JPS60139456A - Ink jet head - Google Patents

Ink jet head

Info

Publication number
JPS60139456A
JPS60139456A JP24686283A JP24686283A JPS60139456A JP S60139456 A JPS60139456 A JP S60139456A JP 24686283 A JP24686283 A JP 24686283A JP 24686283 A JP24686283 A JP 24686283A JP S60139456 A JPS60139456 A JP S60139456A
Authority
JP
Japan
Prior art keywords
ink
pressure chamber
supply path
ink supply
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24686283A
Other languages
Japanese (ja)
Inventor
Mitsuo Ozaki
光男 尾崎
Noboru Takada
昇 高田
Tsuneo Mizuno
恒雄 水野
Kohei Kiyota
航平 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24686283A priority Critical patent/JPS60139456A/en
Publication of JPS60139456A publication Critical patent/JPS60139456A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14379Edge shooter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics

Abstract

PURPOSE:To contrive not to bring about changes in the velocity of ink particle and in the diameter of ink particle even when the frequency for making particle of ink is raised, by narrowing down the width of ink supply path in a tapered state toward an ink chamber from a pressure chamber. CONSTITUTION:The ink supply path 23 on the opposite side of the nozzle hole 22 of pressure chamber 21 is so constructed as to be narrowed down by a fixed angle theta from the width size W of pressure chamber toward the direction of common ink chamber 24. Because the ink supply path is made thus tapered, even when high viscous ink is used, ink can be sufficiently supplied to the pressure chamber from the ink supply path after injection of ink from the nozzle hole, and a chance where the influence of pressure wave reflected from the inside wall surface of pressure chamber is received, is lessened. Therefore even when the frequency for making particles is raised, a possibility where the velocity of ink particle and the diameter of ink particle are changed, is lessened and an effect where the printing record of high reliability and high quality can be obtained, is realized.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はインクジェットヘッドに係り、特に高動粘度イ
ンクに対し、高速にかつ安定にインク粒子を形成できる
インクジェットへ・ノドの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an inkjet head, and particularly to an inkjet nozzle structure that can form ink particles at high speed and stably for high kinematic viscosity ink.

(bl 技術の背景 印字記録用インクが収容されている圧力室上に設置され
ている圧電素子を印字情報にもとすいて、電圧を印加す
るこメにより歪ませ、この歪みGこよる圧力を圧力室に
伝達し、圧力室に連通して圧力室の一端部に設&Jられ
ているノズルより圧力室内に収容されている印字記録用
インクを記録紙上Gこ噴射記録するインクジエ・ノド記
録方法は周知である。このインクジエ・ノド記録方法は
、ノンインノくクト記録方式であり、印字記録する際の
騒音の発生が少なく、装置の構造が簡単で、印字記録の
速度が速いので、電子計算機の出力情報を記録するのに
最近広く用いられるようになってきている。
(bl Background of the technology A piezoelectric element installed above a pressure chamber containing print recording ink is used for printing information, and is distorted by applying voltage, and the pressure caused by this distortion G is An inkjet recording method is one in which printing ink stored in a pressure chamber is ejected onto a recording paper from a nozzle that communicates with the pressure chamber and is installed at one end of the pressure chamber. This inkjet recording method is a non-inkjet recording method, generates little noise during printing, has a simple device structure, and has a fast printing speed, so it can easily reduce the output of an electronic computer. It has recently become widely used to record information.

tCa 従来技術と問題点 第1図は従来のインクジェットヘッドの断面図で、第2
図は第1図のインクジェットヘッドの圧力室とインク供
給路の部分の平面図である。第1図、および第2図に示
すように従来のインクジェットヘッドは、内部に印字記
録用インクが収容され、圧電素子1からの圧力を伝達す
る圧力室2と、この圧力室2の一端部に連通し、インク
を記録紙(図示せず)上に噴出させるためのノズル3と
、この圧力室2にインクを供給するためにインクを収容
する共通インク室4より連なるインク供給路5よりなっ
ている。ここで図示していないが、第1図に示すこれら
圧電素子1、圧力室2、ノズル3、インク供給路5は紙
面に垂直方向に所定のピッチで多数配設されているもの
とする。
tCa Conventional technology and problems Figure 1 is a cross-sectional view of a conventional inkjet head, and Figure 2 is a cross-sectional view of a conventional inkjet head.
The figure is a plan view of the pressure chamber and ink supply path of the inkjet head shown in FIG. 1. As shown in FIGS. 1 and 2, a conventional inkjet head includes a pressure chamber 2 in which print recording ink is stored and which transmits pressure from a piezoelectric element 1, and one end of this pressure chamber 2. The ink supply path 5 is connected to a nozzle 3 for communicating with each other to eject ink onto a recording paper (not shown), and a common ink chamber 4 for storing ink for supplying ink to the pressure chamber 2. There is. Although not shown here, it is assumed that a large number of piezoelectric elements 1, pressure chambers 2, nozzles 3, and ink supply paths 5 shown in FIG. 1 are arranged at a predetermined pitch in a direction perpendicular to the plane of the paper.

