JPS6014170Y2 - flow rate detector - Google Patents

flow rate detector

Info

Publication number
JPS6014170Y2
JPS6014170Y2 JP15883682U JP15883682U JPS6014170Y2 JP S6014170 Y2 JPS6014170 Y2 JP S6014170Y2 JP 15883682 U JP15883682 U JP 15883682U JP 15883682 U JP15883682 U JP 15883682U JP S6014170 Y2 JPS6014170 Y2 JP S6014170Y2
Authority
JP
Japan
Prior art keywords
flow rate
orifice
pressure
impulse
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15883682U
Other languages
Japanese (ja)
Other versions
JPS5962510U (en
Inventor
清 鍛治
重行 広田
一文 時吉
展一 岡本
寛 佐藤
Original Assignee
関西電力株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西電力株式会社, 三菱重工業株式会社 filed Critical 関西電力株式会社
Priority to JP15883682U priority Critical patent/JPS6014170Y2/en
Publication of JPS5962510U publication Critical patent/JPS5962510U/en
Application granted granted Critical
Publication of JPS6014170Y2 publication Critical patent/JPS6014170Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 本考案は、極低温の蒸発性液流体の流量を検出する検出
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detector for detecting the flow rate of a cryogenic evaporative liquid fluid.

配管内を流れる流体の流量を求める場合には、通常オリ
フィスと差圧計とを用いて、第1図に示すような検出器
が構成される。
When determining the flow rate of fluid flowing in a pipe, a detector as shown in FIG. 1 is usually constructed using an orifice and a differential pressure gauge.

すなわち、配管1内にオリフィス2を介装し、同オリフ
ィス2の近傍上・下流側の流体圧力を導圧管3・4で差
圧計5に導き、同差圧計5の出力からあらかじめ求めら
れているレイノルズ数などの関係値によって変換器7で
流量として出力している。
That is, an orifice 2 is provided in the pipe 1, and the fluid pressure near the orifice 2 on the upstream and downstream sides is guided to the differential pressure gauge 5 through the impulse pipes 3 and 4, and the pressure is determined in advance from the output of the differential pressure gauge 5. The converter 7 outputs the flow rate based on related values such as the Reynolds number.

なお、6は配管1に介装され流量を調整する流量調節弁
である。
Note that 6 is a flow rate control valve that is interposed in the pipe 1 and adjusts the flow rate.

このようにしてなる流量検出器において、液体窒素やL
NGなどの極低温であって蒸発性を有する液流体の流量
を測定する場合には、配管1が導圧管3・4の下部など
には十分なる保冷加工がなされてはいる。
In the flow rate detector constructed in this way, liquid nitrogen or L
When measuring the flow rate of a liquid fluid such as NG which is at an extremely low temperature and has evaporative properties, the pipe 1 is sufficiently cold-insulated at the lower part of the impulse pipes 3 and 4.

しかし、差圧計5内部や、導圧管3・4の中間部以上の
部分は気化したガスで占られ、これはガス化部として使
用されている。
However, the inside of the differential pressure gauge 5 and the intermediate portions and above of the pressure guiding tubes 3 and 4 are occupied by vaporized gas, and this is used as a gasification section.

(第2図参照) なお、第2図中の点線は流線を想定して描いたものであ
る。
(See Figure 2) Note that the dotted lines in Figure 2 are drawn assuming streamlines.

さて、流量調節弁6の開度を変化させたとすると、流量
が変化し、オリフィス2の上・下流側の圧力は変化し、
その圧力変動は導圧管3・4下部の液柱の上下動となる
Now, if we change the opening degree of the flow control valve 6, the flow rate will change, and the pressure on the upstream and downstream sides of the orifice 2 will change.
The pressure fluctuation causes the liquid column at the bottom of the impulse pipes 3 and 4 to move up and down.

また、直ちに液柱がその上部にあるガスを圧縮または膨
張させる間接的な過程によって、差圧計5に圧力が伝達
されることになる。
In addition, pressure is immediately transmitted to the differential pressure gauge 5 through an indirect process in which the liquid column compresses or expands the gas above it.

