JPS60139942A - Tubular bush - Google Patents

Tubular bush

Info

Publication number
JPS60139942A
JPS60139942A JP25155183A JP25155183A JPS60139942A JP S60139942 A JPS60139942 A JP S60139942A JP 25155183 A JP25155183 A JP 25155183A JP 25155183 A JP25155183 A JP 25155183A JP S60139942 A JPS60139942 A JP S60139942A
Authority
JP
Japan
Prior art keywords
liquid
resilient member
partition wall
axial direction
liquid chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25155183A
Other languages
Japanese (ja)
Other versions
JPS6357656B2 (en
Inventor
Toshiaki Abe
阿部 俊朗
Junkichi Konishi
小西 淳吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25155183A priority Critical patent/JPS60139942A/en
Publication of JPS60139942A publication Critical patent/JPS60139942A/en
Publication of JPS6357656B2 publication Critical patent/JPS6357656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially
    • F16F13/16Units of the bushing type, i.e. loaded predominantly radially specially adapted for receiving axial loads

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To improve the vibration blocking effect and suppressing effect by forming a pair of liquid chambers facing each other in axial direction while holding a partition wall between them in a resilient member placed between inner and outer tubes and differentiating the radial lengths of partition wall and outer wall of each liquid chamber. CONSTITUTION:A resilient rubber member 13 is mounted between an inner tube 11 and an outer 12 arranged coaxially with the inner tube 11. Said resilient member 13 is adhered through vulcanization to the inner tube 11 and an auxiliary ring 15 to be pressure fixed to the innercircumference of outer tube 12 through a seal rubber 14. First and second fluid chambers 17, 17a partitioned by a partition wall 16 made of resilient member such as rubber having lower spring constant than that of resilient member 13 and third and fourth fluid chambers 18, 18a partitioned by the partition wall 16a are formed in the resilient member 13 then each fluid chamber is communicated each other through communication paths 22, 23. Radial length L1 of partition walls 16, 16a is made shorter than the length L2 of outer walls 21, 21a of resilient member 13.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は内筒、外筒およびこれら内、外筒間に装填され
る弾性体とを備えた筒状プツシ−に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a cylindrical pusher including an inner cylinder, an outer cylinder, and an elastic body loaded between the inner cylinder and the outer cylinder.

従来技術 この種筒状ブツシュは、たとえばNl58ANサ一ビス
周報第428号(日産自動車株式会社昭和55年9月発
行)第115員に示され、第1図に示すようにセミトレ
ーリングアーム式のサスペンション1に用いられている
。即ち、このサスペンション1はサスベンジN/メンバ
2に7−ム6が上下揺動可能に支持され、このアーム6
の揺動端部に車輪取付用のロードホイール4が回転自在
に取付けられている。5は図外のディファレンシャルギ
ヤを収納するキャリッジで、前記ディ7アレンシヤルギ
ヤから分岐され前記キャリッジ5から回転可能に突出す
るドライブシャフト6が前記ロードホイール4に連結さ
れている。7はストラットである。、そして、前記サス
ベンジ璽ンメンバ20車両左右方向両端部が筒状プツシ
S8を介して図外の車体に取付けられ、この筒状ブツシ
ュ8によってサスベンジ日ン1の制振機能と路面から車
体に伝達される振動の遮断機能とを行なうようになって
いる。ところで、前記筒状ブツシュ8には特公昭48−
36151号に示されるように、内筒、外筒間に装填さ
れる弾性体内に内筒を境にして複数の液体室を形成し、
これら各液体室を連通路を介して連通することによって
、前記制振機能と振動遮断機能とを効率良く行なうよう
にした液体入りの筒状ブツシュがある。
Prior Art This type of cylindrical bushing is shown in, for example, Nl58AN Service Bulletin No. 428 (published by Nissan Motor Co., Ltd. in September 1980), Part 115, and is a semi-trailing arm type bushing as shown in Fig. 1. Used in suspension 1. That is, in this suspension 1, a 7-arm 6 is supported by a suspension member 2 so as to be able to swing vertically.
A road wheel 4 for wheel attachment is rotatably attached to the swinging end of the wheel. Reference numeral 5 denotes a carriage that houses a differential gear (not shown), and a drive shaft 6 that is branched from the differential gear 7 and rotatably protrudes from the carriage 5 is connected to the road wheel 4. 7 is a strut. Both end portions of the suspension bushing member 20 in the left-right direction of the vehicle are attached to the vehicle body (not shown) via cylindrical bushings S8, and the damping function of the suspension bushing 1 is transmitted from the road surface to the vehicle body by the tubular bushings 8. It is designed to perform a vibration isolation function. By the way, the cylindrical bushing 8 has a
As shown in No. 36151, a plurality of liquid chambers are formed in an elastic body loaded between an inner cylinder and an outer cylinder, with the inner cylinder as a boundary,
There is a liquid-filled cylindrical bushing that efficiently performs the vibration damping function and vibration isolation function by communicating these liquid chambers through communication passages.

