JPS60141187A - Set control lead angle controlling method of commutatorless motor - Google Patents

Set control lead angle controlling method of commutatorless motor

Info

Publication number
JPS60141187A
JPS60141187A JP58245078A JP24507883A JPS60141187A JP S60141187 A JPS60141187 A JP S60141187A JP 58245078 A JP58245078 A JP 58245078A JP 24507883 A JP24507883 A JP 24507883A JP S60141187 A JPS60141187 A JP S60141187A
Authority
JP
Japan
Prior art keywords
commutation
motor
angle
lead angle
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58245078A
Other languages
Japanese (ja)
Inventor
Akinobu Matsumoto
松本 顕信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Denki Seizo KK, Toyo Electric Manufacturing Ltd filed Critical Toyo Denki Seizo KK
Priority to JP58245078A priority Critical patent/JPS60141187A/en
Publication of JPS60141187A publication Critical patent/JPS60141187A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To prevent the commutation failure of a cycloconverter type power converter by setting the value of a set control lead angle to the prescribed fixed value when the output frequency of a synchronous motor is operated near one divided by an integer number of the frequency of a power source. CONSTITUTION:When the output frequency of a motor is operated near one divided by an integer number of the frequency of a power source in the operation of the motor, the set control lead angle is set to the prescribed value under no condition. Thus, it prevents the effective control lead angle from being set to small value more than required. The detection of the output frequency of the motor can be readily obtained from the rotating speed of the motor, and the value of one divided by an integer number can be simply calculated.

Description

【発明の詳細な説明】 本発明は無整流子WaS運転におけるサイクロコンバー
タ式電力変換器の最小転流余裕角設定に基づく設定制御
進み角制御方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a setting control advance angle control method based on the minimum commutation margin angle setting of a cycloconverter type power converter in commutatorless WaS operation.

従来、サイクロコンバータ式電力変換器を用いて同期電
動機の駆動を行う交流無整流子電動機の運転においては
、電動機の力″4.効率およびトルク効率等を向上させ
るため、転流余裕角を必要最小限に絞り込み設定する手
法の採用は公知であり、この種の無整流子電動機の設定
制御進み角制御を実現するために電動機の運転状態にお
ける転流余裕角を検知する手段が用いられている。
Conventionally, in the operation of an AC non-commutator motor that drives a synchronous motor using a cycloconverter type power converter, the commutation margin angle is set to the necessary minimum in order to improve the motor's power efficiency and torque efficiency. It is well known to employ a method of narrowing down the settings to the limit, and in order to realize setting control advance angle control of this type of commutatorless motor, means for detecting the commutation margin angle in the operating state of the motor is used.

しかしながら、交流無整流子電動機運転の場合、!#機
の逆起電力を利用する負荷転流の他に交流′Ia源側の
条件からIjLg!、転流が重畳されるため、電動機の
全速度@囲の転流余裕角を検知することは通常難かしい
ものとなっている。
However, in the case of AC non-commutator motor operation,! # In addition to load commutation using the back electromotive force of the machine, IjLg! from the conditions on the AC 'Ia source side! , Since the commutations are superimposed, it is usually difficult to detect the commutation margin angle at the full speed of the motor.

本発明は上述したような点に鑑ろて、正確な転流余裕角
の検知を得ることなく格別に転流失敗を防止可能な装置
を実現できる方法を提供するものである。以下1本発明
を図面に基づいて詳細説明する。
In view of the above-mentioned points, the present invention provides a method that can realize a device that can particularly prevent commutation failure without obtaining accurate detection of commutation margin angle. Hereinafter, the present invention will be explained in detail based on the drawings.

第1囚および第2図はt源電圧と電動機誘起電圧の関係
を示すもので、第1図は電源周波数と電動機出力周波数
が一致した場合の一例を示し、第2図は電動機出力周波
数が電源周波数の整数分の−と異なる一例を示す。図中
s VRe Vs + VTは三相電源の相電圧s v
ow # vuv’は電動機誘起電圧の線間電圧、βは
実効制御進み角、μは重なり角、rは転流余裕角である
。ここで、U相からV相へ負荷転流が行われている期間
に電源側で8相から8相へ転流が行われた状態を示す。
Figures 1 and 2 show the relationship between the t source voltage and the motor induced voltage. Figure 1 shows an example when the power supply frequency and motor output frequency match, and Figure 2 shows the relationship between the motor output frequency and the motor output frequency. An example that is different from - for an integer number of frequencies is shown. In the figure, s VRe Vs + VT is the phase voltage s v of the three-phase power supply.
ow #vuv' is the line voltage of the motor induced voltage, β is the effective control advance angle, μ is the overlap angle, and r is the commutation margin angle. Here, a state is shown in which commutation is performed from 8 phases to 8 phases on the power supply side during a period when load commutation is performed from U phase to V phase.