このような検出器は、測定対象の流体が極低温であって
、かつ、入熱によって蒸発気化を伴なう点から、ガス化
部分を介して圧力を伝達することは余儀なくして妥当な
ものである。
In such a detector, since the fluid to be measured is at an extremely low temperature and evaporates due to heat input, it is unavoidable and reasonable to transmit pressure through the gasification part. It is.

しかし、流量が急激に変動する場合にはガス化部分のた
めに圧力応答のアンバランスを生じることになる。
However, if the flow rate fluctuates rapidly, an unbalanced pressure response will occur due to the gasification portion.

たとえば、オリフィス2下流側の流量調節弁6を急縮し
た場合には、オリフィス2上流側の導圧管3は1水撃現
象ヨの影響を受は易く、第4図に実線で示すような上流
側圧力Pυが差圧計5の一方に入力される。
For example, when the flow control valve 6 on the downstream side of the orifice 2 is suddenly contracted, the impulse pipe 3 on the upstream side of the orifice 2 is easily affected by the water hammer phenomenon, and the upstream flow as shown by the solid line in FIG. The side pressure Pυ is input to one side of the differential pressure gauge 5.

一方、オリフィス2下流側の圧力PLにはこのような影
響がないので、なだらかに上昇し、結果として差圧Pu
Pt、は一時的に上昇(流量が増加)したことにな
ってしまい、差圧計5を介して変換器7で出力されて誤
差となる。
On the other hand, the pressure PL on the downstream side of the orifice 2 has no such influence, so it rises gently, and as a result, the differential pressure Pu
Pt is temporarily increased (flow rate increases), which is outputted by the converter 7 via the differential pressure gauge 5, resulting in an error.

本考案はこれらの欠点を排除するものであって、オリフ
ィスと流量調節弁を有し蒸発性液流体を流す配管の、上
記オリフィスを挟んだ位置に下端部が夫々連通し上部に
ガス化部を有する2本の導圧管と、同導圧管の上端部が
夫々連通される差圧計とからなり、上記配管内を流れる
蒸発性液流体の流量を検出する流量検出器において、上
記導圧管の流量調節弁より遠い側のガス化部の容積を他
方のガス化部の容積の2倍以上としたことを特徴とし、
その目的とするところは、流量計測の誤差を動特性問題
として捉え、静特性を変えずに動特性のみを改良し、計
測誤差の無い流量検出器を提供するものである。
The present invention eliminates these drawbacks, and includes a pipe having an orifice and a flow rate control valve for flowing evaporative liquid fluid, whose lower ends communicate with each other at positions across the orifice, and a gasification section is provided at the upper part. A flow rate detector for detecting the flow rate of an evaporative liquid fluid flowing in the piping, which comprises two pressure impulse pipes and a differential pressure gauge, each of which is connected to the upper end of the pressure impulse pipe, adjusts the flow rate of the pressure impulse pipe. characterized in that the volume of the gasification section on the side farther from the valve is at least twice the volume of the other gasification section,
The purpose is to treat flow rate measurement errors as a dynamic characteristic problem, improve only the dynamic characteristics without changing the static characteristics, and provide a flow rate detector free of measurement errors.

以下本考案を第3図に示す一実施例の装置について説明
するが、第1図と同一の符号を付したものの構造・作用
は同一であるので説明を省略する。
The present invention will be described below with reference to an embodiment of the device shown in FIG. 3. However, the structures and functions of the components having the same reference numerals as in FIG. 1 are the same, and therefore the description thereof will be omitted.

図に示すようにオリフィス2の下流側に流量調節弁6が
介装されているので、オリフィス2上流側に螺旋状に巻
かれた導圧管8を取り付け、その上端を差圧計5に連通
ずる。
As shown in the figure, since a flow control valve 6 is interposed on the downstream side of the orifice 2, a spirally wound pressure guide pipe 8 is attached to the upstream side of the orifice 2, and its upper end communicates with the differential pressure gauge 5.