しかしながら、この液体入りの筒状ブツシュにあっては
誼ブッシェの軸直角方向の外力に対しては液体室内容積
が変化してその効果が発揮されるのであるが、軸方向に
作用する外力に対しては液体室内容積の変化はほとんど
生ぜず、その制振機能および振動遮断機能を充分に行な
うことができない。従って、筒状ブツシュの軸方向に入
力されるロードノイズおよびノ・−ジェネスが車体側に
伝達されてしまい車室内こもり音が発生してしまうとい
う問題点があった。
However, in this cylindrical bushing filled with liquid, the internal volume of the liquid chamber changes in response to an external force in the direction perpendicular to the axis of the bushing, and the effect is exerted; however, in response to an external force acting in the axial direction, In this case, the internal volume of the liquid chamber hardly changes, and its vibration damping and vibration isolating functions cannot be performed satisfactorily. Therefore, there is a problem in that road noise and noise input in the axial direction of the cylindrical bushing are transmitted to the vehicle body, resulting in muffled noise inside the vehicle.

発明の目的 本発明はかかる従来の問題点に鑑みて、筒状ブツシュに
軸方向の外力が作用したときに、積極的に容積が収縮お
よび膨張される1対の液体室を設け、これら液体室間を
オリフィス効果を有する連通路で連通することにより、
軸方向の外力に対する筒状ブツシュのはね定数を変化さ
せ、もって、かかる軸方向の振動遮断機能および制振機
能両者を満足させるようにした筒状ブツシュを提供する
ことを目的とする。
Purpose of the Invention In view of such conventional problems, the present invention provides a pair of liquid chambers whose volumes are actively contracted and expanded when an external force in the axial direction is applied to the cylindrical bush, and By communicating through a communication path with an orifice effect,
It is an object of the present invention to provide a cylindrical bushing that satisfies both the axial vibration isolation function and vibration damping function by changing the spring constant of the cylindrical bushing against an external force in the axial direction.

発明の構成 かかる目的t−達成するために本発明の筒状ブツシュは
、同心状に配置される内筒、外筒と、これら内、外筒間
に装填される弾性体とを備え、該弾性体内にブツシュの
軸方向に対峙して1対の液体室を形成すると共に、これ
ら液体室間の弾性体による隔壁と、も液体室の外方壁と
の径方向長さを異ならせ、かつ、前記1対の液体室を連
通路を介して連通させることにより構成しである。
Structure of the Invention In order to achieve the above object, the cylindrical bushing of the present invention includes an inner cylinder and an outer cylinder arranged concentrically, and an elastic body loaded between the inner cylinder and the outer cylinder. A pair of liquid chambers are formed in the body so as to face each other in the axial direction of the bush, and the partition wall made of an elastic material between the liquid chambers is made to have a different radial length from the outer wall of the liquid chamber, and It is constructed by communicating the pair of liquid chambers through a communication path.

作用 以上の構成により本発明の作用は、軸方向に対峙し九1
対の液体室は、隔壁と外方壁との径方向の長さが異なっ
ているため□、筒状ブツシュに軸方向の外力が作用した
場合に、弾性体変形に伴って一万の液体室内容積が収縮
し、他方の液体室内容積が膨張されることになる。従っ
て、一方の液体室から他方の液体室に連通路合弁して液
体移動される際に抵抗が生じ、前記外力が衝隼的な一方
向入力又は低周波振動である場合は、前記連通路に発生
する液体の通過抵抗が着しく大きくなって液体室内液体
を剛体状とし、筒状プツシ瓢全体のはね定数を大幅に高
くして割振効果を向上する。一方、周波数が大きくなる
振動が入力された場合は、この振動が弾性体によって吸
収される九め振動遮断効果が向上することになる。
Effects Due to the above structure, the effects of the present invention are as follows:
The paired liquid chambers have different radial lengths between the partition wall and the outer wall, so when an external force in the axial direction is applied to the cylindrical bushing, the liquid chambers will expand as the elastic body deforms. The volume will contract and the volume within the other liquid chamber will expand. Therefore, resistance occurs when the liquid is moved from one liquid chamber to the other through the communication path, and if the external force is an impulsive unidirectional input or low frequency vibration, the communication path The passage resistance of the generated liquid increases considerably, and the liquid inside the liquid chamber becomes rigid, and the repelling constant of the entire cylindrical push gourd is greatly increased, thereby improving the distribution effect. On the other hand, when a vibration with a high frequency is input, this vibration is absorbed by the elastic body, thereby improving the vibration isolation effect.

実施例 以下本発明の実施例を図に基づいて詳細に説明する。Example Embodiments of the present invention will be described in detail below with reference to the drawings.

