JPS60141462A - Grinding of cylindrical member - Google Patents

Grinding of cylindrical member

Info

Publication number
JPS60141462A
JPS60141462A JP24586383A JP24586383A JPS60141462A JP S60141462 A JPS60141462 A JP S60141462A JP 24586383 A JP24586383 A JP 24586383A JP 24586383 A JP24586383 A JP 24586383A JP S60141462 A JPS60141462 A JP S60141462A
Authority
JP
Japan
Prior art keywords
grinding
depth
grindstone
workpiece
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24586383A
Other languages
Japanese (ja)
Other versions
JPH048174B2 (en
Inventor
Takashi Kosone
小曽根 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP24586383A priority Critical patent/JPS60141462A/en
Publication of JPS60141462A publication Critical patent/JPS60141462A/en
Publication of JPH048174B2 publication Critical patent/JPH048174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements

Abstract

PURPOSE:To obtain considerably accurate finish with no reduced effective width of cut by forming on a work surface annular grooves each having a depth substantially equal to the depth of cut and grinding the remaining work surface up to the depth of cut of the grooves. CONSTITUTION:A pair of plate type grinding stones 18, 18 are mounted to a grinding stone mounting surface 16 of a grinding stone support 14 of a holder 10 at both ends thereof, arranged with a width equal to an effective width of cut, and have cutouts 22 of a curvature corresponding to the radius of a work rod 20. The grinding stones 18, 18 are pressed against the peripheral surface of the work rod 20 rotating in the direction indicated by an arrow A to form at both ends of a strip work surface 30 a pair of annular grooves 34, 34 having a depth equal to the depth of cut of the work surface 30, and a finishing grinding stone fixedly secured to the support and having a concaved abutting surface of a curvature corresponding to the radius of the work rod 20 is pressed, with oscillation, against the strip work surface 30 between the grooves 34, 34, which can be cut up to a depth equal to that of the grooves 34 with a high accuracy.

Description

【発明の詳細な説明】 本発明は、円柱体、円筒体等の円状体の研削方法に関し
、一層詳細には円状体からなる被加工体に有効幅と略等
しくしかも加工深度以下の深度を有する逃げ溝を形成し
、これをオシレージロン研削加工時に消去する円状体の
研削方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for grinding a circular body such as a cylinder or a cylindrical body, and more specifically, the present invention relates to a method for grinding a circular body such as a cylinder or a cylindrical body. The present invention relates to a method for grinding a circular body in which a relief groove is formed and the relief groove is erased during oscillation grinding.

円柱体、円筒体等を研削する方法としては、従来よりト
ラバース研削、プランジ研削およびオシレーション研削
がある。この中、オシレージョン研削は、被研削物ある
いは砥石のいずれか一方を比較的短いストロークで長手
方向に対して相対的な往復運動を施し、高能率下に加工
表面を精度良く研削加工できる方法である。従って、超
硬質材を高精度に研削する場合、特に好適に用いられる
方法と謂えよう。
Conventional methods for grinding cylindrical bodies, cylindrical bodies, etc. include traverse grinding, plunge grinding, and oscillation grinding. Among these, oscillation grinding is a method in which either the workpiece or the grinding wheel is reciprocated relative to the longitudinal direction with a relatively short stroke, and the surface to be processed can be ground with high precision and high efficiency. . Therefore, it can be said that this method is particularly suitable for grinding ultra-hard materials with high precision.

例えば、自動車に関連して従来技術を説明すれば、今ま
で次のような方法が採用されてきた。
For example, if we explain the conventional technology related to automobiles, the following methods have been adopted so far.