このようなインクジェット−・ノドを形成するには、共
通インク室4を打抜き、圧力室2.ノズル孔3.インク
供給路5を途中まで切削したステンレス製の薄板を用窓
し、この薄板の上下にステンレス製の薄板を重ねるよう
にして溶接により形成している。
To form such an inkjet nozzle, the common ink chamber 4 is punched out, and the pressure chamber 2. Nozzle hole 3. The ink supply path 5 is formed by welding a thin stainless steel plate cut halfway and stacking stainless steel thin plates on top and bottom of this thin plate.

ところでこの圧電素子1に印字情報にもとすいて、所定
の電圧を印加して比重素子1を歪ませ、この歪みの圧力
を圧力室2に伝達し、圧力室に連なるノズル3より動粘
度が2センチストークス(C5t )の低動粘度のイン
クを記録紙上に噴射さゼ、このインクジェットへ・ノ1
゛の圧電素子1に印加する電圧の駆動周波数を変動させ
ることで、ノズル孔より噴射するインクの粒子化周波数
を変化させた。この粒子化周波数が大になる程、1秒間
にノズル孔より噴射されるインクの粒子数が大となり、
例えば通常用いられているインクジエ・ノドへ・ノドに
おいては、粒子化周波数がIKIIZであるとノズル孔
より噴射するインクの粒子数は約1000個となる。
By the way, based on the printed information, a predetermined voltage is applied to this piezoelectric element 1 to distort the specific gravity element 1, and the pressure of this distortion is transmitted to the pressure chamber 2, and the kinematic viscosity is increased from the nozzle 3 connected to the pressure chamber. This inkjet jet ink has a low kinematic viscosity of 2 centistokes (C5t) and is jetted onto the recording paper.
By varying the drive frequency of the voltage applied to the piezoelectric element 1, the atomization frequency of the ink jetted from the nozzle hole was changed. The higher the atomization frequency, the greater the number of ink particles ejected from the nozzle hole per second.
For example, in a commonly used inkjet nozzle, when the atomization frequency is IKIIZ, the number of ink particles ejected from the nozzle hole is about 1000.

ところで高速で、かつ高品位の印字記録を得ようとする
と、粒子化周波数を増加させて印字記録を行い、そのと
きに記録紙上に飛翔するインク粒子速度、およびインク
粒子の直径が変動しなtllことが必要である。
By the way, in order to obtain high-speed and high-quality printing records, printing is performed by increasing the atomization frequency, and at that time, the speed of the ink particles flying onto the recording paper and the diameter of the ink particles do not change. It is necessary.

