launch (output element) 1.9b opposed thereto, and a stator (reaction force element) 18c. is placed on a hollow fixed shaft 16 via a one-way clutch 15. The torque converter 18 is supplied with working fluid from the pump 17 to its internal converter chamber 18d via the supply path 18, and returns this working fluid to the internal converter chamber 18d.
9 and returned to the reservoir 20, and is cooled by a heat radiator 21 provided in the middle. In addition, a pressure holding valve (not shown) is inserted in the return path b 19, which reduces the pressure (converter pressure) below the value in the converter chamber 18d.
Keep it at c. Thus, as described above, the pump impeller 18a driven by the engine stirs the internal working fluid, causes it to collide with the turbine runner 18b, and then flows through the stator 18c, during which time the turbine runner 18b is torqued under the reaction force of the stator 13c. Rotate while increasing.

かかるコンバータ状態での作動中トルクコンバータ18
は、入出力要素18a 、18b間でスリップ(相対回
転)を生じなか、ら振動抑制及びトルク増大下にエンジ
ンlOの動力を出力軸14に伝達することができる。出
力軸14からの動力は歯車変速機構42によシ変速され
て車両の駆動輪を回転し、車両を走行させ得る。
Torque converter 18 in operation in such a converter state
can transmit the power of the engine 10 to the output shaft 14 while suppressing vibration and increasing torque without causing slip (relative rotation) between the input/output elements 18a and 18b. The power from the output shaft 14 is shifted by the gear transmission mechanism 42 to rotate the drive wheels of the vehicle, thereby allowing the vehicle to travel.

トルクコンバータ18は更に上記スリップを制限及び中
止可能なスリップ制御式及びロックアツプ式とするため
にクラッチ(ロックアツプクラッチ)22を具え、これ
をトーショナルダンパ23を介し出力軸14に駆動結合
すると共に、この軸上で軸方向移動可能としてロックア
ツプ室24を設定する。クラッチ22はロックアツプ室
24内のロックアツプ圧PL/uに応じこれとコンバー
タ室18(l内のコンバータ圧Pcとの差圧によシス中
左行し、この差圧に応じた力で入出力要素13a+18
b間を駆動結合することによ、?)ルクコンバータ13
のスリップを制限及び中止し得るものとする。
The torque converter 18 is further provided with a clutch (lock-up clutch) 22 in order to use a slip control type and a lock-up type that can limit and stop the above-mentioned slip, and this is drivingly coupled to the output shaft 14 via a torsional damper 23. The lock-up chamber 24 is set to be movable in the axial direction on this axis. The clutch 22 moves to the left during the system due to the differential pressure between the lock-up pressure PL/u in the lock-up chamber 24 and the converter pressure Pc in the converter chamber 18 (l), and operates the input/output elements with a force corresponding to this differential pressure. 13a+18
By drivingly coupling between b? ) Lux converter 13
may limit and cancel slips.

上記ロックアツプ圧PL//uはスリップ制御弁25に
よシ後述の如く加減するか、この目的のためロ°ツクア
ップ室24は軸14の中空孔及び回路26を経でスリッ
プ制御弁25のホー)25aに通じさせる。弁25には
別に前記コンバータ圧Pcを回路27によシ導びかれる
ボー)25bと、ドレンボート25cとを設け、スクー
ル25dが図示の中立位置の時ボー)25aを両ボー)
25b、25cから遮断し、スプール25dが図中左行
する時ボー)25aをボート25bに、又スプール25
dが図中右行する時ボー)25aをボート25Cに夫々
通じさせるものとする。
The lock-up pressure PL//u is adjusted as described below by the slip control valve 25.For this purpose, the lock-up chamber 24 is connected to the slip control valve 25 via the hollow hole of the shaft 14 and the circuit 26. 25a. The valve 25 is separately provided with a bow 25b through which the converter pressure Pc is guided by the circuit 27, and a drain boat 25c.
25b and 25c, and when the spool 25d moves to the left in the figure, the spool 25a is connected to the boat 25b,
When d moves to the right in the figure, the boats 25a are connected to the boats 25C, respectively.