なお、一般に電動機の内部インピーダンスに比較して電
源インピーダンスが極めて小さいことから、電源転流に
よる転流時間は短く負荷転流時に必要な重なり角(μ2
)に比較して少ない重なり角(μX)で転流を完了でき
ることは勿論である。
In addition, since the power source impedance is generally extremely small compared to the internal impedance of the motor, the commutation time due to power source commutation is short and the overlap angle (μ2) required for load commutation is short.
) Of course, the commutation can be completed with a smaller overlap angle (μX) than in the case of

さて、電動機出力周波数すなわち電動機回転速度と電源
周波数が一致する場合、第1図に示した如く、負荷転流
中に電源転流が連続して行われると、電源転流による転
流余裕角γ1は、前述した重なり角μm、−:の関係か
ら負荷転流のみの転流余裕角r:より大きくなる。
Now, when the motor output frequency, that is, the motor rotation speed, and the power supply frequency match, as shown in Fig. 1, if the power supply commutation is performed continuously during the load commutation, the commutation margin angle γ1 due to the power supply commutation is larger than the commutation margin angle r for only load commutation due to the above-mentioned relationship between the overlap angle μm and -:.

このため、転流余裕角を検知してその値に基づいて設定
制御進み角を設定する如き転流余裕角制御を実行してい
れば、転流余裕角検出値を連続して数回確認していても
転流余裕角γ1を検知したことであり、したがって設定
制御進み角を小さく設定することになる。この作用は電
動機出力周波数が電源周波数の整数分の−の場合でも同
様になることは明らかである。
For this reason, if commutation margin angle control is executed that detects the commutation margin angle and sets the set control advance angle based on that value, the commutation margin angle detection value must be checked several times in succession. This means that even if the commutation margin angle γ1 is detected, the set control advance angle is set to a small value. It is clear that this effect is similar even when the motor output frequency is an integer fraction of the power supply frequency.

また、電動機出力周波数が電源周波数の整数分の−と異
なる場合、第2図に示した如(、電源転流による重なり
角内が負荷転流による重なり角μすより少なくすむこと
から転流余裕角rlは転流余裕角r!より大きな値とな
り、そのため負荷転流による転流余裕角r2を正しく検
知できない。
In addition, when the motor output frequency differs by an integer of the power supply frequency, as shown in Figure 2 (the overlap angle due to power supply commutation is smaller than the overlap angle μ due to load commutation, the commutation margin is The angle rl has a value larger than the commutation margin angle r!, and therefore the commutation margin angle r2 due to load commutation cannot be detected correctly.

しかしながら、いま電動機出力周波数が電源周波数の整
数分の−の近傍で運転されない場合を考察すれば、つぎ
のサイクルにて負荷転流中に電源転流が行われる確率は
著しく減少する。そして、転流余裕角の検知による転流
余裕角制御においては通常連続数回の確認のうえ設定制
御進み角が操作されるため、電源転流の影響を受けて転
流失敗をきたさない。
However, if we now consider the case where the motor output frequency is not operated near an integer fraction of the power supply frequency, the probability that power supply commutation will occur during load commutation in the next cycle is significantly reduced. In the commutation margin angle control by detecting the commutation margin angle, the set control advance angle is normally operated after checking several times in succession, so commutation failure does not occur due to the influence of power supply commutation.

ここで、かような従来の設定制御進み角制御方式につい
て、負荷転流中に電源転流が行われ、設定制御進み角を
小さくしたために転流失敗する場合を第3図を参照して
説明する。
Here, regarding such a conventional setting control advance angle control method, a case where power commutation is performed during load commutation and commutation fails because the setting control advance angle is made small will be explained with reference to FIG. do.

第3図は各電動機誘起電圧の状態を示し、転流余裕角と
実効制御進み角9重なり角の関係を表わしたものである
FIG. 3 shows the state of each motor induced voltage and represents the relationship between the commutation margin angle and the effective control advance angle 9 overlap angle.