たとえば導圧管4の上部約半分がガス化部となっている
ような場合には、導圧管4の長さの1.5倍の長さを導
圧管に持たせることによって、該導圧管8のガス化部は
約2倍の容積を有することになる。
For example, if about half of the upper part of the impulse tube 4 is a gasification section, the length of the impulse tube 8 can be increased by making the impulse tube have a length 1.5 times the length of the impulse tube 4. The gasification section will have approximately twice the volume.

この他、導圧管の管径を太くするなどすることによって
ガス化部の容積を増加するようにしても良い。
In addition, the volume of the gasification section may be increased by increasing the diameter of the pressure guiding pipe.

さて、流量調節弁6を急縮する場合を例にとると、オリ
フィス2の上流側配管1は比較的に長丈であるため、オ
リフィス2の上・下流側ともに圧力上昇があるものの、
上流側の導圧管8への圧入流量はオリフィス2の抵抗を
介しないうえ、圧力波の反射の影響を受けて局部の圧力
が整定値より急激に大となる故に、下流側の導圧管4へ
の圧入流量よりも過分に大となる。
Now, taking as an example the case where the flow rate control valve 6 is suddenly contracted, since the piping 1 on the upstream side of the orifice 2 is relatively long, there is a pressure increase both above and downstream of the orifice 2.
The flow rate press-fitted into the upstream impulse pipe 8 does not pass through the resistance of the orifice 2, and the local pressure suddenly becomes larger than the set value due to the influence of pressure wave reflection. This is excessively larger than the press-in flow rate.

従って、先に述べたように従来の検出器のような導圧管
3を用いた場合には、第4図実線で示したような圧力P
Uの一時的な急上昇となる訳である。
Therefore, as mentioned earlier, when the pressure impulse tube 3 like the conventional detector is used, the pressure P as shown by the solid line in FIG.
This is a temporary sharp increase in U.

これは、導圧管3の初期(流量調節弁6の急縮前)のガ
ス化部の容積に対する圧縮変化分の割合が大となって、
検出圧力PUの変化率が大となるからである。
This is because the ratio of the compression change to the volume of the gasification section at the initial stage of the impulse pipe 3 (before the rapid contraction of the flow rate control valve 6) becomes large.
This is because the rate of change in the detected pressure PU becomes large.

このような逆応答量は流量に換算すると流量変更値の2
0%にも達する。
When converted to flow rate, such a reverse response amount is equal to 2 of the flow rate change value.
It reaches as much as 0%.

このことは流量検出値をフィードバック量として流量を
自動制御する場合の流量検出器としては、安定性、連応
性の向上にとって極めて不利となる。
This is extremely disadvantageous for improving stability and coordination as a flow rate detector for automatically controlling the flow rate using the detected flow rate value as a feedback amount.

一方、本実施例の検出器では導圧管8の長さを導圧管4
の1.5倍とし、入熱面積の増加もあいまってガス化部
の容積を導圧管4のそれの2倍以上とした。
On the other hand, in the detector of this embodiment, the length of the impulse tube 8 is
The volume of the gasification section was made to be 1.5 times that of the pressure impulse pipe 4 or more due to the increase in the heat input area.

すなわち、初期ガス化部の容積が大となり、オリフィス
2の上流側から導圧管8のガス化部を介しての差圧計5
へ経る圧力伝達が時間的に緩やかになる。
That is, the volume of the initial gasification section becomes large, and the differential pressure gauge 5 is measured from the upstream side of the orifice 2 through the gasification section of the impulse pipe 8.
The pressure transmission to the area becomes slower over time.

これにより導圧管4・8による感圧応答バランスが良く
なり、差圧計5で測定されるオリフィス2の上・下流側
の圧力put PLの差圧は逆応答のない、すなわち第
4図に点線で示されるような高精度の値となることが約
束される。
This improves the balance of pressure-sensitive responses by the impulse tubes 4 and 8, and the differential pressure of the pressure put PL on the upstream and downstream sides of the orifice 2 measured by the differential pressure gauge 5 has no reverse response, that is, the dotted line in FIG. You are guaranteed to get a highly accurate value as shown.