スプール25dは、呈25eにおいてスプールランドの
受圧面積差に作用するコンバータ圧Pcが及はす力と、
室25fにおいてスプールランドの受圧面積差に作用す
るロックアツプ圧PL/uが及はす力及び室25gにお
いてスプール左端面に作用する制御圧Psが及はす力と
に応動し、制御圧Psは制御圧発生回路28及び電磁弁
29によシ以下の如くにして造る。
The spool 25d has a force exerted by the converter pressure Pc acting on the pressure receiving area difference of the spool land in the pressure receiving area 25e,
The control pressure Ps is controlled in response to the force exerted by the lock-up pressure PL/u acting on the pressure receiving area difference of the spool land in the chamber 25f and the force exerted by the control pressure Ps acting on the left end surface of the spool in the chamber 25g. The pressure generating circuit 28 and the solenoid valve 29 are constructed as follows.

即ち、制御圧発生回路28にはその一端28aよシ基準
圧(例えは自動変速機の場合ライン圧)PLを供給し、
このライン圧をオリフィス28C128dを経て回路2
8の他端28bよシドレンする。このドレン量をデユー
ティ制御される電磁弁29によシ決定することで、オリ
フィス280゜28a間に制御圧Psを造シ出すことが
でき、これを回路80によシ室25gに導ひく。
That is, the reference pressure (for example, line pressure in the case of an automatic transmission) PL is supplied to the control pressure generation circuit 28 from its one end 28a,
This line pressure is passed through orifice 28C128d to circuit 2.
The other end 28b of 8 is closed. By determining this drain amount using the duty-controlled electromagnetic valve 29, a control pressure Ps can be generated between the orifices 280.degree. 28a, and this is guided to the drain chamber 25g by the circuit 80.

電磁弁29はプランジャ29aと、これを付勢時図中左
行させるソレノイド29bとを具え、ソレノイド29b
の減勢時プランジャ29aがドレン開口端28bからの
ドレン作動流体に押しのけられることで上記のドレンを
許容し、ソレノイド29bの付勢時プランジャ29aか
左行されることでドレン開口端28bを閉じるものとす
る。そして、電磁弁ソレノイド29bへの通電(付勢)
は、本発明が目的とするトルクコンバータのスリップ制
御を行なうスリップ制御用コンピュータ81からの第8
図(a)及び同図(b)に示すようなパルス信号のパル
ス幅(オン時間)中において繰返し行なわれるようデユ
ーティ制御される。しかして、第8図(a)に示す如く
チューティ(チ)が小さい時電磁弁29がドレン開口端
28bを閉じる時間は短かく、従って制御圧Psは第4
図に示すようにオリフィス28c、28dの受圧面積差
の与で決まる一定値となる。デユーティ(%)が第8図
(b)で示す如く大きくなるにつれ、電磁弁27は長時
間ドレン開口端28bi閉じるようになシ、従って制御
圧Psは第4図の如く徐々に上昇し、遂にはライン圧P
Lに等しくなる。
The solenoid valve 29 includes a plunger 29a and a solenoid 29b that moves the plunger 29a to the left in the figure when energized.
When the solenoid 29b is energized, the plunger 29a is pushed away by the drain working fluid from the drain opening end 28b to allow the above drain, and when the solenoid 29b is energized, the plunger 29a moves to the left to close the drain opening end 28b. shall be. Then, energizing (energizing) the solenoid valve solenoid 29b
is the eighth signal from the slip control computer 81 that performs slip control of the torque converter, which is the object of the present invention.
Duty control is performed so that the pulse signal is repeatedly performed during the pulse width (on time) of the pulse signal as shown in FIGS. (a) and (b). As shown in FIG. 8(a), when the tutee is small, the time for the solenoid valve 29 to close the drain opening end 28b is short, and therefore the control pressure Ps is at the fourth
As shown in the figure, it is a constant value determined by the difference in pressure receiving area between the orifices 28c and 28d. As the duty (%) increases as shown in FIG. 8(b), the solenoid valve 27 closes the drain opening end 28bi for a long time, so the control pressure Ps gradually increases as shown in FIG. 4, and finally is line pressure P
becomes equal to L.

