JPS60140750A - Read-only memory - Google Patents

Read-only memory

Info

Publication number
JPS60140750A
JPS60140750A JP58250664A JP25066483A JPS60140750A JP S60140750 A JPS60140750 A JP S60140750A JP 58250664 A JP58250664 A JP 58250664A JP 25066483 A JP25066483 A JP 25066483A JP S60140750 A JPS60140750 A JP S60140750A
Authority
JP
Japan
Prior art keywords
gate
bit lines
potential
insulating film
rom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58250664A
Other languages
Japanese (ja)
Inventor
Hiroshi Kadota
廉田 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58250664A priority Critical patent/JPS60140750A/en
Publication of JPS60140750A publication Critical patent/JPS60140750A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices

Abstract

PURPOSE:To obtain a ROM, access time thereof is very short and the degree of integration thereof is high, by forming reverse condution type bit lines to the surface layer section of one conductive type semiconductor substrate through diffusion, forming a gate between these bit lines through a thin insulating film, coating the whole surface with an insulating film and boring an opening, and applying a word line to the gate while being extended on the insulating film. CONSTITUTION:Reverse conduction type bit lines BL are formed to the surface layer section of one conduction type semiconductor substrate S through diffusion, and a gate G is shaped through a thin insulating film OX while being held by these bit lines, thus constituting a MOS capacitance MC by these bit lines, insulating film and gate. An insulating film is applied on the whole surface, a through-hole C is bored made to correspond to the gate G, and a word line WL is applied to the gate G while being extended on the film. According to such constitution, pulse voltage is applied only to the word line WL selected by an address recorder, and a circuit ST initially setting the potential of the bit lines before starting access and a sense amplifier SA are connected to the bit lines BL.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高速高集積度の読み出し専用メモリ(FIOM
)を実現するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a high-speed, highly integrated read-only memory (FIOM).
).

従来例の構成とその問題点 ROMはLSIの製造用のフォトマスクのパターンによ
ってデータ“O゛、“1°′のコーディングを行う[マ
スクROMJと、製品化された後電圧を印加すること等
によってコーディングが可能な「プログラマブルROM
 Jに分類されるがここでは前者のマスクROMについ
て従来例の集積度。
Configuration of conventional example and its problems ROM encodes data “O゛,” “1°” by photomask pattern for LSI manufacturing [Mask ROMJ and by applying voltage etc. after being manufactured into a product. Programmable ROM that allows coding
Although it is classified as J, here we will show the integration degree of the conventional example for the former mask ROM.

応答速度を検討する。Consider response speed.

まず第1図は、応答速度を重視した型のマスクROMの
平面図−第2図はこの等何回路である。
First, FIG. 1 is a plan view of a type of mask ROM emphasizing response speed, and FIG. 2 is a circuit diagram of the same type.

WLはワード線−BL、 、 BL2 、 BL、 、
 BL4は各々ビット線を示している。BL2とBL4
のビット線には、半導体基鈑表面にある不純物拡散層に
対してスルーホールCが形成されているため電気的に接
続がなされている。ワード線WLは通常基板上の薄い絶
縁膜上に導電材料で形成されており、MOSFETのゲ
ートにもなっている。
WL is the word line - BL, , BL2, BL, ,
BL4 each indicates a bit line. BL2 and BL4
The bit line is electrically connected to the through hole C formed in the impurity diffusion layer on the surface of the semiconductor substrate. The word line WL is usually formed of a conductive material on a thin insulating film on a substrate, and also serves as a gate of a MOSFET.

第2図に示したようにBL2とBL4にはMOS)ラン
ジスタのドレインが接続されているがBLl。
As shown in FIG. 2, the drain of a MOS transistor is connected to BL2 and BL4, but BLl.