即ち、第2図は本発明の一実施例を示す筒状ブッシヱ1
0で、内筒11とこの内筒11に対し同心状に配置され
る外筒12との間にゴム製の弾性体16が装填されてい
る。この弾性体16は前記内筒11と、前記外t#12
の内周にシールラバー14を介して圧入等により嵌着さ
れる補助リング15とに加硫接着される。前記弾性体1
3内には筒状ブツシュ10の軸方向に対峙して、隔壁1
6によっ゛C隔成される1対の第1.第2液体室17゜
17aおよびこの第1.第2液体室17,17aと内筒
11を境に対称に設けられ隔壁161kを有する第3.
第4液体室18,188が形成される。
That is, FIG. 2 shows a cylindrical bushing 1 showing one embodiment of the present invention.
0, a rubber elastic body 16 is loaded between an inner cylinder 11 and an outer cylinder 12 arranged concentrically with respect to the inner cylinder 11. This elastic body 16 is connected to the inner tube 11 and the outer tube 12.
It is vulcanized and bonded to an auxiliary ring 15 which is fitted onto the inner periphery of the ring through a seal rubber 14 by press-fitting or the like. The elastic body 1
A partition wall 1 is disposed within the cylindrical bushing 10 and faces the axial direction of the bushing 10.
A pair of first . The second liquid chamber 17°17a and this first liquid chamber 17°17a. A third liquid chamber 17, 17a and a third liquid chamber 17a are provided symmetrically with respect to the inner cylinder 11 and have a partition wall 161k.
A fourth liquid chamber 18, 188 is formed.

前記隔壁16,16aは前記弾性体16よりばね定数の
小さいゴム等の弾性体で形成され、内筒11から突設さ
れた鍔部19外周に嵌着固定される環状部材20と前記
補助リング15との間に加硫接着されている。そして、
前記隔壁16.16aの径方向長さtlは前記液体室1
7,17a、18゜18aの外側に設けられる外方壁2
1.21&の長さt、より小さくなっている。ところで
、前記第1、第2液体室17,17aおよび第3.第4
液体室18.18aは鍔部19と環状部材20との間に
形成される第1連通路22.22&によって連通され、
この第1連通路22.22&を介して第1.第2液体室
17.17a内の液体移動および第3.第4液体室18
.18a内の液体移動がオリスイス効果をもって行なわ
れるようになっている。更に、前記鍔部19外周には前
記第1連通路22.22&に連通ずる第2連通路23が
形成され、この第2連通路26を介して第1.第2液体
呈17,17aと第3.第4液体室18.181L間の
液体移動がオリフィス効果をもって行麦われるようにな
っている。
The partition walls 16 and 16a are formed of an elastic body such as rubber having a spring constant smaller than that of the elastic body 16, and are fitted with an annular member 20 and the auxiliary ring 15 that are fitted and fixed to the outer periphery of a flange 19 protruding from the inner cylinder 11. It is vulcanized and bonded between the two. and,
The radial length tl of the partition wall 16.16a is the same as that of the liquid chamber 1.
Outer wall 2 provided on the outside of 7, 17a, 18° 18a
The length t of 1.21& is smaller. By the way, the first and second liquid chambers 17, 17a and the third. Fourth
The liquid chamber 18.18a is communicated by a first communication passage 22.22& formed between the collar portion 19 and the annular member 20,
The first communication path 22. Liquid movement within the second liquid chamber 17.17a and the third. Fourth liquid chamber 18
.. Liquid movement within 18a takes place with the Oriswiss effect. Furthermore, a second communicating path 23 is formed on the outer periphery of the collar portion 19 and communicates with the first communicating path 22, 22&, and the first communicating path 22, 22& is connected to the first communicating path 22& through this second communicating path 26. The second liquid reservoir 17, 17a and the third fluid reservoir 17, 17a. Liquid movement between the fourth liquid chambers 18 and 181L is performed using an orifice effect.

力為かる構成になる筒状ブツシュ10は、前記第1図に
示したようにサスペンションメンバ2′t−図外の車体
に取付ける際に用いられ、外筒12がサスペンションメ
ンバ2の両端部に固設され、かつ、内筒11が図外の取
付ピンを介して前記車体に装着されるようになっている
The cylindrical bushing 10 having such a structure is used when attaching the suspension member 2't to the vehicle body (not shown) as shown in FIG. The inner cylinder 11 is attached to the vehicle body via a mounting pin (not shown).

以上の構成により、本実施例の筒状プツシ瓢10にあっ
ては、このブツシュ10の軸方向に連通路22.22&
で連通された第1.第2液体室17゜17aおよび第3
.第4液体室ts、teaが形成されているため、前記
筒状プツシ:Lloに軸方向の外力が作用した時には、
内筒11.外筒12が軸方向に相対移動し、弾性体16
が変形される。
With the above configuration, in the cylindrical push gourd 10 of this embodiment, the communication passages 22, 22 &
The first message was communicated with The second liquid chamber 17°17a and the third
.. Since the fourth liquid chambers ts and tea are formed, when an external force in the axial direction acts on the cylindrical pusher: Llo,
Inner cylinder 11. The outer cylinder 12 moves relatively in the axial direction, and the elastic body 16
is transformed.