第2図において、制御圧Psが上昇するにつれ、この制
御圧はスプール25dを第5図(a)の如く右行させて
ボー)25a’i徐々に大きくポート25cに通じさせ
、ロックアツプ圧PL/11は低下する。一方制御圧P
sが低下するにつれ、スプール25dは第5図(b)の
如く左行されてポート25akポート25bに徐々に大
きく通じさせ、ロックアツプ圧PL/は上昇する。とこ
ろで制御圧Psは第4図の如くチューティ(%)が大き
くなるにつれ上昇することから、ロックアツプ圧PL/
は、第6図に示す如くデユーティ(チ)の小さい領域で
コンバータ圧Pcに等しく保たれ、デユーティ(チ)が
大きくなるにつれ低下し、遂には零となるように変化さ
れる。そして、ロックアツプ圧PL/uがコンバータ圧
Pcに等しくなる最高値にでれる時、ロックアツプクラ
ッチ22は室18d、24内の圧力が等しいことから釈
放され、トルクコンバーター8をスリップ量最犬のコン
バータ(/V)状態で機能させ、ロックアツプ圧PL/
/Iuが零になる時ロックアツプクラッチ22は室18
d内のコンバータ圧Pcによシ完全結合され、トルクコ
ンバーター8をスリップ量零のロッステップ(4)状態
で機能させ、ロックアツプ圧PL/uが中間値になる時
ロツクアツプクラツチ22は室18d、24内における
圧力Pc 、 PL/uの差、つまシロツクアップ圧P
L/の値に応じた結合力で滑シ結合され、トルクコンバ
ーター8をスリップ制御状態で機能させる。
In FIG. 2, as the control pressure Ps increases, this control pressure causes the spool 25d to move to the right as shown in FIG. 11 decreases. On the other hand, control pressure P
As s decreases, the spool 25d is moved to the left as shown in FIG. 5(b) to gradually open the port 25ak to the port 25b, and the lockup pressure PL/ increases. By the way, since the control pressure Ps increases as the tutee (%) increases as shown in Fig. 4, the lockup pressure PL/
As shown in FIG. 6, is kept equal to the converter pressure Pc in a region where the duty (ch) is small, decreases as the duty (ch) increases, and is finally changed to zero. When the lock-up pressure PL/u reaches the maximum value equal to the converter pressure Pc, the lock-up clutch 22 is released because the pressures in the chambers 18d and 24 are equal, and the torque converter 8 is connected to the converter with the highest slip amount. (/V) state, lock-up pressure PL/
/When Iu becomes zero, the lock-up clutch 22 is in the chamber 18.
When the lock-up pressure PL/u reaches an intermediate value, the lock-up clutch 22 is completely coupled to the converter pressure Pc in the chamber 18d, and the torque converter 8 is operated in the loss step (4) state with zero slip amount. Pressure Pc in 24, difference between PL/u, nail lock-up pressure P
A sliding connection is made with a connection force according to the value of L/, and the torque converter 8 functions in a slip control state.

スリップ制御用コンピュータ81は電源+Vによシ作動
され、ギヤ位置センサ32からの歯車変速機構42のギ
ヤ位置(ギヤ比)に関する信号3g−回転数センサ88
からのエンジン回転数(人力要°素18aの回転数)信
号Sir 、回転数センサ84からの歯車変速機構(4
2)出力回転数(この回転数に歯車変速機構42のギヤ
比を乗じて出力要素18bの回転数がまる)信号Sor
、スロットル開度センサ85からのエンジンスロットル
開度信号”THを夫々受けて、電磁弁29の前記チュー
ティ制御を後述の如くに行なう。
The slip control computer 81 is operated by the power supply +V, and receives a signal 3g related to the gear position (gear ratio) of the gear transmission mechanism 42 from the gear position sensor 32 - rotation speed sensor 88
from the engine rotation speed (rotation speed of the human power element 18a) signal Sir, from the rotation speed sensor 84 from the gear transmission mechanism (4
2) Output rotation speed (this rotation speed is multiplied by the gear ratio of the gear transmission mechanism 42 to obtain the rotation speed of the output element 18b) signal Sor
, the engine throttle opening signal "TH" from the throttle opening sensor 85, and performs the tutee control of the electromagnetic valve 29 as described below.

この目的のためコンピュータ81は例えは第7図にブロ
ック線図で示すようなマイクロコンピュータとし、これ
を通常通9ランダムアクセスメモリ(RA’M )を含
むマイクロプロセッサユニット(MPU)86と、読取
専用メモリ(ROM)87と、入出力インターフェース
回路(1)aSと、I′/D変換器89とで構成する。
For this purpose, the computer 81 is, for example, a microcomputer as shown in the block diagram of FIG. It consists of a memory (ROM) 87, an input/output interface circuit (1) aS, and an I'/D converter 89.

そしてこのマイクロコンピュータはセンサ88..34
からの信号Sir 、 Sorを波形整形回路40によ
多波形整形して入力されると共に、センサ85からの信
号STHを4変換器89によ)テジタル信号に変換して
入力され、更にセンサ82からの信号Sgをそのまま入
力され、これら入力信号を基に第8図の制御プログラム
を実行し、増幅器41を介して電磁弁ソレノイド29b
を制御するものとする。
And this microcomputer has a sensor 88. .. 34
The signals Sir and Sor from the sensor 85 are inputted after being multi-waveform shaped into the waveform shaping circuit 40, and the signal STH from the sensor 85 is converted into a digital signal by the converter 89) and is inputted from the sensor 82. The control program shown in FIG. 8 is executed based on these input signals, and the control program shown in FIG.
shall be controlled.