前述した如く、このような低動粘度のインクを用いた場
合、第3図の曲線11に示すようにインク粒子速度の粒
子化周波数に対する変動率は、粒子化周波数が1KII
zの時までは殆と変動せず、また第3図の曲線■2に示
ずようにノズル孔より噴射するインクの粒子i¥は、粒
子化周波数がIKIIZの時までは殆ど変化しない。し
かし低動粘度のインクを用いるとノズルイLがそのイン
クによっ゛ζ目詰りを発生ずる傾向がある。ところでこ
のようなインクの粘度が例えば7cS tの高動粘度の
インクを使用し、インクの粒子化周波数を変化させて、
その時の記録紙上に噴射されるインクの粒子速度、およ
びインクの直径の変動を調べた処、第4図に示すような
結果が得られた。図示するように従来のインクジェット
へノドに於いて、動粘度が7cStの高動粘度のインク
を用いた時、粒子化周波数がlKH2となる以前に記録
紙上に噴射されるインクの粒子径は、曲線13に示すよ
うに大幅に変動し、また記録紙上に噴射されるインクの
粒子速度も曲線14に示すように大幅に変動する問題点
が生じる。
As mentioned above, when such a low kinematic viscosity ink is used, as shown in curve 11 in FIG.
There is almost no change until the time z, and as shown in curve (2) in FIG. 3, the ink particles i\ jetted from the nozzle hole hardly change until the atomization frequency is IKIIZ. However, when an ink with a low kinematic viscosity is used, the nozzle L tends to become clogged with the ink. By the way, by using a high kinematic viscosity ink with a viscosity of 7 cSt, for example, and changing the atomization frequency of the ink,
When the velocity of the ink particles ejected onto the recording paper and the variation in the diameter of the ink at that time were investigated, the results shown in FIG. 4 were obtained. As shown in the figure, when a high kinematic viscosity ink with a kinematic viscosity of 7 cSt is used in a conventional inkjet gutter, the particle diameter of the ink ejected onto the recording paper before the atomization frequency reaches lKH2 is a curve There arises a problem in that the velocity of the ink droplets ejected onto the recording paper varies significantly as shown by curve 13, and the velocity of the ink droplets jetted onto the recording paper also varies significantly as shown by curve 14.

このことについて本発明壱等は種々検削した結果、第2
図に示す従来のインクジェットヘッドの圧力室2、およ
びインク供給路5の構造のように、インク供給路5が圧
力室2より急激に略階段状に細くなっているので、イン
クが高動粘度であるとインクがノズル孔3より噴射した
後、圧力室2に十分補充されないためと考えた。またノ
ズル孔3に対し°ζ反幻例の圧力室2の内壁面6はノズ
ル孔3の中心軸に対して略垂直状態に形成されており、
インクがノズル孔3より噴射した時に発生ずるノズル孔
の方向に向か゛う力とその力の反作用によって発生ずる
反対方向の力が、前記圧力室2の内壁面6に当たっては
ね返り、この力の影響を受けてインクの粒子速度や、イ
ンク粒子の直径に変動をきたすものと考えた。つまりイ
ンクをノズル孔より噴射させるための圧電素子からの圧
力波が、この内壁面に当たって反射して戻り、この反射
した圧力波が次の時点でインクを噴射させる圧力波に影
響を及はず考えた。
As a result of various inspections regarding this matter, the present invention, etc.
As shown in the structure of the pressure chamber 2 and the ink supply path 5 of the conventional inkjet head shown in the figure, the ink supply path 5 is sharply narrower than the pressure chamber 2 in a stepwise shape, so that the ink has a high kinematic viscosity. It was thought that this was because the pressure chamber 2 was not sufficiently replenished with ink after it was ejected from the nozzle hole 3. Further, the inner wall surface 6 of the pressure chamber 2 in the anti-phantom example is formed approximately perpendicular to the central axis of the nozzle hole 3,
When ink is ejected from the nozzle hole 3, a force generated in the direction of the nozzle hole and a force in the opposite direction generated by the reaction of that force bounce off the inner wall surface 6 of the pressure chamber 2, and the influence of this force is absorbed. It was thought that this would cause changes in the ink particle speed and diameter of the ink particles. In other words, the pressure wave from the piezoelectric element that causes ink to be ejected from the nozzle hole hits this inner wall surface and is reflected back, and this reflected pressure wave does not affect the pressure wave that causes ink to be ejected at the next point in time. .

+d) 発明の目的 本発明は上記した事項に鑑み、前記した従来の問題点を
除去するもので、高動粘度のインクを用いた場合におい
ても、ノズル孔よりインクが噴射した後に、圧力室に十
分インクが補充されるようにし、もってインクの粒子化
周波数を向上させた時にも、インク粒子速度、およびイ
ンク粒子径に変動をきたさないようにした新規なインク
ジェットヘッドの提供を目的とするものである。
+d) Purpose of the Invention In view of the above-mentioned matters, the present invention eliminates the above-mentioned conventional problems.Even when ink with a high kinematic viscosity is used, after the ink is ejected from the nozzle hole, it does not flow into the pressure chamber. The purpose of this invention is to provide a new inkjet head that does not cause fluctuations in ink droplet speed and ink droplet diameter even when the ink is sufficiently replenished and the ink atomization frequency is increased. be.