なお、流量調節弁6がオリフィス2の上流側にある場合
には、オリフィス2下流側の導圧管のガス化部容積を、
上流側2倍以上とすれば良いことは言うまでもない。
Note that when the flow rate control valve 6 is located upstream of the orifice 2, the volume of the gasification section of the impulse pipe downstream of the orifice 2 is
It goes without saying that it is better to make the upstream side more than twice as large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の検出器の説明図、第2図はその原理説明
図、第3図は本考案の一実施例を示す検出器の説明図、
第4図は測定される圧力のグラフである。 1・・・・・・配管、2・・・・・・オリフィス、4・
8・・・・・・導圧管、5・・・・・・差圧計、6・・
・・・・流量調節弁。
Fig. 1 is an explanatory diagram of a conventional detector, Fig. 2 is an explanatory diagram of its principle, and Fig. 3 is an explanatory diagram of a detector showing an embodiment of the present invention.
FIG. 4 is a graph of the measured pressure. 1... Piping, 2... Orifice, 4.
8... Impulse tube, 5... Differential pressure gauge, 6...
...Flow control valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] オリフィスと流量調節弁を有し蒸発性液流体を流す配管
の、上記オリフィスを挟んだ位置に下端部が夫々連通し
上部にガス化部を有する2本の導圧管と、同導圧管の上
端部が夫々連通される差圧計とからなり、上記配管内を
流れる蒸発性液流体の流量を検出する流量検出器におい
て、上記導圧管の流量調節弁より遠い側のガス化部の容
積を他方のガス化部の容積の2倍以上としたことを特徴
とする流量検出器。
A piping that has an orifice and a flow rate control valve for flowing an evaporative liquid fluid has two impulse tubes whose lower ends communicate with each other at positions across the orifice and which have a gasification section at the top, and an upper end of the impulse tubes. and differential pressure gauges connected to each other, the flow rate detector detects the flow rate of the evaporative liquid fluid flowing in the piping. A flow rate detector characterized in that the volume is more than twice the volume of the conversion section.
JP15883682U 1982-10-20 1982-10-20 flow rate detector Expired JPS6014170Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15883682U JPS6014170Y2 (en) 1982-10-20 1982-10-20 flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15883682U JPS6014170Y2 (en) 1982-10-20 1982-10-20 flow rate detector

Publications (2)

Publication Number Publication Date
JPS5962510U JPS5962510U (en) 1984-04-24
JPS6014170Y2 true JPS6014170Y2 (en) 1985-05-07

Family

ID=30349810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15883682U Expired JPS6014170Y2 (en) 1982-10-20 1982-10-20 flow rate detector

Country Status (1)

Country Link
JP (1) JPS6014170Y2 (en)

Also Published As

Publication number Publication date
JPS5962510U (en) 1984-04-24

Similar Documents

Publication Publication Date Title
Ziegler et al. Process lags in automatic-control circuits
RU2126527C1 (en) Flowmeter
US2474512A (en) Pulsation elimination in fluid streams
US2989866A (en) Cantilever beam flowmeter
US10247590B2 (en) Balancing valve for adjusting the distribution of fluids in multiple pipes
US5002459A (en) Surge control system
US20090199633A1 (en) Flow sensor and mass flow controller using the same
US2592569A (en) Pressure responsive measuring apparatus
US2212186A (en) Fluid flow meter
JPS6014170Y2 (en) flow rate detector
US2606445A (en) Fluid flow measuring apparatus
US4516434A (en) Flow metering device with low energy loss
JPS6017692Y2 (en) flow rate detector
KR840009133A (en) Pressure difference measuring device
US3086395A (en) Flowmeter
Priestman A study of vortex throttles Part 1: Experimental
JPS5973726A (en) Flow rate detecting device
US3103119A (en) Mass flowmeter
Williams Pulsation errors in manometer gages
JPS6014171Y2 (en) flow rate detector
JPS6329210Y2 (en)
US3024654A (en) High-capacity rotameter
US1437728A (en) Pressure gauge
US3066533A (en) Temperature equalizing multiport water level gauge
CN213812437U (en) Structure capable of bidirectional flow measurement