すなわち、エンジンの出力や回転速度が増大した結果、
その軸受にかかる負荷もまた大きくなっζいる。このた
め軸受メタルのみならずこれに軸支される軸の仕上精度
を上げ、軸受の負荷容量を増すことが必要となっている
。この結果、通常の研削仕上の後、さらにペーパーラッ
プ、ペーパーラップと酸化クロムによる研磨の併用、あ
るいは仕上砥石による研磨等の方法により加工軸に超仕
上加工を施して軸と軸受のメタルコンタクトの向上を図
ってきた。
In other words, as a result of increased engine output and rotational speed,
The load on the bearings is also increasing. For this reason, it is necessary to improve the finishing accuracy of not only the bearing metal but also the shaft supported by the bearing metal, and to increase the load capacity of the bearing. As a result, after the normal grinding, the machined shaft is subjected to a super-finishing process using methods such as paper lapping, a combination of paper lapping and chromium oxide polishing, or polishing with a finishing whetstone to improve the metal contact between the shaft and bearing. I have been trying to

然しなから、ペーパーラップや化学薬品による研削では
精度に優れた形状に仕上げることば到底困難であった。
However, it has been extremely difficult to create a shape with excellent precision using paper wrap or chemical grinding.

このような難点を回避するために前記のようなオシレー
ション研削が軸受に対しても採用されてきたが、この方
法にも次のような問題点が存在している。すなわち、回
転する加工軸の周面に砥石を押圧して加工軸周面を研削
する場合、砥石に加工軸方向のオシレーション研削をさ
せなければ加工面の十分な形状精度が得られない。
In order to avoid these difficulties, oscillation grinding as described above has been adopted for bearings, but this method also has the following problems. That is, when pressing a grindstone against the peripheral surface of a rotating processing shaft to grind the peripheral surface of the processing shaft, sufficient shape accuracy of the processing surface cannot be obtained unless the grindstone performs oscillation grinding in the direction of the processing axis.

しかし、砥石にオシレーションを与えると帯状の加工面
と非加工面の境界が不明確になり両者の間に有効に利用
できない傾斜部分(ダレ)が出来てしまう。
However, when oscillation is applied to the grindstone, the boundary between the band-shaped processed surface and the non-processed surface becomes unclear, and an inclined portion (sag) that cannot be used effectively is created between the two.

このように、砥石による超仕上加工は、砥石のオーバー
トラヘルあるいはオシレーションにより形状精度を上げ
るものであるため、従来の方法には有効軸幅が減少して
しまうという欠点があった。特に、非常に大きな負荷が
かかるエンジンのクランクシャフトの場合、これは大き
な問題である。
As described above, since superfinishing using a grindstone improves shape accuracy by over-heeling or oscillating the grindstone, the conventional method has the disadvantage that the effective shaft width is reduced. This is a big problem, especially in the case of engine crankshafts that are subjected to very heavy loads.

そこで、本発明者等は、高精度の形状が得られるという
砥石による加工の利点を生かしながら、しかも有効加工
幅を減少させることのないオシレーション研削による円
状体の加工方法を得るべく鋭意考察を重ねた結果、加工
面と非加工面の間に予め研削幅に略等しい逃げ溝を形成
し、しかもその深度を加工深度以下に設定すれば、」二
連の従来の仕上法の欠点であるダレをなくした理想的な
軸仕上加工法がjXfられることがFり明した。
Therefore, the inventors of the present invention have conducted extensive research in order to find a method for machining circular objects by oscillation grinding, which takes advantage of the advantage of machining with a grindstone in that a highly accurate shape can be obtained, and which does not reduce the effective machining width. As a result of overlapping, if a clearance groove approximately equal to the grinding width is formed in advance between the processed surface and the non-processed surface, and the depth is set to less than the processing depth, it is possible to eliminate the drawbacks of the two conventional finishing methods. It has been revealed that the ideal shaft finishing method that eliminates sagging is jXf.

従って、本発明の目的は、加工の形状精度が高くしかも
右すJ加工幅を減少させることのない軸の仕上加工方法
を提供することにある。さらに詳しく言えば、砥石によ
る高い加重積度を生かしながらしかも有効加工幅を減少
させることのない円状体の仕上加工法を提供することに
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a finishing method for a shaft that has high shape accuracy and does not reduce the width of J machining. More specifically, the object of the present invention is to provide a finishing method for a circular body that takes advantage of the high load applied by the grindstone and does not reduce the effective machining width.