第8図はROM87に記憶された割込ルーチンで、MP
U86はステップ49において一定時間おきに入力され
る割込信号によシこのルーチンを繰返し実行する。先ず
ステップ50で、MPU86エ 及び1038の初期値設定(インシャライズ)が行なわ
べ次にステップ51においてセンサ82からの信号Sg
よシ歯車変速機構42のギヤ位置(ギヤ比1)を読込み
、次のステップ52でセンサ88からの信号Sirよジ
エンジン回転数(入力要素18aの回転数)NEを読込
み、ステップ58でセンサ84からの信号Sorよシ歯
車変速機構42の出力軸回転数No1i込み、ステップ
54でタービンランナ(出力要素)18bの回転数iN
FIG. 8 shows an interrupt routine stored in ROM87.
U86 repeatedly executes this routine in step 49 in response to an interrupt signal input at regular intervals. First, in step 50, the initial values of the MPU 86 and 1038 are set (internalized), and then in step 51, the signal Sg from the sensor 82 is set.
The gear position (gear ratio 1) of the gear transmission mechanism 42 is read, and in the next step 52, the signal Sir from the sensor 88 and the engine rotation speed (the rotation speed of the input element 18a) NE are read, and in step 58, the signal Sir from the sensor 88 is read. In step 54, the signal Sor includes the output shaft rotation speed No1i of the gear transmission mechanism 42, and the rotation speed iN of the turbine runner (output element) 18b is determined in step 54.
.

×1によシ演算し、次のステップ55でセンサ85から
の信号STHよジエンジンスロットル開度THを読込む
x1, and in the next step 55, the engine throttle opening TH is read from the signal STH from the sensor 85.

その後制御はステップ56に進み、ここでスロットル開
度TH1出力軸回転数No、(車速)からトルクコンバ
ータ18をスリップ制御すべきスリップ領域か否かを判
別する(なお本例ではトルクコンバータ18をロックア
ツプ状態にすることのない場合について示した)。スリ
ップ領域でなけれはトルクコンバータ18をコンバータ
状態にすべきであるから、ステップ57を選択し、ここ
でデユーティを0%にして、トルクコンバータ18を要
求通シコンバータ状態とする。
After that, the control proceeds to step 56, where it is determined from the throttle opening TH1 output shaft rotational speed No. (vehicle speed) whether or not the torque converter 18 is in a slip region where slip control is required (in this example, the torque converter 18 is locked up). ). If the torque converter 18 is not in the slip region, the torque converter 18 should be placed in the converter state, so step 57 is selected, the duty is set to 0%, and the torque converter 18 is placed in the demand-transfer state.

スリップ領域であればステップ56がステップ58を選
択し、ここで、トルクコンバータスリップ量ΔNをΔN
 = NE−N、によシ計算する。次のステップ59で
はスリップ量設定値ΔNrに対する実スリップ量ΔNの
偏差ΔXをΔX=ΔN−ΔNrにより演算し、次のステ
ップ60ではエンジンlOの負荷状態に応じた積分制御
の比例定数に1及び比例制御の比例定数Kp (本例は
PI副制御したためこれらで制御定数が決まる)を選定
する。この選定に当っては、エンジンIOの負荷状態が
そのスロットル開度TH及びタービン回転数N、で代表
されるから、これらに基づく次表のテーブルデータをR
OM87に予め記憶させておき、これらテ−ブルデータ
からスロットル開度TH及びタービン回転数N、 ′f
c基に比例定数Ki 、 Kpをテーブルルックアップ
方式によhk出す。
If it is in the slip region, step 56 selects step 58, where the torque converter slip amount ΔN is set to ΔN
= NE-N, calculate accordingly. In the next step 59, the deviation ΔX of the actual slip amount ΔN with respect to the slip amount set value ΔNr is calculated by ΔX=ΔN−ΔNr, and in the next step 60, the proportional constant of the integral control according to the load condition of the engine IO is set to 1 and proportional to Select the control proportional constant Kp (in this example, PI sub-control is used, so the control constant is determined by these). When making this selection, the load condition of the engine IO is represented by its throttle opening TH and turbine rotation speed N, so the table data in the following table based on these is R
The OM87 is stored in advance, and the throttle opening TH and turbine rotational speed N, 'f are calculated from these table data.
Based on c, proportional constants Ki and Kp are calculated as hk using a table lookup method.