BL3には接続されていない。ROMを構成する場合、
各ビット線にセンスアンプSAと負荷要素ZLをつける
。例えば負荷要素としてこの場合VDDとの間に抵抗を
つける。最初全てのワード線WLはMOS )ランジス
タの閾値電圧以下にしてお(と−MOS)ランジスタの
ドレインとの接続の有無に拘らず負荷抵抗には電流が流
れずビット線の電位はVDDの一1Nである。次に成る
ワードが選択されアクセスされると、WL定電位閾値電
位以上になり−スルーホールがあるビットではMOSト
ランジスタを経由して電流が流れ一ビツト線の電位が下
がる。これをセンスアンプで検出し、符号として再生す
ればROMの動作が完了する。
It is not connected to BL3. When configuring ROM,
A sense amplifier SA and a load element ZL are attached to each bit line. For example, in this case, a resistor is provided between the load element and VDD. Initially, all word lines WL are set to below the threshold voltage of the MOS (MOS) transistor (and -MOS), so that no current flows through the load resistor regardless of whether or not it is connected to the drain of the transistor, and the potential of the bit line is -1N below VDD. It is. When the next word is selected and accessed, the WL constant potential becomes equal to or higher than the threshold potential - current flows through the MOS transistor in the bit where there is a through hole, and the potential of one bit line decreases. If this is detected by a sense amplifier and reproduced as a code, the operation of the ROM is completed.

ROMのアクセス時間Lace (アドレス信号が入力
されてデータが出力される丑での時間)はできるだけ短
かい方が高性能とされるが−taccは一般に次の三構
成要素から成りたっている。
It is said that the shorter the ROM access time Lace (the time between inputting an address signal and outputting data), the higher the performance, and -tacc generally consists of the following three components.

Lacc = t* + UB+ ts −■−・・−
・−・=−=(1)但1.. tA ニアドレス信号入
力からアドレスデコーダ出力でWLにパルスが印加され
るまでの時間。
Lacc = t* + UB+ ts −■−・・−
・−・=−=(1) However, 1. .. tA Time from near address signal input until pulse is applied to WL at address decoder output.

tB:WLにパルスが印加されてからビット線の電位が
変化する時間。
tB: Time for the bit line potential to change after a pulse is applied to WL.

t、s:ビ、)線の電位が変化したのをセンスアンプで
検出し、出力データとして再生し終えるまでの時間、 今ここでは、第1図における1Bを評価してみる。ビッ
ト線の全容量をaB−1i(osl−ランジスタのON
抵抗をγONとするとビット線の電位変化(スルーホー
ルがある場合)は次の時定数をもつ。
t, s: The time it takes for the sense amplifier to detect a change in the potential of the (bi, ) line and finish reproducing it as output data.Here, we will evaluate 1B in FIG. 1. The total capacitance of the bit line is aB-1i (osl-transistor ON)
When the resistance is γON, the potential change of the bit line (if there is a through hole) has the following time constant.

τ1 ”” Tag −GB〜 tB ・・・・自・・
・・・・・ ・・・・・(2)τ1は通常数十ナノ秒で
あり、アクセス時間(7)他の構成要素tAN’Sと合
わせても全体のアクセス時間は100ナノ秒前後となり
比較的高速のROMが得られる。一方ROMの1と、)
当りの必要面積はスルーホール周辺部の面積、Ac。
τ1 ”” Tag −GB ~ tB ...Self...
...... (2) τ1 is usually several tens of nanoseconds, and the access time (7) Even when combined with other components tAN'S, the overall access time is around 100 nanoseconds. A ROM with a high speed can be obtained. On the other hand, with ROM 1)
The required area for the hit is the area around the through hole, Ac.

MOS )ランジスタカの面積AM * v8B 拡散
層部の面積Assの和であって一比較的大きい。
MOS) Area of the lunge stacker AM*v8B This is the sum of the area Ass of the diffusion layer portion and is relatively large.

A+=Ac+AM+Ass ・・−・・・・・−(3)
次に第3図に他のROMの従来例を示す。
A+=Ac+AM+Ass・・・・・・・・・−(3)
Next, FIG. 3 shows another conventional example of ROM.