前記の目的を達成するために、本発明は、回転する被加
工祠に砥石を押圧し、前記砥石を前記被7J1月二月の
回転方向と略垂直な方向に微小な往復運動をさ−uなが
ら前記被加工材の加工面を前記砥石により研削加工する
研削方法において、前記研削加工の加工深度に実質的に
等しい深度の環状溝を前記加工面に形成する工程と、前
記溝の加工深度に至るまで残余の加工面を研削する工程
とからなることを特徴とする。
In order to achieve the above object, the present invention presses a grindstone against a rotating workpiece grinder, and causes the grindstone to make a minute reciprocating motion in a direction substantially perpendicular to the rotational direction of the workpiece. In the grinding method of grinding the machined surface of the workpiece with the grindstone, the step of forming an annular groove on the machined surface with a depth substantially equal to the processing depth of the grinding process, and It is characterized by consisting of a process of grinding the remaining machined surface until it reaches the final stage.

次に、本発明についてそれを実施する装置との関係にお
いて好適な実施例を挙げ、添付の図面を参照しながら以
下詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings, with reference to preferred embodiments and apparatus for carrying out the invention.

1第1図は、溝の研削に用いる板状の砥石を示したもの
であっ”ζ、ボルダ10は、差込部12と砥石支持部1
4から構成されている。この砥石支持部14の砥石取付
面16の両端には一対の板状砥石18.18が保持され
ている。これらの板状砥石18.18は、この場合、有
効研削幅と略等しい幅Wを有し、しかも加工軸20(第
2図参照)の半径に対応する曲率の切欠22を備える。
1 Fig. 1 shows a plate-shaped grindstone used for grinding grooves.
It consists of 4. A pair of plate-shaped grindstones 18, 18 are held at both ends of the grindstone mounting surface 16 of the grindstone support portion 14. These plate-shaped grindstones 18,18 in this case have a width W approximately equal to the effective grinding width and are provided with a notch 22 of a curvature corresponding to the radius of the machining axis 20 (see FIG. 2).

次に、この板状砥石、18.18を用いて被加]二軸に
予め溝を形成する方法について説明する。
Next, a method of forming grooves in advance on two shafts using this plate-shaped grindstone, 18.18, will be described.

第2および第3図に示されているように、このホルダ1
0の差込部12を図示しない円筒研削盤の砥石台24に
形成された四部26に挿入し、矢印への方向に回転し7
ている加工軸20の周面28に押圧する。その際、回転
方向Aと直交する軸方向Bに微小なオシレーションを−
与えると々了適−である。
As shown in FIGS. 2 and 3, this holder 1
0 into the four parts 26 formed on the grindstone head 24 of a cylindrical grinder (not shown), and rotate in the direction of the arrow 7.
It is pressed against the circumferential surface 28 of the processing shaft 20 that is being held. At that time, a minute oscillation is generated in the axial direction B perpendicular to the rotational direction A.
It is very appropriate to give.

このようにして加工軸20の帯状の加工面30と非加1
kiNi32の境界、ずなわぢ、加工面30の両端部に
一対の環状の溝34が形成される。なお、溝34の深度
は、加工面30の加工深度と実質的に等しい値に設定し
ておく。
In this way, the belt-shaped machining surface 30 of the machining shaft 20 and the non-machining 1
A pair of annular grooves 34 are formed at the boundary of the kiNi 32, at the zunawa, and at both ends of the processed surface 30. Note that the depth of the groove 34 is set to a value substantially equal to the machining depth of the machining surface 30.