第3図(a)は電源転流の影響を全く受けない状態の例
を示し、ここに転流余裕角r)が必要最小限の値に絞り
込まれ、重なり角μ0より実効制御進み角β0が転流余
裕角r、を保つ状態を示している。
Fig. 3(a) shows an example of a state in which there is no influence of power supply commutation, where the commutation margin angle r) is narrowed down to the minimum necessary value, and the effective control advance angle β0 is smaller than the overlap angle μ0. This shows a state in which the commutation margin angle r is maintained.

第3図(b)は負荷転流中に電源転流が行われ、さらに
転流余裕角r、を保つため実効制御進み角β8に設定さ
れた状態の例を示し、ここで電源転流による重なり角μ
Sは第3図(a)に示した重なり角μ・より小さなもの
となることは明らかである。
Figure 3(b) shows an example of a state in which power supply commutation is performed during load commutation, and the effective control advance angle is set to β8 in order to maintain the commutation margin angle r. Overlapping angle μ
It is clear that S is smaller than the overlapping angle μ· shown in FIG. 3(a).

第3図(C)は1例えば第3図(b)の状態にあったも
のから負荷転流中に電源転流が行われなくなった場合の
例を示す。つまり、重なり角は一瞬にして増加されて重
なり角μSから重なり角μ0へ転移した例であって、そ
の結果、転流余裕角γ0から転流余裕角r8に減少され
て転訛失敗をきたすものとなることは明らかである。
FIG. 3(C) shows an example in which power commutation is no longer performed during load commutation from the state shown in FIG. 3(b), for example. In other words, this is an example in which the overlap angle is increased instantaneously and transferred from the overlap angle μS to the overlap angle μ0, and as a result, the commutation margin angle γ0 is reduced to the commutation margin angle r8, causing a commutation failure. It is clear that this will happen.

本発明はかかる点に着目しなされたもので、本発明の技
術思想を要約すればつぎく如くである。
The present invention has been made with this point in mind, and the technical idea of the present invention can be summarized as follows.

すなわち、電動機運転にて電動機出力周波数が電源周波
数の整数分の−の近傍で運転する際に、設定制御進み角
を通常の転流余裕角検知に基づく必要最小限な小さな値
に設定されることを解消し、最大負荷時でも転流可能な
例えば60’の固定値に設定させることにある。
In other words, when the motor is operated with the motor output frequency close to an integer fraction of the power supply frequency, the set control advance angle is set to the minimum necessary small value based on normal commutation margin angle detection. The purpose is to solve this problem and set a fixed value of, for example, 60', which allows commutation even at maximum load.

本発明はか偏重技術思想に基づくものであり、電動機出
力周波数の整数分の−を検知し、設定制御進み角を無条
件に所定の値に設定することより、実効制御進み角が必
要以上に小さな値に設定されることを防ぐものである。
The present invention is based on the biased technical concept, and by detecting the integer fraction of the motor output frequency and unconditionally setting the set control advance angle to a predetermined value, the effective control advance angle is increased more than necessary. This prevents it from being set to a small value.

ここに、電動機出力周波数の検知は電動機回転速度から
容易に得ることができ、その整数分の−の値が簡単に算
出可能である。なお、一般に転流余裕角制御を実行して
いる無整流子電動機においては、電動機の回転速度P7 を検出できる装置が兼備されてなり、さらには設定制御
進み角の操作を行う制御系を備えているため前述した如
き固定値の設定制御進み角指令を付加することは容易に
実施可能なことは明らかである。
Here, detection of the motor output frequency can be easily obtained from the motor rotation speed, and the negative value of the integer can be easily calculated. In general, commutatorless motors that perform commutation margin angle control are equipped with a device that can detect the rotational speed P7 of the motor, and are further equipped with a control system that operates the set control advance angle. Therefore, it is clear that it is possible to easily add a fixed value setting control advance angle command as described above.