タトエば、サスペンションメンバ2の上方変位に対し第
2図中外筒12が内筒11に対して上方に移動され友場
合、弾性体13の変形に伴って第1゜第2.第3.第4
液体室17.17 a、18.18a内形状も変化する
。このとき、第3図に示すように隔壁16,16aに対
して外方壁21,211が径方向に長くなっているため
、第2.第4液体室17a、18aの外方壁21.21
aは前記隔壁16.16&に近づこうとするが、第1.
第3液体呈17.18の外方壁21.21&は前記隔壁
16.16aから遠ざかろうとする。従って、第2.第
4液体室17a、18a内容積は収縮し、第1.第3液
体呈17.18内容積は膨張され、これら第1.第2液
体室17.17&問および第3、第4液体室18.18
&間の圧力は第1連通路22.22aを介して液体移動
されることにより均衡されようとする。ところが、前記
軸方向の外力がバウンド、リバウンド時に生ずる衝撃的
な変位荷重である場合は、第1連通路22.221な のオリフィス効果によって流体移動に大き1抗が生じ、
第2.第4液体室17a、18a内の液体圧力が著しく
大きくなって剛体状となり、該第2゜第4液体室17&
、18&内容積の収縮が阻止される。すると、弾性体1
6のそれ以上の変形は抑制され、あたかも筒状ブッシュ
10全体のばね定数が著しく増大したかのようになり、
内筒11゜外筒12間の軸方向の相対変位が阻止嘔れ、
ここにサスペンションメンバ2の上方変位が阻止されて
制振機能が@揮される。同、サスペンションメンバ2が
下方変位したときには、第1.第2液体室17.17a
および第3.第4液体室18.18&間の収縮、膨張関
係が、前述したサスペンションメンバ2の上方変位の場
合と逆になるが、同様に第1連通路22.22aのオリ
フィス効果によって割損機能が発揮される。
In other words, when the outer cylinder 12 in FIG. 2 is moved upward relative to the inner cylinder 11 in response to the upward displacement of the suspension member 2, the elastic body 13 deforms, causing the first degree, the second degree, and so on. Third. Fourth
The internal shape of the liquid chambers 17.17a and 18.18a also changes. At this time, as shown in FIG. 3, since the outer walls 21, 211 are longer in the radial direction than the partition walls 16, 16a, the second. Outer wall 21.21 of fourth liquid chamber 17a, 18a
a tries to approach the partition wall 16.16&, but the first.
The outer wall 21.21& of the third liquid reservoir 17.18 tends to move away from said partition wall 16.16a. Therefore, the second. The internal volume of the fourth liquid chambers 17a and 18a contracts, and the fourth liquid chambers 17a and 18a contract. The internal volume of the third liquid reservoir 17.18 is expanded and these first. 2nd liquid chamber 17.17&Q and 3rd and 4th liquid chamber 18.18
The pressure between & is tried to be balanced by moving the liquid through the first communication path 22.22a. However, if the external force in the axial direction is an impactful displacement load that occurs during bounding or rebounding, a large resistance to fluid movement occurs due to the orifice effect of the first communication passage 22, 221,
Second. The liquid pressure in the fourth liquid chambers 17a and 18a increases significantly and becomes rigid, and the fourth liquid chambers 17a and 18a become rigid.
, 18 & contraction of the internal volume is prevented. Then, elastic body 1
Further deformation of 6 is suppressed, and it becomes as if the spring constant of the entire cylindrical bush 10 has been significantly increased,
Relative displacement in the axial direction between the inner cylinder 11° and the outer cylinder 12 is prevented,
Here, upward displacement of the suspension member 2 is prevented and the vibration damping function is exerted. Similarly, when the suspension member 2 is displaced downward, the first. Second liquid chamber 17.17a
and 3rd. Although the contraction and expansion relationship between the fourth liquid chambers 18, 18 & is opposite to that in the case of upward displacement of the suspension member 2, the breakage function is similarly exerted by the orifice effect of the first communication passage 22, 22a. Ru.

次に、サスペンションメンバ2に伝達されるロードノイ
ズとかハーシュネス等の振動に対しては1この振動が筒
状プツシ−10の軸方向に入力されfc場合、かかる振
動による変位は著しく小さいため、弾性体16の変形は
ほとんど伴わず、第1゜第2液体室17.17a内およ
び第3.第4液体室18.18a内の収縮、膨張に関係
なく弾性体16自体の振動吸収能力により前記振動が車
体側に伝達されるのkA断する。従って、弾性体16の
ばね定数を小さく設定しておくとによって、前記振動遮
断IFIA能が向上し、ロードノイズ、ハーシュネス等
によって生ずる車室内騒音上防止し、室内の静粛性な向
上することができる。
Next, with respect to vibrations such as road noise and harshness transmitted to the suspension member 2, when this vibration is input in the axial direction of the cylindrical pusher 10 fc, the displacement due to such vibration is extremely small, so the elastic body 16 is hardly deformed, and the inside of the 1st and 2nd liquid chambers 17.17a and the 3rd. Regardless of contraction or expansion in the fourth liquid chamber 18.18a, the vibration absorption ability of the elastic body 16 itself prevents the vibration from being transmitted to the vehicle body. Therefore, by setting the spring constant of the elastic body 16 to a small value, the above-mentioned vibration isolation IFIA ability is improved, and it is possible to prevent interior noise caused by road noise, harshness, etc., and improve the quietness of the interior. .