次に、第4乃至第7図を参照しながら、前記の溝34に
挟まれた帯状の加工面30をオシレーション研削Jる仕
上砥石について説明する。ボルダ36は1、差込部38
と砥石支持部40を含む。仕上砥石42は、その−・面
においてこの砥石支持部40に固着されている。前記支
持部40の砥石固着面の反対側に位置する押圧面は、加
工軸20の半径に対応する曲率の凹面44を形成し、し
かも凹面44は溝34.34の間隔よりも十分に短い長
さを有している。
Next, with reference to FIGS. 4 to 7, a finishing whetstone for oscillating grinding the band-shaped processed surface 30 sandwiched between the grooves 34 will be described. Boulder 36 is 1, insertion part 38
and a grindstone support part 40. The finishing whetstone 42 is fixed to the whetstone support portion 40 at its negative side. The pressing surface of the support portion 40 located on the opposite side of the grindstone fixing surface forms a concave surface 44 with a curvature corresponding to the radius of the processing shaft 20, and the concave surface 44 has a length sufficiently shorter than the interval between the grooves 34, 34. It has a certain quality.

この仕上砥石42を用いて前述のように予め溝34の形
成された加工軸20の加工面30を研削する仕上加工方
法は、以下の通りである。
A finishing method for grinding the processing surface 30 of the processing shaft 20 in which the grooves 34 have been formed in advance as described above using the finishing grindstone 42 is as follows.

第5図に示すようにホルタ36の差込部38をこの差込
部に対応し゛ζ形成された砥石台46の四部48に挿入
し、ボルトおよびナソ)50で緊締固定する。このよう
に砥石台46により支持された砥石42の押圧凹面44
を矢印への方向に回転する加工軸20の加工面30に押
圧する。すなわち、溝34.34の間隔内で砥石42は
押圧されると共にこの砥石42には矢印C方向の比較的
大きなオシレーションが与えられ、加工面30を高い形
状精度で研削していく。前述のように、非加工面32か
ら溝34への深度は、仕上砥石42の研削深度と実質的
に等しく設定されている。従って、加工面30の仕」二
加工完了時には溝34の底部と加工面30とが面一とな
り、溝34の外側壁が加工面30と非加工面32の境界
を形成するに至る(第7図参照)。
As shown in FIG. 5, the insertion portion 38 of the holter 36 is inserted into the four portions 48 of the grindstone head 46 formed in a shape corresponding to the insertion portion, and is tightened and fixed with bolts and pinholes 50. The pressing concave surface 44 of the grindstone 42 supported by the grindstone stand 46 in this way
is pressed against the machining surface 30 of the machining shaft 20 rotating in the direction of the arrow. That is, the grindstone 42 is pressed within the interval between the grooves 34 and 34, and a relatively large oscillation in the direction of arrow C is applied to the grindstone 42, thereby grinding the machined surface 30 with high shape accuracy. As mentioned above, the depth from the non-machined surface 32 to the groove 34 is set to be substantially equal to the grinding depth of the finishing grindstone 42. Therefore, when the second machining of the machined surface 30 is completed, the bottom of the groove 34 and the machined surface 30 become flush with each other, and the outer wall of the groove 34 forms a boundary between the machined surface 30 and the non-machined surface 32 (the seventh (see figure).

なお、ここで溝34の深度が加工面30の加工深度と実
質的に等しいと述べたが、これは、加工面30と非加工
面32の間に溝34が残存せず、完全に消去され、しか
も両者の間にオシレーションによる夕L・が生しない範
囲の意味である。従って、加−1−而30の加工深度が
溝34の深度より多少大きいとしてもその結果ブレが生
しない程度の差であれは両Hは実質的に等しい。
Although it has been mentioned here that the depth of the groove 34 is substantially equal to the machining depth of the machined surface 30, this means that the groove 34 does not remain between the machined surface 30 and the non-machined surface 32 and is completely erased. , moreover, it means a range in which no oscillation caused by oscillation occurs between the two. Therefore, even if the machining depth of the adder 1-30 is somewhat greater than the depth of the groove 34, both H are substantially equal as long as the difference is such that no wobbling occurs.