但しこの図では簡単のためWLは3本しか示していない
が実際のものは数十水から百本程度平行に配置する。こ
の場合も前例と同様にWLはMOSトランジスタのゲー
トと共用になっている。等1曲回路を第4図に示す。こ
の場合、全ビットでMOSトランジスタが構成され、そ
れがビット線方向に直列接続されている。コーディング
(“0″。
However, in this figure, only three WLs are shown for the sake of simplicity, but in reality, about several dozen to one hundred WLs are arranged in parallel. In this case as well, WL is also used as the gate of the MOS transistor, as in the previous example. The circuit for one song is shown in Figure 4. In this case, all bits constitute MOS transistors, which are connected in series in the bit line direction. Coding (“0”.

“1°゛の指定)はMOS)ランジスタの閾値電圧の区
別で行う。即ち、“1゛に対応するビットでは閾値電圧
が負であり(つまり、WLの電位が0でもMOS)ラン
ジスタはON)“0“に対応するビク)は閾値電圧を正
(つまり−WLの電位がOのときMOS)ランジスタは
OFF )とする。
The designation of "1°" is done by distinguishing the threshold voltage of the MOS transistor.In other words, in the bit corresponding to "1", the threshold voltage is negative (that is, even if the potential of WL is 0, the MOS transistor is ON). The threshold voltage corresponding to "0" is positive (that is, when the potential of -WL is O, the MOS transistor is turned off).

ROMのアクセス動作は次のように行う。捷ず最初全て
のWLは高電位(通常VDD )に設定し、次に選択さ
れたワード線だけを0電位とする。例えばWLlを0電
位とすると−BL、、 、BL3に対応するM、O8)
ランジスタはOFFとなり−BL2は−ONである。第
1図の場合同様ビット線方向のV8Sと反対側に負荷要
素Zl、をつけると、最初どのZLにも電流が流れて電
位降下がおこり、これ全センスアンプSAで検出してい
るので低電位が検出されている。次に成るワード線が選
択的に○電位になるとコーディングにより“o ”のと
ころid、M OS )ランジスタがOFFになり電流
がなくなるのでZL両瑞での電圧降下がなくなり、“1
°゛に対応するビットではhlO8)ランジスタカON
のためやはり電圧降下がある。センスアンプがこの差を
識別して符号として再生すればROM動作が完了する。
The ROM access operation is performed as follows. First, all WLs are set to a high potential (usually VDD), and then only the selected word line is set to 0 potential. For example, if WLl is set to 0 potential, -BL, , M, O8 corresponding to BL3)
The transistor is OFF and -BL2 is -ON. As in the case of Fig. 1, when a load element Zl is attached to the side opposite to V8S in the bit line direction, a current flows through each ZL and a potential drop occurs, and this is detected by all sense amplifiers SA, so the potential is low. has been detected. When the next word line selectively goes to ○ potential, the coding turns off the id (MOS) transistor at "o" and there is no current, so the voltage drop across ZL disappears and the voltage becomes "1".
For the bit corresponding to °
Therefore, there is still a voltage drop. When the sense amplifier identifies this difference and reproduces it as a code, the ROM operation is completed.

この方式に於けるアクセス時間を評価すると。Evaluating the access time in this method.

ビ、)線方向に直列接続された部分の全容量をcB (
これは前例とほぼ同様の値)とすると。
The total capacitance of the parts connected in series in the line direction is cB (
This value is almost the same as the previous example).

τ2=CB1ZLゝtB の時定数で変化する。ただしZLの値はビ、)方向に直
列接続されたMOS)ランジスタのON抵抗の総和と同
様な値にしないと“0°゛、“1°゛の検出が困姥にな
るので τ2 z CB −N ・γ0ド〜 しB ・・・・・
・・・・・・・・・・(4)つまり−τ2はτ1の数十
倍程度である。実際この方式のROMのアクセスは数マ
イクロ秒のものが多い。一方1ビット当りの面積A2は
第3図かられかるように−MO8)ランジスタの面積だ
けでよいのでA2=AMとなり、前例の1/口〜1/4
程度でよい。以上従来例の特徴をまとめると。
It changes with the time constant of τ2=CB1ZLtB. However, the value of ZL must be set to a value similar to the sum of the ON resistances of the MOS transistors connected in series in the directions (bi, ), otherwise it will be difficult to detect "0°" and "1°", so τ2 z CB − N・γ0do〜shiB・・・・・・
(4) That is, -τ2 is about several tens of times as large as τ1. In fact, access to a ROM using this method often takes several microseconds. On the other hand, as shown in Figure 3, the area per bit A2 is only the area of the MO8) transistor, so A2 = AM, which is 1/4 to 1/4 of the previous example.
It is enough. The characteristics of the conventional example can be summarized above.