同、本実施例にあっては、前記第1.第2液体室17.
17aの1組と前記第3.第4液体室18゜18aの1
組とが内筒11を境にして対向配置され、かつ、この対
向される夫々の組が第2連通路23を介して連通されて
いるため、これら互いに1組となった第1.第2液体室
17.17aと第3、第4液体呈18.18aとを外力
の作用方向、つまり車両前後方向に配置しておくことに
よって、かかる外力の作用方向に対する制振機能および
振動遮断機能を効率良く行なうことができる。即ち、車
両の急加、減速時等に発生する慣性力が筒状ブツシュ1
0に軸直角方向の外力として作用した場合、前記第1.
第2液体室17.17&および第3、第4液体室18,
181Lの一方の1組が潰されると共に、他方の1組が
膨張されて、第2連通路23を介して液体移動が行なわ
れる。従って、この液体移動時に第2連通路26内に発
生するオリフィス効果により前記各液体室内容積の変化
が阻止され、ここに筒状ブツシュ10の軸直角方向つま
り車両前後方向のサスペンションメンバ2の変位が阻止
され制振機能が効果的に発揮される。
Similarly, in this embodiment, the first. Second liquid chamber 17.
17a and the third set. 4th liquid chamber 18° 18a 1
The first and second sets are arranged opposite to each other with the inner cylinder 11 as a boundary, and the opposing sets are communicated via the second communication path 23, so that the first and second sets are one set. By arranging the second liquid chamber 17.17a and the third and fourth liquid chambers 18.18a in the direction in which the external force acts, that is, in the longitudinal direction of the vehicle, a vibration damping function and a vibration isolation function are achieved in the direction in which the external force acts. can be done efficiently. In other words, the inertial force generated when the vehicle suddenly accelerates or decelerates
0 as an external force in the direction perpendicular to the axis, the first.
Second liquid chamber 17, 17 & and third and fourth liquid chambers 18,
One set of 181L is collapsed, and the other set is expanded, and liquid is transferred through the second communication path 23. Therefore, the orifice effect generated in the second communication passage 26 during this liquid movement prevents the volume of each liquid chamber from changing, and the displacement of the suspension member 2 in the direction perpendicular to the axis of the cylindrical bushing 10, that is, in the longitudinal direction of the vehicle, is prevented. The damping function is effectively exerted.

また、車両前後方向に作用する振動、たとえばロードノ
イズ等の振動に対してもばね定数を小さくした弾性体1
6によって振動吸収逼れることになる。
In addition, the elastic body 1 with a small spring constant can also be used against vibrations that act in the longitudinal direction of the vehicle, such as vibrations such as road noise.
6 will absorb vibration.

第4図、第5図は本発明の他の実施例を夫々示す筒状プ
ツシ:L30,30aで、内筒31.31aと外筒32
,32a間に装填される弾性体66゜66aには前記実
施例と同様に軸方向に対峙して1対の液体室64.65
および34a、35aが形成され、これら液体室34.
65および64a。
FIGS. 4 and 5 show cylindrical pushers L30 and L30a, respectively, showing other embodiments of the present invention, and an inner cylinder 31.31a and an outer cylinder 32
, 32a are provided with a pair of liquid chambers 64, 65 facing each other in the axial direction, as in the previous embodiment.
and 34a, 35a are formed, and these liquid chambers 34.
65 and 64a.

35aは連通路66、66aを介して連通式れている。35a are in communication via communication passages 66, 66a.

ここで、第4図に示す実施例にあっては前記内筒61の
外側形状が両端から中央部に行くに従って徐々に拡径さ
れる謂わゆる太鼓状に形成されることによって、隔壁6
7に対して外方壁68の径方向長さが太きくなるように
設定式れている。
Here, in the embodiment shown in FIG. 4, the outer shape of the inner cylinder 61 is formed into a so-called drum shape whose diameter gradually increases from both ends toward the center.
The radial length of the outer wall 68 is set to be larger than that of the outer wall 68.

tfc、第5図に示す実施例にあっては、前記内筒51
aの外側形状が両端から中央部に行くに従って徐々に縮
径される絹わゆるりづみ状に形成されることによって、
隔壁67aに対して外方壁68aの径方向長さが小さく
なるように設定されている。
In the embodiment shown in FIG. 5, the inner cylinder 51
By forming the outer shape of a into a shape that gradually decreases in diameter from both ends toward the center,
The outer wall 68a is set to have a smaller radial length than the partition wall 67a.

従って、かかる第4図、第5図に示す実施例にあっては
、隔壁67.37aと外方壁38.38aの長さが異な
るために、軸方向の外力が作用した際に液体室64.3
5および液体室34a、65a内容積の一方が収縮し、
他方が膨張するため前記第2図に示す実施例と同様に軸
方向の外力に対する制振機能および振動遮断機能を夫々
向上することができる。
Therefore, in the embodiment shown in FIGS. 4 and 5, since the partition wall 67.37a and the outer wall 38.38a have different lengths, when an external force in the axial direction is applied, the liquid chamber 64. .3
5 and one of the internal volumes of the liquid chambers 34a and 65a contracts,
Since the other expands, it is possible to improve the vibration damping function and the vibration isolation function against external forces in the axial direction, respectively, similarly to the embodiment shown in FIG.