T Kpのテーブルデータ なお、これらテーブルデータにおいてKi 、 Kpは
夫々、同一タービン回転数の基ではスロットル開度TH
が大きくなるにつれ負荷が大きく、又同一スロットル開
度ならばタービン回転数NTが小さくなるにつれ負荷が
大きいことから、スロットル開度THの増大につれ小さ
くし、タービン回転数NTカ小さくなるにつれ小さくし
て、Ki 、 Kpで決まる制御定数を負荷状態毎に負
荷が大きくなるにつれ小さく、負荷が小さくなるにつれ
大きくし、第10図の特性にマツチさせる。
Table data of T Kp In these table data, Ki and Kp are respectively equal to the throttle opening TH under the same turbine rotation speed.
The load increases as the throttle opening increases, and if the throttle opening is the same, the load increases as the turbine rotational speed NT decreases. Therefore, as the throttle opening TH increases, the load increases, and as the turbine rotational speed NT decreases, the load increases. , Ki, and Kp are made smaller as the load becomes larger and larger as the load becomes smaller for each load state, so as to match the characteristics shown in FIG. 10.

次のステップ61では上述のように選定した比例定数K
i 、 Kpにょシデューティの割算を行なう。
In the next step 61, the proportionality constant K selected as described above is
Perform the division of i, Kp and duty.

即ち、先ず積分制御にょるチューティ値D (NEW)
をめるために、定数Kiとスリップ量偏差ΔXとの乗算
値に1・ΔXを前回のチューティ値D(OLD)に加算
する。次でこのようにしてめた積分制御によるデユーテ
ィ値D(NEW)を基に比例制御分を加味した今回のチ
ューティ値りをD=D(NEW)十Kp・ΔXにょ請求
める。次のステップ62では前回のデユーティ値D (
OLD )を上記今回のチューティ値りに更新し、この
チューティ値りをステップ68で第7図の増幅器41を
経て電磁弁ソレノイド29bに出力する。
That is, first, the tute value D (NEW) by integral control
In order to calculate the difference, 1·ΔX is added to the product of the constant Ki and the slip amount deviation ΔX to the previous tute value D (OLD). Next, based on the duty value D(NEW) obtained by the integral control obtained in this way, the current duty value, which takes into account the proportional control, can be requested as D=D(NEW) 10 Kp·ΔX. In the next step 62, the previous duty value D (
OLD) is updated to the current tutee value, and in step 68, this tutee value is outputted to the electromagnetic valve solenoid 29b via the amplifier 41 shown in FIG.

以上の制御はステップ57又はステップ68よ一システ
ップ64に至って終了するか、ステップ°58〜63に
よるトルクコンバータ18のスリップ制御はスリップ偏
差ΔXに応じ定数Ki 、 Kpに比例した分だけ出力
デユーティを増大させるためロックアツプ圧PL/を制
御の繰返し毎に第6図から明らかな如く低下させること
になる。従って、トルクコンバータ18は前述した処か
ら明らかなように順次スリップ量ΔNを低下され、コン
パーメ状態からスリップ制御状態への移行時第9図に示
す如くにスリップ量ΔNを設定値ΔNrに持ち来たされ
、この設定スリップ量に保たれる。
The above control ends with step 57 or step 68 and step 64, or the slip control of the torque converter 18 in steps 58 to 63 changes the output duty by an amount proportional to the constants Ki and Kp according to the slip deviation ΔX. In order to increase the lock-up pressure PL/, the lock-up pressure PL/ is lowered each time the control is repeated, as is clear from FIG. Therefore, as is clear from the foregoing, the torque converter 18 has its slip amount ΔN successively reduced, and when transitioning from the comperme state to the slip control state, the slip amount ΔN has been brought to the set value ΔNr as shown in FIG. and is maintained at this set slip amount.

ところで、比例定数Ki 、 Kpをステップ60にお
いてエンジンlOの負荷状態に応じ、制御定数が丁度良
好なものとなるよう変更するから、エンジン負荷状態が
いかなる場合もスリップ制御は第9図に示すように大き
なハンチングを生じたシ大きな応答遅れを生ずることな
く実行される。
By the way, the proportional constants Ki and Kp are changed in step 60 according to the load condition of the engine IO so that the control constants are just right, so no matter what the engine load condition, the slip control is performed as shown in FIG. Even when large hunting occurs, the processing is executed without causing a large response delay.