tel 発明の構成 かかる目的を達成するための本発明のインクジェットヘ
ッドは、電気エネルギーを機械エネルギーに変換する圧
電素子と、該圧電素子に所定の電圧を印加するごとによ
り発生ずる圧力波をインクに伝達する圧力室と、該圧力
室に連通し、インクの供給を行うインク供給路と、該イ
ンク供給路に連なるインク室と、前記圧力室に連通し、
圧力波による内圧変動によりインク滴を噴出するノズル
孔を有するインクジェットヘッドに於いて、前記インク
供給路が、前記圧力室より前記インク室に向かってその
幅がテーパー状に狭くなった構造となっていることを特
徴とするものである。更に前記圧力室の幅寸法をW、長
手方向の寸法をLとし、前記インク供給路の長手方向の
寸法をl、該インク供給路のインク室に連なる終端部の
幅寸法をWとした時、β≧L1および1/8W≦W≦W
なる関係を有することを特徴とするものである。
tel Structure of the Invention To achieve the above object, an inkjet head of the present invention includes a piezoelectric element that converts electrical energy into mechanical energy, and a pressure wave that is generated each time a predetermined voltage is applied to the piezoelectric element and transmits it to ink. an ink supply path that communicates with the pressure chamber and supplies ink; an ink chamber that connects with the ink supply path; and an ink chamber that communicates with the pressure chamber;
In an inkjet head having a nozzle hole that ejects ink droplets due to internal pressure fluctuations due to pressure waves, the ink supply path has a structure in which the width thereof tapers from the pressure chamber toward the ink chamber. It is characterized by the presence of Furthermore, when the width dimension of the pressure chamber is W, the longitudinal dimension is L, the longitudinal dimension of the ink supply path is l, and the width dimension of the terminal end of the ink supply channel connected to the ink chamber is W, β≧L1 and 1/8W≦W≦W
It is characterized by having the following relationship.

tr) 発明の実施例 以下図面を用いて本発明の一実施例につき詳細に説明す
る。
tr) Embodiment of the Invention An embodiment of the present invention will be described in detail below with reference to the drawings.

第5図は本発明のインクジェットヘッドの特に圧力室と
インク供給路との構造を示す平面図、第6図は本発明の
インクジェットヘッドを用い、かつ高動粘度のインクを
用いた場合に於ける、粒子化周波数に対するインク粒子
速度、およびインク粒子径の変動率を示す図である。
FIG. 5 is a plan view showing the structure of the inkjet head of the present invention, particularly the pressure chamber and the ink supply path, and FIG. 6 is a plan view showing the structure of the inkjet head of the present invention and ink with high kinematic viscosity. FIG. 2 is a diagram showing the ink droplet velocity and the rate of variation of the ink droplet diameter with respect to the particulation frequency.

第5図に示すように本発明のインクジェットヘッドに於
いては、圧力室21のノズル孔22より反対側のインク
供給路23は、圧力室の幅寸法Wより所定の角度θで共
通インク室24の方向に向かって狭くなった構造となっ
ている。種々実験の結果、インク粒子速度、およびイン
ク粒子径の粒子化周波数に刻して最も変動の少なくなる
場合は、インク供給路23の共通インク室24に連なる
端部の幅寸法をWとすると1/8W≦W≦Wの′関係を
有することが必要となる。またこのインク供給路23の
長手方向の1法をlとし、圧力室21の長手方向の寸法
をLとした時、p≧Lなる関係をイjすることが必要と
なる。
As shown in FIG. 5, in the inkjet head of the present invention, the ink supply path 23 on the opposite side from the nozzle hole 22 of the pressure chamber 21 is connected to the common ink chamber 23 at a predetermined angle θ from the width W of the pressure chamber. The structure becomes narrower in the direction of . As a result of various experiments, the width of the end of the ink supply path 23 that connects to the common ink chamber 24 is 1 when the width of the ink supply path 23 connected to the common ink chamber 24 is W. /8W≦W≦W. Further, when the dimension of the longitudinal direction of the ink supply path 23 is 1, and the longitudinal dimension of the pressure chamber 21 is L, it is necessary to satisfy the relationship p≧L.