第8図は、上述の加工工程相互の時間関係を示す曲線で
ある。曲線りは、板状砥石18による溝入加工時間、曲
線Eは、仕上砥石42による研削仕上加工、すなわち、
軸加工時間ザイクル、曲線Fは、加工軸20の回転時間
、曲線Gは、板状砥石18および仕上砥石42のオシレ
ーションの相続時間を示す。
FIG. 8 is a curve showing the time relationship between the above-mentioned processing steps. The curved line indicates the grooving time using the plate-shaped grindstone 18, and the curve E indicates the finishing grinding time using the finishing grindstone 42, that is,
In the axis machining time cycle, the curve F shows the rotation time of the machining shaft 20, and the curve G shows the succession time of oscillations of the plate-shaped grindstone 18 and the finishing grindstone 42.

なお、上述の実施例に係る方法において、溝入加工を完
了した後軸の研削加工を行っているが、両者を同時に行
っても良い。すなわち、板状砥石18および仕」二砥石
42を回転する加」−軸20の表面210こ同時に左右
から押圧しく第9図参照)(長状6I(石I8により溝
34を形成しながらこの溝34を利用して仕上砥石42
にオシレーションを与えつつ加工面30の研削を行うの
である。
In addition, in the method according to the above-described embodiment, the shaft is ground after the grooving process is completed, but both may be performed at the same time. That is, the process of rotating the plate-shaped grindstone 18 and the second grindstone 42 simultaneously presses the surface 210 of the shaft 20 from the left and right sides (see FIG. 9) (see FIG. 9) (see FIG. 9). Finishing whetstone 42 using 34
The machined surface 30 is ground while applying oscillation.

また、上述の実施例に係る方法において、加工面30の
加工深度を一定としたが加工面30の境界に近接するに
従い深度を増大させるようにすることも可能である。す
なわち、仕上砥石42の押圧凹面44を加工軸20の軸
方向にも湾曲させ加工軸20の周面28に対し凹となる
ように構成してこれを加工面30に押圧するのである(
第1θ図参照)。この場合には、溝34の深度は加工面
30の境界部分の加工深度と実質的に同一となることは
容易に諒解されよう。
Further, in the method according to the above-described embodiment, the machining depth of the machining surface 30 is kept constant, but it is also possible to increase the depth as the depth approaches the boundary of the machining surface 30. That is, the pressing concave surface 44 of the finishing whetstone 42 is also curved in the axial direction of the processing shaft 20 so as to be concave with respect to the peripheral surface 28 of the processing shaft 20, and is pressed against the processing surface 30 (
(See Figure 1θ). In this case, it will be easily understood that the depth of the groove 34 is substantially the same as the machining depth of the boundary portion of the machining surface 30.

本発明の方法においては、以上のように加工軸加工面の
加工深度と実質的に等しい深度の溝を予め加工面端部に
形成し、仕上砥石にオシレーションをり、えつつ加工面
を研削するので、有効加工幅を減少させることなく高い
形状精度で仕上加工を行うことが可能にる。
In the method of the present invention, as described above, a groove with a depth substantially equal to the machining depth of the machining surface of the machining shaft is formed in advance at the end of the machining surface, and the machining surface is ground while applying oscillation to the finishing whetstone. Therefore, it is possible to perform finishing machining with high shape accuracy without reducing the effective machining width.