(6)発明の効果 かくして本発明は例えば上述の如くにして、動力源(エ
ンジンNo)の負荷状態に応じこれに常時マツチするよ
う制御定数を変更するようスリップ制御装置を構成した
から、高負荷状態で制御定数が太き過ぎてトルクコンバ
ータスリップ蓋が大きくハンチングしたち、低負荷状態
で制御定数が小さ過ぎてトルクコンバータスリップ量が
設定値に達する迄に長時間を要するのを防止することが
できる。
(6) Effects of the Invention Thus, in the present invention, for example, as described above, the slip control device is configured to change the control constant according to the load condition of the power source (engine number) so as to always match the load condition, so that it is possible to This is to prevent the torque converter slip cover from hunting greatly due to the control constant being too thick under low load conditions, and from requiring a long time for the torque converter slip amount to reach the set value due to the control constant being too small under low load conditions. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明スリップ制御装置の概念図、第2図は本
発明スリップ制御装置の一実施例を示すシステム図、 第3図(、l)及び同図(b)は夫々同装置のスリップ
制御用コンピュータが出力するチューティの変化状況を
示すタイムチャート、 第4図はチューティに対する制御圧の変化特性図、 第5図(a)及び同図(b)は夫々スリップ制御弁の作
用説明図、 第6図はデユーティに対するロックアツプ圧の変化特性
図、 第7図はスリップ制御用コンピュータのブロック線図、 第8図は同コンピュータの制御プログラムを示すフロー
チャート、 第9図は本発明装飯によるスリップ制御状況を示すタイ
ムチャート、 第10図はチューティに対するスリップ量の変化割合を
示す線図、 第11図は従来装置によるスリップ制御状況を示すタイ
ムチャートである。 1・・・動力源 2・・・トルクコンバータ入力要素 8・・・トルクコンバータ出力要素 4・・・クラッチ 5・・・クラッチ制御手段6・・・
負荷検出手段 7・・・結合力制御定数変更手段lO・
・・エンジン(動力源) 11・・・クランクシャフト 12・・・フライホイル
18・・・トルクコンバータ 18a・・・ポンプインペラ(入力貴素)18b・・・
タービンランナ(出力要素)14・・・トルクコンバー
タ出力軸 17・・・オイルポンプ 21・・・放熱器22・・・
ロックアツプクラッチ(クラッチ)25・・・スリップ
制御弁 28・・・制御圧発生回路29・・・電磁弁 
81・・・スリップ制御用コンピュータ 82・・・キ
ヤ位籠センサ38・・・エンジン回転数センサ 84・・・変速機出力回転数センサ 35・・・スロットル開度センサ 36・・・マイクロプロセッサユニット87・・・読取
専用メモリ 38・・・入出力インターフェース回路39・・・し変
換器 4o・・・成形整形回路41・・・増幅器 42
・・・歯車変速機構。 第3図 第4図 シトノイドかヂ五−ティ(%) 第5図 (a) (b) 第6図 モメ≧−干イ(幻
Fig. 1 is a conceptual diagram of the slip control device of the present invention, Fig. 2 is a system diagram showing an embodiment of the slip control device of the present invention, and Fig. 3 (1) and (b) are the slip control device of the present invention. A time chart showing changes in the tutee outputted by the control computer, Fig. 4 is a change characteristic diagram of the control pressure for the tutee, Figs. 5(a) and 5(b) are diagrams each explaining the operation of the slip control valve, Fig. 6 is a characteristic diagram of changes in lock-up pressure with respect to duty, Fig. 7 is a block diagram of a computer for slip control, Fig. 8 is a flowchart showing the control program of the computer, and Fig. 9 is a slip control according to the present invention. FIG. 10 is a time chart showing the change rate of the slip amount with respect to the tutee, and FIG. 11 is a time chart showing the slip control situation by the conventional device. 1... Power source 2... Torque converter input element 8... Torque converter output element 4... Clutch 5... Clutch control means 6...
Load detection means 7... Coupling force control constant changing means lO.
...Engine (power source) 11...Crankshaft 12...Flywheel 18...Torque converter 18a...Pump impeller (input noble) 18b...
Turbine runner (output element) 14...Torque converter output shaft 17...Oil pump 21...Radiator 22...
Lock-up clutch (clutch) 25...Slip control valve 28...Control pressure generation circuit 29...Solenoid valve
81... Slip control computer 82... Gear position cage sensor 38... Engine rotation speed sensor 84... Transmission output rotation speed sensor 35... Throttle opening sensor 36... Microprocessor unit 87 ...Read-only memory 38...Input/output interface circuit 39...Converter 4o...Shaping shaping circuit 41...Amplifier 42
...gear transmission mechanism. Fig. 3 Fig. 4 Cytonoid Kaji5-ti (%) Fig. 5 (a) (b) Fig. 6