以上説明したように本発明によれは、転流失敗の発生を
防止し得る新規な設定制御進み角制御を効用した簡便な
装置を実現可能な制御方法を提供できる・
As explained above, according to the present invention, it is possible to provide a control method that can realize a simple device that utilizes a novel setting control advance angle control that can prevent the occurrence of commutation failure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は本発明の理解を容易にす
るため示したもので、第1図および第2図は電源電圧と
電動機誘起電圧の関係を示す波形図、第3図は転流余裕
角と実効制御進み角1重なり角の関係を示す波形図であ
る。 ■R9v8.vT・・・・・・三相電源の相電圧、vu
v t VUV’ +■υVl e VUV* l v
U ys・・・・・・電動機誘起電圧の線間電圧、β・
・・・・・実効制御進み角、μ・・・・・・重なり角、
r・・・・・・転流余裕角。 扇1図 第2図 第3図
Figures 1, 2 and 3 are shown to facilitate understanding of the present invention; Figures 1 and 2 are waveform diagrams showing the relationship between power supply voltage and motor induced voltage; is a waveform diagram showing the relationship between the commutation margin angle and the effective control advance angle 1 overlap angle. ■R9v8. vT... Phase voltage of three-phase power supply, vu
v t VUV' +■υVl e VUV* l v
U ys・・・Line voltage of motor induced voltage, β・
...Effective control advance angle, μ...Overlap angle,
r... Commutation margin angle. Fan 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 同期電動機の電機子巻線にそれぞれ接続される複数個の
スイッチング素子をA偏してなるサイクロコンバータ式
電力変換器により、該同期電動機の電機子巻線を付勢す
る転流余裕角を最小の値にすべく制御する無整流子電動
機の設定制#進み角制御方法において、前記同期電動機
の出方周波数が電源周波数の整数分の−の近傍で運転さ
れる際に、設定制御進み角の値を所定の固定値に設定す
ることにより、前記サイクロコンバータ式電力変換器の
転流失敗を防止するようにしたことを特徴とする無整流
子電動機の設定制御進み角制御方法。
A cycloconverter type power converter, which is made up of a plurality of switching elements connected to the armature windings of a synchronous motor with A bias, minimizes the commutation margin angle that energizes the armature windings of the synchronous motor. In a setting-based lead angle control method for a non-commutated motor that controls the setting control lead angle to 1. A setting control lead angle control method for a non-commutated motor, characterized in that commutation failure of the cycloconverter type power converter is prevented by setting the value to a predetermined fixed value.
JP58245078A 1983-12-28 1983-12-28 Set control lead angle controlling method of commutatorless motor Pending JPS60141187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58245078A JPS60141187A (en) 1983-12-28 1983-12-28 Set control lead angle controlling method of commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245078A JPS60141187A (en) 1983-12-28 1983-12-28 Set control lead angle controlling method of commutatorless motor

Publications (1)

Publication Number Publication Date
JPS60141187A true JPS60141187A (en) 1985-07-26

Family

ID=17128264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245078A Pending JPS60141187A (en) 1983-12-28 1983-12-28 Set control lead angle controlling method of commutatorless motor

Country Status (1)

Country Link
JP (1) JPS60141187A (en)

Similar Documents

Publication Publication Date Title
US3612973A (en) A brushless dc motor system combined with a thyristor bridge inverter
KR920011003B1 (en) Method and system for reconnecting inverter to rotating motors
US4713594A (en) Start-up control for switched reluctance motor
US3696278A (en) Controlling apparatus for a d.c. brushless motor
US3678358A (en) Brushless dc adjustable speed drive with static regenerative dc motor control
US5757152A (en) Speed control method for brushless DC motor
US5281903A (en) Method for drivingly controlling a variable reluctance type motor
JPS5917632B2 (en) Zero rotation and zero torque detection method and device
JPS60141187A (en) Set control lead angle controlling method of commutatorless motor
JP3283377B2 (en) DC motor synchronous starter
JP2000152683A (en) Method for controlling brushless dc motor
EP0270689A1 (en) Three-phase ac motor controller
JP4018262B2 (en) Frequency converter
JPS6112469B2 (en)
JPH0751000B2 (en) Variable speed controller for induction motor
JPH0344513B2 (en)
JPH044783A (en) 3-phase current controller
JP3135251B2 (en) Driving method of brushless motor
JPS61164486A (en) Drive device of brushless motor
JPS6227637B2 (en)
JP2000295898A (en) Controller for gas-turbine starter
JPS59153477A (en) Controller for synchronous motor
JPS6333394B2 (en)
JPS6046792A (en) Controller of synchronous motor
JPH0817595B2 (en) Starting method of brushless DC motor