1、集積度はよくないが比較的高速アクセス可能な型(
NOR型:第1図) 2、集積度はよいが、低速アクセスの型(NAND型:
第3図) になっていたoしかし現在高速アクセス可能でしかも集
積度も高いROMが必要とされている。
1. Although the density is not good, it is a type that can be accessed at relatively high speed (
NOR type: Figure 1) 2. Good integration, but slow access type (NAND type:
However, there is now a need for a ROM that can be accessed at high speed and has a high degree of integration.

発明の目的 本発明はこれらを可能とするものであり、極めて高速(
従来のNOR型より高速)のROMが高集積度で実現で
きる。
Purpose of the Invention The present invention makes these possible, and is extremely fast (
A ROM (faster than the conventional NOR type) can be realized with a high degree of integration.

発明の構成 本発明は第一の極性の不純物を含む半導体牽機表面上に
、第二の極性の不純物拡散層からなるドレインを持つ結
締ゲート型電界効果容量を行列状の格子点位置に選択的
に配置し一前記ドレインを列状に結合する第二の極性の
不純物拡散層列を形成し、前記拡散層列の一端にこの電
位を設定する手段と電位を検出する手段とを配し−かつ
一前記絶縁ゲート型電界効果容量の各ゲートを行状に結
合する配線行を形成し、前記配線行の一端にこの配線に
電圧を印加する手段を有する読み出し専用メモリである
Structure of the Invention The present invention provides a structure in which a gate-type field-effect capacitor having a drain formed of an impurity diffusion layer of a second polarity is selectively placed on the surface of a semiconductor capacitor containing an impurity of a first polarity at the positions of lattice points in a matrix. forming a second polarity impurity diffusion layer array that connects the drains in a row, and disposing means for setting this potential and means for detecting the potential at one end of the diffusion layer array, and 1. A read-only memory comprising a wiring row that connects each gate of the insulated gate field effect capacitor in a row, and a means for applying a voltage to the wiring at one end of the wiring row.

実施例の説明 本発明のROMの各ビットは所謂MO3容量から成り立
っている。第5図に構成例を、第6図に等価回路を示す
。第6図(a)は平面図、[有])はその詳細図、(C
)はbのx−x′線線維細断面図ある。WLはワード線
で例えば金属配線−BLはビット線で半導体基板Sの表
面の基板と反対極性の高濃度不純物拡散層から成ってい
る。各ビットはゲートをdとし薄い絶縁膜OXと半導体
基板によって構成されるMO3容量MOから成り一ゲー
トGと金属配線W L 間のスルーホールCの有無でR
OM ヒyトデータ“0°”、”1 °′をコーディン
グするかまたはMO3O3容量ったく構成しないビット
を作ることでコーディングする。ワード線の一端には通
常のROMと同様にアドレスデコーダによって選択され
たWLのみにパルス電圧を印加するノくルス駆動回路(
図示せず)が設けられ、ビ、)線の一端にはアクセス開
始前にピッ)線の電位を初期設定する回路STとセンス
アンプSAi設置する。
DESCRIPTION OF THE EMBODIMENTS Each bit of the ROM of the present invention consists of a so-called MO3 capacity. FIG. 5 shows a configuration example, and FIG. 6 shows an equivalent circuit. Figure 6(a) is a plan view, [Yes]) is a detailed view thereof, (C
) is a thin cross-sectional view of the fiber taken along line xx′ of b. WL is a word line, and for example, metal wiring line -BL is a bit line, which is made up of a high concentration impurity diffusion layer on the surface of the semiconductor substrate S with a polarity opposite to that of the substrate. Each bit consists of an MO3 capacitor MO with a gate d and a thin insulating film OX and a semiconductor substrate.
OM Human data is coded by coding "0°", "1°'" or by creating a bit that does not constitute the MO3O3 capacitance.One end of the word line has a memory selected by an address decoder like a normal ROM. Norx drive circuit that applies pulse voltage only to WL (
(not shown) is provided, and a circuit ST and a sense amplifier SAi are installed at one end of the B,) line to initialize the potential of the B) line before access is started.