Claims (1)

【特許請求の範囲】 1 動力源によシ駆動される入力要素と、これによシか
き廻された作動油によって駆動される出力要素と、これ
ら入出力要素間のスリップ量を適宜制限するクラッチと
を具え、該クラッチの結合力を制御定数に応じ制御して
前記スリップ量を設定値に持ち来たすクラッチ制御手段
を設けたスリップ制御式トルクコンバータにおいて、前
記動力源の負荷状態を検出する負荷検出手段と、該手段
からの負荷状態信号に応じ前記制御定数を変更する結合
力制御定数変更手段とを設けてなることを特徴とするト
ルクコンバータのスリップ制御装置。 2 前記負荷検出手段は、動力源のスロットル開度及び
前記出力要素の回転数から負荷状態を検出するものでる
る特許請求の範囲第1項記載のトルクコンバータのスリ
ップ制御装置。
[Claims] 1. An input element driven by a power source, an output element driven by hydraulic oil stirred by the input element, and a clutch that appropriately limits the amount of slip between these input and output elements. In the slip control torque converter, the slip control torque converter is provided with a clutch control means for controlling the coupling force of the clutch according to a control constant to bring the slip amount to a set value, load detection for detecting a load state of the power source. 1. A slip control device for a torque converter, comprising: means for controlling a coupling force control constant; and a coupling force control constant changing means for changing the control constant according to a load condition signal from the means. 2. The slip control device for a torque converter according to claim 1, wherein the load detection means detects the load condition from the throttle opening of the power source and the rotation speed of the output element.
JP58251160A 1983-12-29 1983-12-29 Controller for slip of torque converter Granted JPS60143268A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58251160A JPS60143268A (en) 1983-12-29 1983-12-29 Controller for slip of torque converter
US06/687,291 US4725951A (en) 1983-12-29 1984-12-28 Control system for lock-up clutch in torque converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58251160A JPS60143268A (en) 1983-12-29 1983-12-29 Controller for slip of torque converter

Publications (2)

Publication Number Publication Date
JPS60143268A true JPS60143268A (en) 1985-07-29
JPS6211231B2 JPS6211231B2 (en) 1987-03-11

Family

ID=17218563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58251160A Granted JPS60143268A (en) 1983-12-29 1983-12-29 Controller for slip of torque converter

Country Status (1)

Country Link
JP (1) JPS60143268A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204055A (en) * 1986-03-03 1987-09-08 Honda Motor Co Ltd Direct coupling mechanism control method for fluid type power transmission of automatic transmission for vehicle
JPS63172058A (en) * 1987-01-12 1988-07-15 Nissan Motor Co Ltd Control device for lock-up clutch
WO1988009454A1 (en) * 1987-05-22 1988-12-01 Kabushiki Kaisha Komatsu Seisakusho Lockup clutch control apparatus and method
JPS63297861A (en) * 1987-05-29 1988-12-05 Komatsu Ltd Hydraulic control device for lockup clutch
JPS6458858A (en) * 1987-08-31 1989-03-06 Mazda Motor Slip controller for torque converter
JPH04101878U (en) * 1991-02-08 1992-09-02 株式会社鷺宮製作所 solenoid valve
AU659763B2 (en) * 1987-05-22 1995-05-25 Kabushiki Kaisha Komatsu Seisakusho Apparatus and method for controlling lock-up clutch
US5697867A (en) * 1994-06-09 1997-12-16 Toyota Jidosha Kabushiki Kaisha Devices for controlling plant, clutch slip, and idling engine speed and methods of controlling the same
WO2014112604A1 (en) * 2013-01-18 2014-07-24 アイシン・エィ・ダブリュ株式会社 Lock-up-clutch control device and control method
WO2014112603A1 (en) * 2013-01-18 2014-07-24 アイシン・エィ・ダブリュ株式会社 Lock-up-clutch control device and control method
WO2014112606A1 (en) * 2013-01-18 2014-07-24 アイシン・エィ・ダブリュ株式会社 Lock-up-clutch control device and control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069362A (en) * 1983-09-22 1985-04-20 Honda Motor Co Ltd Direct-coupled controller of fluid transmission in automatic speed changer for car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069362A (en) * 1983-09-22 1985-04-20 Honda Motor Co Ltd Direct-coupled controller of fluid transmission in automatic speed changer for car