同、前記第4図、第5図に示す筒状ブツシュ60゜30
aは、軸方向の外力のみを考慮して、各液体室、54.
35および34ae 65aは環状に形成されたものを
図示したが、これに限ることなく前記第2図の実施例で
述べたように前記液体室64゜65および64a、35
aを、内筒61,31mを境にして対向されるように独
立させ、そして、このように独立されて対向する液体室
同志を連通路を介して連通することにより、第2図の実
施例と同様に軸直角方向の外力に対する制振機能および
振動遮断機能を向上することができる。
Same, the cylindrical bushing 60°30 shown in FIGS. 4 and 5 above.
a for each liquid chamber, 54.a, considering only the external force in the axial direction.
35 and 34ae 65a are shown as having an annular shape, but the liquid chambers 64° 65 and 64a, 35 are not limited to this, as described in the embodiment of FIG.
The embodiment of FIG. 2 is achieved by making the liquid chambers 61 and 31m independent so as to face each other with the inner cylinders 61 and 31m as boundaries, and by communicating the independent and opposing liquid chambers through the communication passage. Similarly, it is possible to improve the vibration damping function and vibration isolation function against external forces in the direction perpendicular to the axis.

ところで、前述した各実施例にあっては、サスペンショ
ンメンバ2t−車体に取付ける際に用いられる筒状ブツ
シュ10.30,308に例をとって述べたが、これに
限ることなく、トレーリングアーム式のサスベンジ菅ン
にあってアームとサスペンションメンバを連結する筒状
ブツシュとして、また、4リンク式のサスペンションに
あってリンクの連結部として夫々用いることができ、更
にはサスペンションに限ることなく、一般に存在する振
動体を固定体に装着する際に用いられる筒状ブツシュに
本発明を適用することができることは勿論である。
By the way, in each of the above-mentioned embodiments, the cylindrical bushings 10, 30, 308 used when attaching the suspension member 2t to the vehicle body have been described as an example, but the invention is not limited to this, and the trailing arm type It can be used as a cylindrical bush that connects the arm and suspension member in a suspension tube, and as a link connecting part in a 4-link suspension. Of course, the present invention can be applied to a cylindrical bushing used when attaching a vibrating body to a fixed body.

発明の詳細 な説明したように本発明の筒状プッシユにあっ−ては、
弾性体内に、連通路を介して連通される1対の液体室を
ブツシュの軸方向に対峙して形成し、かつ、液体室間の
隔壁と外壁との径方向長さを異ならせたので、筒状ブツ
シュに軸方向の衝撃的な外力が作用した場合は、1対の
液体室の一方が収縮し他方が膨張されることに伴って前
記連通路を介しての液体移動に大きな抵抗が生じ、弾性
体のそれ以上の変形が阻止される。従って、内筒、外筒
間の相対的な軸方向移動が抑制され、ここにブツシュ軸
方向における制振機能の向上が図られる。また、軸方向
の振動に対しては液体室の容積変化はほとんど生ぜず、
従って、弾性体のはね定数を小さく設定しておくことに
よって前記振動が弾性体に効率良く吸収され、ここにブ
ツシュ軸方向における振動遮断機の向上が図られる。こ
のように、本発明は筒状ブツシュの軸方向における割振
機能および振動遮断機能の両者を向上するようにしたの
で、従来果し得なかっfc振動伝達特性の著しい向上を
達成でき゛るという優れた効果を奏する。
As described in the detailed description of the invention, the cylindrical pusher of the present invention has the following features:
A pair of liquid chambers are formed in the elastic body to face each other in the axial direction of the bushing, and the partition walls between the liquid chambers and the outer wall are made to have different radial lengths. When an impactful external force in the axial direction is applied to the cylindrical bushing, one of the pair of liquid chambers contracts and the other expands, creating a large resistance to the movement of liquid through the communication path. , further deformation of the elastic body is prevented. Therefore, relative axial movement between the inner cylinder and the outer cylinder is suppressed, thereby improving the vibration damping function in the axial direction of the bush. In addition, there is almost no change in the volume of the liquid chamber due to vibration in the axial direction.
Therefore, by setting the spring constant of the elastic body small, the vibrations are efficiently absorbed by the elastic body, thereby improving the vibration isolator in the bush axial direction. As described above, the present invention improves both the axial distribution function and the vibration isolation function of the cylindrical bushing, so it has the excellent effect of achieving a remarkable improvement in the fc vibration transmission characteristics that could not be achieved in the past. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の筒状ブツシュを用いたサヌペンションの
斜視図、第2図は本発明の一実施例を示す筒状ブツシュ
の断面図、第3図は第2図に示す筒状ブツシュの作動状
態を示す要部断面図、第4図、第5図は本発明の他の実
施例を美々示す断面図″Cある。 10、6n、30a・・・筒状ブツシュ、11.31゜
ろ1a・・・内筒、12.62.62a・・・外筒、1
6゜66.33a・・・弾性体、16.37.57a・
・・隔壁、17,17a、18,18a、34.る4a
。 65.35a・・・流体室、21.21 &、38,3
8a・・・外方壁、22.56.36a・・・連通路。 −リA
Fig. 1 is a perspective view of a conventional sun pension using a cylindrical bushing, Fig. 2 is a sectional view of a cylindrical bushing showing an embodiment of the present invention, and Fig. 3 is a sectional view of the cylindrical bushing shown in Fig. 2. 4 and 5 are sectional views of main parts showing the operating state, and sectional views "C" clearly show other embodiments of the present invention. 10, 6n, 30a... Cylindrical bushings, 11.31° 1a...Inner cylinder, 12.62.62a...Outer cylinder, 1
6゜66.33a...Elastic body, 16.37.57a.
...Partition wall, 17, 17a, 18, 18a, 34. 4a
. 65.35a...fluid chamber, 21.21 &, 38,3
8a...Outer wall, 22.56.36a...Communication path. -ReA