STは制御信号CTによって出力状態を制御され。The output state of ST is controlled by a control signal CT.

CTが“1゛のとき出力が入力基準電圧VRになり−C
Tが“o ”のときは高インピーダンス状態となる。次
にこの構成の動作を説明する。
When CT is "1", the output becomes the input reference voltage VR -C
When T is "o", it is in a high impedance state. Next, the operation of this configuration will be explained.

捷ずアクセスを開始する以前にビット線の電位をST回
路を使って設定する。設定電位V、は。
Before starting access without switching, the potential of the bit line is set using an ST circuit. The set potential V is.

アクセス開始前のワード線の電位VGが各MO8容量の
ゲートに印加されている場合(VGVR)がこのMO8
容量の閾値電圧より少し低くなるように選ぶ。即ちこの
とき全てのMO3容量はOFF状態である。
When the word line potential VG before the start of access is applied to the gate of each MO8 capacitor (VGVR), this MO8
Select a value slightly lower than the threshold voltage of the capacitor. That is, at this time, all MO3 capacitors are in the OFF state.

次に入力アドレス信号に従って成るWL(例えばWLl
とする)が選択されるとWL駆動回路によってパルスが
WLに印加される。このパルスによってこのWLlに結
合されているMO8容量は全てONになりWLlと“1
゛にコーディングされているビット線とは容量的に結合
される。従ってWL。
Next, a WL (for example, WLl) is formed according to the input address signal.
) is selected, a pulse is applied to the WL by the WL drive circuit. By this pulse, all the MO8 capacitors connected to this WLl are turned on, and WLl and "1" are connected to each other.
It is capacitively coupled to the bit line coded . Therefore WL.

上にある電圧パルスはこの容量結合を介して直接センス
アンプSAに達する。各ビ、)線の全容量をCB、各M
O8容量のON時の容量をCoxとすると、センスアン
プに入力されるときのパルス信号振幅vsigは Vs1g=VwL−COx/cB −+用++−+++
+(5)但し+ VWLはWl、上のパルス振幅である
The voltage pulse located above reaches the sense amplifier SA directly via this capacitive coupling. The total capacity of each B, ) line is CB, each M
If the capacitance of the O8 capacitor when it is ON is Cox, the pulse signal amplitude vsig when input to the sense amplifier is Vs1g=VwL-COx/cB -+++++++
+(5) However, +VWL is the pulse amplitude above Wl.

(00”/CB )は1/3o〜1/2o程度fx (
7) T セフ ス7ンプを適切に設計すれは充分検出
可能である。
(00”/CB) is about 1/3o to 1/2o fx (
7) If the T-Seph7 amplifier is appropriately designed, it can be detected sufficiently.

本発明のROMのアクセス時間と集積度を各々従来例と
比較してみるolずアクセス時間(tacc)であるが
、従来同様 tacc = ti + tB+ tsの3要素に分解
され、ti、tsは従来と同等と考えられる一方tBに
ついては2等価回路的には(5)式かられかるように容
量分割のため入力信号は瞬時に分圧されてセンスアンプ
に伝搬されるので。
Comparing the access time and degree of integration of the ROM of the present invention with the conventional example, the access time (tacc) is broken down into three elements: tacc = ti + tB + ts, and ti and ts are the same as in the conventional example. On the other hand, regarding tB, the input signal is instantaneously divided into voltages and propagated to the sense amplifier due to capacitance division, as seen from equation (5) in terms of two equivalent circuits.

tB=o ・・−・・・・・・・・−・・・・・・・・
・・・−・・・・・・+6)である。よってアクセス時
間は従来のどのタイプよりも短かい。
tB=o・・・・・・・・・・・・−・・・・・・・・・・
...-...+6). Therefore, access time is shorter than any conventional type.

次に一集積度であるが1ビット当りの占有面積ム5は。Next, regarding the degree of integration, the area occupied per bit is 5.