以上、本発明について好適な実施例を挙げて説明したが
、本発明はこの実施例に限定されるものではなく軸以外
の円筒体、円柱体の研削にも応用できる等、本発明の要
旨を逸脱しない範囲において種々の改良並びに設計変更
が可能なことは勿論である。
The present invention has been described above with reference to preferred embodiments, but the present invention is not limited to these embodiments, and can be applied to cylindrical bodies other than shafts, as well as grinding of cylindrical bodies. Of course, various improvements and design changes are possible without departing from the above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法に従って加工軸に溝入加工を行
う板状砥石の斜視図、第2図は、第1図に示す砥石を加
工軸に押圧して溝入加工を行っている状態を示す側面図
、第3図は、第2に示す加工状態の一部切欠平面図、第
4図は、本発明の方法に従って加工軸の加工面を研削仕
上加工する仕」−砥石の斜視図、第5図は、第4図に示
す砥石を加工軸に押圧して研削している状態を示す正面
図、第6図は、第5図に示す砥石を加工軸に押圧し研削
仕上加工を行っ−Cいる状態を示す平面図、第7図は、
研削が略終了段階に至った状態の砥石と軸の関係を示す
平面図、第8図は、本発明の方法による各加工工程の時
間関係を示す曲線、第9図は、本発明の別の実施例を示
す平面図、第10図は、本発明のさらに別の実施例を示
す一部省略断面図である。 10・・ホルダ 12・・差込部 14・・砥石支持部 16・・砥石取付面18・・板状
砥石 20・・加工軸 22・・切欠 24・・砥石台 26・・凹部 28・・周面 30・・加工面 32・・非加工面 34・・溝 36・・ボルダ 38・・差込部 40・・砥石支持部 42・・仕上砥石 44・・押圧凹面 46・・砥石台 48・・四部 特許出願人 本田技研工業株式会社 出願人代理人 弁理士 千葉 −宏″−1゛)Fig、
8 特開
Figure 1 is a perspective view of a plate-shaped grindstone that performs grooving on a processing shaft according to the method of the present invention, and Figure 2 shows that the grindstone shown in Figure 1 is pressed against the processing shaft to perform grooving. FIG. 3 is a partially cutaway plan view of the machining state shown in FIG. Fig. 5 is a front view showing the state in which the grinding wheel shown in Fig. 4 is pressed against the processing shaft for grinding, and Fig. 6 is a finishing process of grinding by pressing the grindstone shown in Fig. 5 against the processing shaft. Fig. 7 is a plan view showing the state in which -C is performed.
FIG. 8 is a plan view showing the relationship between the grinding wheel and the shaft when grinding has almost reached the completion stage, FIG. 8 is a curve showing the time relationship of each machining process according to the method of the present invention, and FIG. FIG. 10, which is a plan view showing an embodiment, is a partially omitted sectional view showing still another embodiment of the present invention. 10... Holder 12... Insertion part 14... Grinding wheel support part 16... Grinding wheel mounting surface 18... Plate grindstone 20... Machining shaft 22... Notch 24... Grinding wheel head 26... Recessed part 28... Circumference Surface 30... Processed surface 32... Non-processed surface 34... Groove 36... Boulder 38... Insertion part 40... Grinding wheel support part 42... Finishing whetstone 44... Pressing concave surface 46... Grinding wheel head 48... Part 4 Patent Applicant Honda Motor Co., Ltd. Applicant Agent Patent Attorney Chiba -Hiroshi''-1゛)Fig,
8 Tokukai

Claims (4)

【特許請求の範囲】[Claims] (1) 回転する被加工拐に砥石を押圧し、前記砥石を
前記被加工材の回転方向と略垂直な方向に微小な往復運
動をさせながら前記被加工材の加工面を前記砥石により
研削加工する研削方法において、前記研削加工の加工深
度に実質的に等しい深度の環状溝を前記加工面に形成す
る工程と、前記溝の加工深度に至るまで残余の加工面を
研削する工程とからなることを特徴とする円状体の研削
方法。
(1) Pressing a grindstone against the rotating workpiece, and grinding the processed surface of the workpiece with the grindstone while making minute reciprocating movements in a direction substantially perpendicular to the rotational direction of the workpiece. A grinding method comprising the steps of forming an annular groove on the machined surface with a depth substantially equal to the processing depth of the grinding process, and grinding the remaining machined surface up to the processing depth of the groove. A method for grinding a circular object, which is characterized by:
(2) 特許請求の範囲第1項記載の方法において、被
加工材にはその周面に少な(とも二条の溝を刻設し、前
記二条の溝は、実質的に所定の研削加工幅と同一の幅員
で離間してなる円状体の研削方法。
(2) In the method described in claim 1, the workpiece is provided with two grooves on its circumferential surface, and the two grooves substantially have a predetermined grinding width. A method of grinding circular bodies spaced apart with the same width.
(3) 特許請求の範囲第1項記載の方法において、被
加工材は円柱形状を有し、前記円柱の軸を中心にして回
転運動を行う被加工材の周面に板状砥石を押圧し、前記
円柱の帯状周面を研削加工して溝を刻設してなる円状体
の研削方法。
(3) In the method according to claim 1, the workpiece has a cylindrical shape, and a plate-shaped grindstone is pressed against the circumferential surface of the workpiece that rotates around the axis of the cylinder. , a method for grinding a circular body, which comprises grinding the belt-shaped circumferential surface of the cylinder to form grooves.
(4)特許請求の範囲第3項記載の方法において、板状
砥石の端面は被削材を形成する円柱の半径に対応する曲
率半径を有する切欠を備える円状体の研削方法。
(4) The method according to claim 3, in which the end face of the plate-shaped grindstone has a notch having a radius of curvature corresponding to the radius of the cylinder forming the workpiece.
JP24586383A 1983-12-29 1983-12-29 Grinding of cylindrical member Granted JPS60141462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24586383A JPS60141462A (en) 1983-12-29 1983-12-29 Grinding of cylindrical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24586383A JPS60141462A (en) 1983-12-29 1983-12-29 Grinding of cylindrical member