Claims (1)

【特許請求の範囲】[Claims] (1)同心状に配置される内筒、外筒と、これら内。 外筒間に装填される弾性体とを備え、該弾性体内にブツ
シュの軸方向に対峙して1対の液体室を形成すると共に
、これら液体室間の弾性体による隔壁と、各液体室の外
方壁との径方向長さを異ならせ、かつ、前記1対の液体
室を連通路を介して連通させたことf、%黴とする筒状
ブツシュ。
(1) An inner cylinder and an outer cylinder arranged concentrically, and their insides. A pair of liquid chambers are formed in the elastic body to face each other in the axial direction of the bushing. A cylindrical bushing having different radial lengths from the outer wall and communicating the pair of liquid chambers via a communication path.
JP25155183A 1983-12-27 1983-12-27 Tubular bush Granted JPS60139942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25155183A JPS60139942A (en) 1983-12-27 1983-12-27 Tubular bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25155183A JPS60139942A (en) 1983-12-27 1983-12-27 Tubular bush

Publications (2)

Publication Number Publication Date
JPS60139942A true JPS60139942A (en) 1985-07-24
JPS6357656B2 JPS6357656B2 (en) 1988-11-11

Family

ID=17224507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25155183A Granted JPS60139942A (en) 1983-12-27 1983-12-27 Tubular bush

Country Status (1)

Country Link
JP (1) JPS60139942A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2587774A1 (en) * 1985-09-26 1987-03-27 Tokai Rubber Ind Ltd ELASTIC SUPPORT WITH FLUID FILLING
FR2600737A1 (en) * 1986-06-30 1987-12-31 Tokai Rubber Ind Ltd Elastic sleeve coupling device with fluid filling, having excellent axial vibration damping characteristics
FR2605693A1 (en) * 1986-10-27 1988-04-29 Hutchinson Improvements to anti-vibration hydraulic supports
JPS63266240A (en) * 1987-04-23 1988-11-02 Mazda Motor Corp Fluid-filled bush
DE3722132A1 (en) * 1987-07-04 1989-01-12 Daimler Benz Ag HYDRAULIC DAMPING BEARING
DE3730582A1 (en) * 1987-09-11 1989-03-23 Opel Adam Ag BEARING FOR THE ELASTIC, VIBRATION-DAMPING STORAGE OF COMPONENTS
EP0325714A2 (en) * 1988-01-26 1989-08-02 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Elastic mounting
DE3831644A1 (en) * 1988-09-17 1990-03-22 Pahl Gummi Asbest Hydraulically damping bearing
US4936556A (en) * 1988-07-28 1990-06-26 Toyo Tire & Rubber Co., Ltd. Liquid-sealed body mount
JPH02117450U (en) * 1989-03-09 1990-09-20
EP0478900A1 (en) * 1990-10-05 1992-04-08 Firma Carl Freudenberg Hydraulically dampened mounting
FR2726340A1 (en) * 1994-10-31 1996-05-03 Daimler Benz Ag ELASTOMERIC SUPPORT AND HYDRAULIC DAMPING
EP0754877A1 (en) * 1995-07-21 1997-01-22 Metzeler Gimetall AG Axially damped hydroelastic bush
EP0995928A3 (en) * 1998-10-22 2004-03-24 Trelleborg Ab Hydroelastic articulating joints
KR100612540B1 (en) * 2002-05-24 2006-08-11 칼 프로이덴베르크 카게 Hydraulic damping rubber bearing
JP2008025755A (en) * 2006-07-24 2008-02-07 Honda Motor Co Ltd Liquid sealed bushing
JP2011511231A (en) * 2008-02-05 2011-04-07 クーパー−スタンダード オートモーディブ インク. Axial damped fluid mount assembly
WO2018225289A1 (en) * 2017-06-09 2018-12-13 株式会社ブリヂストン Anti-vibration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262555U (en) * 1988-10-28 1990-05-10