A5 = AM + As s よって、第3図で説明した従来例より看干大きい程度で
ある。
A5 = AM + As s Therefore, it is considerably larger than the conventional example explained in FIG.

なお−ワード線とビット線との間をMO8容量でなく、
直接容量で結合することも考えられるがこの場合−ビy
)線の全容量ORが大きくなり(各、結合部に一つづつ
容量が並列接続されることになる。)センスアンプに到
達する信号振幅が小さくなってセンスアンプの出力まで
の時間し8が大きくなり、不利である。ところが本発明
のようにMO8容量によってワード線とビット線とを結
合すればアクセスと関係ないワード線に結合したMO3
容量のゲート電位を閾値電圧以下にすることで関係のな
いワード線と各ピクト線間の容量がほとんどなくなり、
CB が極めて小さくなり良好な特性のROMが得られ
る。
Note that the connection between the word line and bit line is not MO8 capacitance.
It is also possible to couple directly by capacitance, but in this case -
) The total capacitance OR of the line becomes larger (one capacitor is connected in parallel to each coupling part), the signal amplitude reaching the sense amplifier becomes smaller, and the time it takes to output the sense amplifier increases. It gets bigger, which is a disadvantage. However, if the word line and bit line are connected by the MO8 capacitor as in the present invention, the MO3 connected to the word line unrelated to access
By lowering the gate potential of the capacitor below the threshold voltage, the capacitance between unrelated word lines and each pictoline is almost eliminated.
CB becomes extremely small and a ROM with good characteristics can be obtained.

発明の効果 以上本発明によってアクセス時間が極めて短かく、かつ
集積度が充分に高い良好な特性のROMが得られる。
Effects of the Invention According to the present invention, it is possible to obtain a ROM with extremely short access time, sufficiently high degree of integration, and good characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高速NOR型ROMのメモリセルパター
ン図、第2図は第1図に示した高速NOR型ROMの等
価回路図、第3図は従来の高集積度NANI)fiRO
Mのメモリセルパターン図−第4図は第3図に示した高
集積度NANII型ROMの等価回路図、第6図(a)
 、 (b)は本発明の一実施例のの等価回路図である
。 w t、 (wLl、WL2 、wL5 )・・・・・
・ワード線−BL・・・・・・ピッ)線、S・・・・・
・半導体基板、G・・・・・・ゲート、MO・・・・・
・uos容z−c・・・・・・スルーホール−8T・・
・・・・電位設定回路、SA・・・・・・センスアンプ
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 C 第 2 図 第3図 第4図 Ot O OO ot
Figure 1 is a memory cell pattern diagram of a conventional high-speed NOR type ROM, Figure 2 is an equivalent circuit diagram of the high-speed NOR type ROM shown in Figure 1, and Figure 3 is a diagram of a conventional high-density NANI) fiRO.
Memory cell pattern diagram of M - Figure 4 is an equivalent circuit diagram of the highly integrated NAN II type ROM shown in Figure 3, Figure 6 (a)
, (b) is an equivalent circuit diagram of an embodiment of the present invention. w t, (wLl, WL2, wL5)...
・Word line - BL...Beep) line, S...
・Semiconductor substrate, G...Gate, MO...
・uos volume z-c・・・Through hole-8T・・
...Potential setting circuit, SA...Sense amplifier. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure C Figure 2 Figure 3 Figure 4 Ot O OO ot

Claims (3)