Publications (2)

Publication Number Publication Date
JPS60141462A true JPS60141462A (en) 1985-07-26
JPH048174B2 JPH048174B2 (en) 1992-02-14

Family

ID=17139940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24586383A Granted JPS60141462A (en) 1983-12-29 1983-12-29 Grinding of cylindrical member

Country Status (1)

Country Link
JP (1) JPS60141462A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136655U (en) * 1991-06-15 1992-12-18 剛 丸山 car body repair equipment
JP2007038388A (en) * 2005-08-05 2007-02-15 Honda Motor Co Ltd Groove finish machining device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165528A (en) * 1980-05-26 1981-12-19 Toshiba Corp Coining method
JPS58114856A (en) * 1981-12-28 1983-07-08 Osaka Seiki Kk Superfinish processing device for annular work

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165528A (en) * 1980-05-26 1981-12-19 Toshiba Corp Coining method
JPS58114856A (en) * 1981-12-28 1983-07-08 Osaka Seiki Kk Superfinish processing device for annular work

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136655U (en) * 1991-06-15 1992-12-18 剛 丸山 car body repair equipment
JP2007038388A (en) * 2005-08-05 2007-02-15 Honda Motor Co Ltd Groove finish machining device

Also Published As

Publication number Publication date
JPH048174B2 (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US5664991A (en) Microfinishing and roller burnishing machine
EP0219301B2 (en) Improved microfinishing apparatus and method
US6878043B1 (en) Rough- and finish-grinding of a crankshaft in one set-up
KR100373116B1 (en) Polishing method and apparatus for cam with concave side
JP2826010B2 (en) How to grind cams, etc.
JP3408823B2 (en) External polishing machine
JP2008521625A (en) Shaft journal processing method
JPS60238267A (en) Precision finishing machine for surface of workpiece
JP2006500230A (en) Finishing a crankshaft for an automobile
US20210101244A1 (en) Narrow shoe journal microfinishing apparatus and method
JPS60141462A (en) Grinding of cylindrical member
JP3583360B2 (en) Metal processing machinery
JP2002192450A (en) Machining method and machining device for rolling element for toroidal continuously variable transmission
JP2815267B2 (en) Grinding method of long spline shaft
JP3534267B2 (en) Super finishing wheel and super finishing grinding method
JPH03149139A (en) Work method for crankshaft
US3811234A (en) Method of forming workpieces by abrading
JP3577097B2 (en) Processing method of cylindrical roller for cylindrical roller bearing
SU1296391A1 (en) Tool for finishing surfaces of rotation
JPS62282852A (en) Grinding method
JP2508515Y2 (en) Vibration suppression jig
JP2854086B2 (en) Processing method for stator core of electric rotating machine
RU2199419C2 (en) Apparatus for blade-abrasive working
RU2125509C1 (en) Device for combined abrasive treatment
RU2123924C1 (en) Method of combustion abrasive machining

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term