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225947Y2 (en) * 1985-09-26 1990-07-16
DE3632612A1 (en) * 1985-09-26 1987-04-02 Tokai Rubber Ind Ltd ELASTIC SUPPORTING CONSTRUCTION WITH A LIQUID FILLING
JPS6255751U (en) * 1985-09-26 1987-04-07
FR2587774A1 (en) * 1985-09-26 1987-03-27 Tokai Rubber Ind Ltd ELASTIC SUPPORT WITH FLUID FILLING
FR2600737A1 (en) * 1986-06-30 1987-12-31 Tokai Rubber Ind Ltd Elastic sleeve coupling device with fluid filling, having excellent axial vibration damping characteristics
JPS636250U (en) * 1986-06-30 1988-01-16
JPH0430442Y2 (en) * 1986-06-30 1992-07-22
FR2605693A1 (en) * 1986-10-27 1988-04-29 Hutchinson Improvements to anti-vibration hydraulic supports
JPS63266240A (en) * 1987-04-23 1988-11-02 Mazda Motor Corp Fluid-filled bush
DE3722132A1 (en) * 1987-07-04 1989-01-12 Daimler Benz Ag HYDRAULIC DAMPING BEARING
DE3730582A1 (en) * 1987-09-11 1989-03-23 Opel Adam Ag BEARING FOR THE ELASTIC, VIBRATION-DAMPING STORAGE OF COMPONENTS
EP0325714A2 (en) * 1988-01-26 1989-08-02 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Elastic mounting
US4936556A (en) * 1988-07-28 1990-06-26 Toyo Tire & Rubber Co., Ltd. Liquid-sealed body mount
DE3831644A1 (en) * 1988-09-17 1990-03-22 Pahl Gummi Asbest Hydraulically damping bearing
DE3831644C2 (en) * 1988-09-17 1998-08-27 Pahl Gummi Asbest Hydraulically damping bearing
US5040775A (en) * 1989-03-09 1991-08-20 Tokai Rubber Industries, Ltd. Upper support for shock absorber in suspension system
JPH02117450U (en) * 1989-03-09 1990-09-20
EP0478900A1 (en) * 1990-10-05 1992-04-08 Firma Carl Freudenberg Hydraulically dampened mounting
FR2726340A1 (en) * 1994-10-31 1996-05-03 Daimler Benz Ag ELASTOMERIC SUPPORT AND HYDRAULIC DAMPING
EP0754877A1 (en) * 1995-07-21 1997-01-22 Metzeler Gimetall AG Axially damped hydroelastic bush
EP0995928A3 (en) * 1998-10-22 2004-03-24 Trelleborg Ab Hydroelastic articulating joints
KR100612540B1 (en) * 2002-05-24 2006-08-11 칼 프로이덴베르크 카게 Hydraulic damping rubber bearing
JP2008025755A (en) * 2006-07-24 2008-02-07 Honda Motor Co Ltd Liquid sealed bushing
JP2011511231A (en) * 2008-02-05 2011-04-07 クーパー−スタンダード オートモーディブ インク. Axial damped fluid mount assembly
WO2018225289A1 (en) * 2017-06-09 2018-12-13 株式会社ブリヂストン Anti-vibration device
CN110573764A (en) * 2017-06-09 2019-12-13 株式会社普利司通 Vibration isolation device
EP3636954A4 (en) * 2017-06-09 2021-03-03 Bridgestone Corporation Anti-vibration device
US11231083B2 (en) 2017-06-09 2022-01-25 Bridgestone Corporation Anti-vibration device

Also Published As

Publication number Publication date
JPS6357656B2 (en) 1988-11-11

Similar Documents

Publication Publication Date Title
JPS60139942A (en) Tubular bush
US4377216A (en) Vibration damping bushing
KR950002557B1 (en) Air spring
JPH02248736A (en) Sleeve type rubber buffer
US4822010A (en) Fluid filled resilient bushing
JP2005505734A (en) Fluid elastic ball joint
US4899997A (en) Fluid filled resilient bushing
JPH0623587B2 (en) Hydraulic anti-vibration support sleeve
JPH0712171A (en) Hydraulic damping bearing
JPH01234635A (en) Bush type fixture
JPS62228728A (en) Fluid type vibration-proof support sleeve
JPS62224746A (en) Fluid seal type vibrationproof supporting body
JPS5937349A (en) Vibration preventing support
JP2006189153A (en) Damping force adjustable elastomer/fluid pressure type vibration isolator
US4964623A (en) Fluid filled resilient bushing
JPH05209646A (en) Multi-compartment liquid pressure bushing
JPS63280943A (en) Fluid-sealed vibration isolator
JPS58170609A (en) Suspension bushing construction
JPS62261730A (en) Vibration damping device
JPH0434016B2 (en)
JPH0574737B2 (en)
JPS60215135A (en) Rubber bushing
JPH0629637B2 (en) Anti-vibration link device with fluid
JPH02271125A (en) Engine mount
KR102677072B1 (en) Hydraulic Busing for vehicle