【特許請求の範囲】[Claims] (1)第一の極性の不純物を含む半導体基板表面上に、
第二の極性の不純物拡散層からなるドレインを持つ絶縁
ゲート型電界効果容量を行列状の格子点位置に選択的に
配置し、前記ドレインを列状に結合する第二の極性の不
純物拡散層列を形成し、前記拡散層列の一端にこの電位
を設定する手段と電位を検出する手段とを配し、かつ、
前記絶縁ゲート型電界効果容量の各ゲートを行状に結合
する配線行を形成し、前記配線行の一端にこの配線に電
圧を印加する手段を有することを特徴とする読み出し専
用メモリ。
(1) On the surface of the semiconductor substrate containing impurities of the first polarity,
a second polarity impurity diffusion layer array in which insulated gate field effect capacitors having drains made of second polarity impurity diffusion layers are selectively arranged at matrix-like lattice point positions, and the second polarity impurity diffusion layer columns are coupled to the drains; a means for setting this potential and a means for detecting the potential are disposed at one end of the diffusion layer array, and
A read-only memory characterized in that a wiring row is formed that connects each gate of the insulated gate field effect capacitor in a row, and means is provided at one end of the wiring row for applying a voltage to the wiring.
(2)第二の極性の不純物拡散層列の一端に電圧を印加
する手段を配し、同じく配線行の一端にこの配線の電位
を設定する手段と電位を検出する手段を有することを特
徴とする特許請求の範囲第1項記載の読み出し専用メモ
リ。
(2) Means for applying a voltage is disposed at one end of the second polarity impurity diffusion layer array, and means for setting the potential of this wiring and means for detecting the potential are also provided at one end of the wiring row. A read-only memory according to claim 1.
(3)絶縁ゲート型電界効果容量を行列状の格子点全て
に形成し1行状に設けた配線と前記絶縁ゲート型電界効
果容量との結合を選択的に行うことを特徴とする特許請
求の範囲第1項記載の読み出し専用メモリ。
(3) Claims characterized in that insulated gate field effect capacitors are formed at all lattice points in a matrix, and the wiring provided in one row is selectively coupled to the insulated gate field effect capacitors. The read-only memory described in paragraph 1.
JP58250664A 1983-12-27 1983-12-27 Read-only memory Pending JPS60140750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58250664A JPS60140750A (en) 1983-12-27 1983-12-27 Read-only memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58250664A JPS60140750A (en) 1983-12-27 1983-12-27 Read-only memory

Publications (1)

Publication Number Publication Date
JPS60140750A true JPS60140750A (en) 1985-07-25

Family

ID=17211207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58250664A Pending JPS60140750A (en) 1983-12-27 1983-12-27 Read-only memory

Country Status (1)

Country Link
JP (1) JPS60140750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244768A (en) * 1989-03-17 1990-09-28 Toshiba Corp Non-volatile semiconductor memory
JP2014086571A (en) * 2012-10-24 2014-05-12 Fujitsu Semiconductor Ltd Read only semiconductor memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244768A (en) * 1989-03-17 1990-09-28 Toshiba Corp Non-volatile semiconductor memory
JP2014086571A (en) * 2012-10-24 2014-05-12 Fujitsu Semiconductor Ltd Read only semiconductor memory

Similar Documents

Publication Publication Date Title
US6927997B2 (en) 3-transistor OTP ROM using CMOS gate oxide antifuse
TWI435332B (en) One time programmable memory and method of operation
KR100558209B1 (en) Ferroelectric memory and method of operating same
US5675547A (en) One time programmable read only memory programmed by destruction of insulating layer
KR100443545B1 (en) Mram arrangement
JP5043357B2 (en) Programmable memory cell
JP4004103B2 (en) Mask ROM
JP2008171481A (en) Nonvolatile semiconductor storage device
JPH05120866A (en) Semiconductor memory element
KR900015164A (en) EEPROM with NAND Memory Cell Structure
JP5785826B2 (en) OTP memory
US11335424B2 (en) One-time programmable memory bit cell
JPH088408A (en) Nonvolatile memory
JP2020113702A (en) Resistive random access memory
KR100518287B1 (en) Semiconductor memory device using magnetoresistive effect
KR101107646B1 (en) Memory device
CN112292728A (en) Circuit and layout for resistive random access memory array with two bit lines per column
JPS60140750A (en) Read-only memory
US9865601B2 (en) Semiconductor integrated circuit
JP5700602B1 (en) Nonvolatile semiconductor memory
JP2007080454A (en) Semiconductor storage device
JPH11102980A (en) Feram cell, write method therefor, and feram cell array and feram using the cell
JP3084582B2 (en) Semiconductor storage device
JP5101084B2 (en) Magnetic memory cell array element
CN112151098A (en) Multi-fuse memory cell circuit