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204055A (en) * 1986-03-03 1987-09-08 Honda Motor Co Ltd Direct coupling mechanism control method for fluid type power transmission of automatic transmission for vehicle
JPS63172058A (en) * 1987-01-12 1988-07-15 Nissan Motor Co Ltd Control device for lock-up clutch
EP0677685B1 (en) * 1987-05-22 1998-11-25 Kabushiki Kaisha Komatsu Seisakusho Apparatus and method for controlling lock-up clutch
WO1988009454A1 (en) * 1987-05-22 1988-12-01 Kabushiki Kaisha Komatsu Seisakusho Lockup clutch control apparatus and method
US5417622A (en) * 1987-05-22 1995-05-23 Kabushiki Kaisha Komatsu Seisakusho Apparatus for controlling lock-up clutch
AU659763B2 (en) * 1987-05-22 1995-05-25 Kabushiki Kaisha Komatsu Seisakusho Apparatus and method for controlling lock-up clutch
JPS63297861A (en) * 1987-05-29 1988-12-05 Komatsu Ltd Hydraulic control device for lockup clutch
JPS6458858A (en) * 1987-08-31 1989-03-06 Mazda Motor Slip controller for torque converter
JPH04101878U (en) * 1991-02-08 1992-09-02 株式会社鷺宮製作所 solenoid valve
US5697867A (en) * 1994-06-09 1997-12-16 Toyota Jidosha Kabushiki Kaisha Devices for controlling plant, clutch slip, and idling engine speed and methods of controlling the same
US5857443A (en) * 1994-06-09 1999-01-12 Toyota Jidosha Kabushiki Kaisha Devices for controlling plant, clutch slip, and idling engine speed and methods of controlling the same
WO2014112604A1 (en) * 2013-01-18 2014-07-24 アイシン・エィ・ダブリュ株式会社 Lock-up-clutch control device and control method
WO2014112603A1 (en) * 2013-01-18 2014-07-24 アイシン・エィ・ダブリュ株式会社 Lock-up-clutch control device and control method
WO2014112606A1 (en) * 2013-01-18 2014-07-24 アイシン・エィ・ダブリュ株式会社 Lock-up-clutch control device and control method
CN104870867A (en) * 2013-01-18 2015-08-26 爱信艾达株式会社 Lock-up-clutch control device and control method
JPWO2014112606A1 (en) * 2013-01-18 2017-01-19 アイシン・エィ・ダブリュ株式会社 Control device and control method for lock-up clutch
US9845870B2 (en) 2013-01-18 2017-12-19 Aisin Aw Co., Ltd. Lock-up clutch control device and control method

Also Published As

Publication number Publication date
JPS6211231B2 (en) 1987-03-11

Similar Documents

Publication Publication Date Title
US4470117A (en) Control system for a continuously variable transmission for vehicles
US4459879A (en) Torque ratio control device for a V-belt type continuously variable transmission for vehicles
US4476746A (en) Hydraulic regulator for a V-belt type continuously variable transmission for vehicles
US7854683B2 (en) Torque converter clutch control
US5480363A (en) Apparatus for controlling slip of lock-up clutch on motor vehicle during deceleration of the vehicle
US7967727B2 (en) Clutch control device
US7769518B2 (en) Control of lock-up clutch
JPS60143268A (en) Controller for slip of torque converter
JPH0765661B2 (en) Shift control device for continuously variable transmission
GB2076483A (en) Control system for a continuously variable transmission for vehicles
JP2004293744A (en) Control device for directly coupled clutch for vehicle
US4419910A (en) Shift control mechanism in an automatic transmission for vehicles
US5752895A (en) Automatic transmission lockup clutch control apparatus
JP2663673B2 (en) Control device for lock-up clutch
JP2687696B2 (en) Transmission control device for continuously variable transmission
JPS60143267A (en) Controller for slip of torque converter
JPS60143266A (en) Controller for lock-up of torque converter
JPS59217056A (en) Lock-up controller for torque converter
JPS629779B2 (en)
JPS6250703B2 (en)
JPS60168956A (en) Slip control type torque converter
JP2663675B2 (en) Control device for lock-up clutch
JP3239694B2 (en) Lock-up clutch slip control device
JPS60143265A (en) Controller for lock-up of torque converter
JPS601461A (en) Slip controlling apparatus for torque converter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term