このような本発明のインクジェットヘット、例えば、圧
力室の+I’m−’J法Wが1.6關、インク供給路の
共通インク室に連なる端部の幅寸法Wが0.2+u、圧
力室の長手方向の寸法りが5.0mm、インク供給路の
長さが5.751霧となるようなインクジェットヘノi
゛を用意し、このインクジェノ1−ヘッドに、7C5t
の高粘度のインクを用いて、粒子化周波数を変動させ、
その時のインク粒子速度、およびインク粒子径の変動率
を調べた結果を第6図に示す。
In such an inkjet head of the present invention, for example, the +I'm-'J method W of the pressure chamber is 1.6 mm, the width dimension W of the end of the ink supply path connected to the common ink chamber is 0.2 + u, and the pressure chamber Inkjet henoi with a longitudinal dimension of 5.0 mm and an ink supply path length of 5.751 mm
7C5t to this inkgeno 1-head.
Using high viscosity ink, the atomization frequency is varied,
FIG. 6 shows the results of examining the ink droplet velocity and the rate of variation in the ink particle diameter at that time.

図示するように本発明のインクジェットヘッドを用いた
場合には、粒子化周波数が1KIIzまでは、曲線31
に示すようにインク粒子速度は殆ど変動が見られす、ま
た曲線32に示すようにインク粒子i¥にも殆ど変動は
見られない。
As shown in the figure, when the inkjet head of the present invention is used, the curve 31
As shown in curve 32, there is almost no variation in the ink droplet speed, and as shown in curve 32, there is almost no variation in the ink droplet i\.

このような圧力室21、およびインク供給路23を有す
る本発明のインクジェノ1−・ノドの構造にJ、れば、
インクの動粘度が高粘度になった場合でも、従来のイン
クジェットヘノ1゛に於しノるようにインク供給路の幅
寸法が圧力室の幅寸法より急激に階段状に細くなってい
ないので、ノズル孔22よりインクが記録紙上に噴射さ
れた後に、テーバ伏のイヘノドに於けるように、ノズル
孔に対する反対側の圧力室の内壁面がノズル孔の中心軸
に対して略垂直状態になっていないので、インクを噴射
させるための圧力波が、この内壁面に当たって反射する
波の影響を受けず、インクの粒子化周波数を向上させた
場合でも、インク粒子速度、およびインク粒子径の変動
が少なくなる。
If the structure of the ink generator 1-nod of the present invention having such a pressure chamber 21 and an ink supply path 23 is J,
Even when the kinematic viscosity of the ink becomes high, the width of the ink supply path does not become narrower in a step-like manner than the width of the pressure chamber, unlike in conventional inkjet printers. After the ink is jetted onto the recording paper from the nozzle hole 22, the inner wall surface of the pressure chamber on the opposite side to the nozzle hole is in a state approximately perpendicular to the central axis of the nozzle hole, as in the case of the tapered surface. As a result, the pressure waves used to jet ink are not affected by the waves that hit and reflect on this inner wall surface, and even if the ink atomization frequency is improved, the fluctuations in ink droplet velocity and ink particle diameter are small. Become.

(gl 発明の効果 以上述べたように本発明のインクジェソトヘノトによれ
ば、インク供給路をテーバ状にしたので、高動粘度のイ
ンクを用いた場合に於いても、ノズル孔よりインクが噴
射された後、インク供給路より圧力室に十分インクの補
充ができ、また圧力室の内壁面より反n1される圧力波
の影響を受LJることも少なくなるので、粒子化周波数
を向上させた時にも、インク粒子速度、およびインク粒
子径に変動を生じることが少なくなり、高信頼度、およ
び高品位の印字記録ができる効果を生じる。
(Effects of the Invention As described above, according to the ink jetting feature of the present invention, the ink supply path is tapered, so even when ink with high kinematic viscosity is used, ink is ejected from the nozzle hole. After the ink is removed, the pressure chamber can be sufficiently replenished with ink from the ink supply path, and LJ is less affected by the pressure waves reflected from the inner wall of the pressure chamber, which improves the atomization frequency. At times, variations in the ink droplet velocity and ink particle diameter are reduced, resulting in the effect that highly reliable and high quality printing and recording can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のインクジェットヘッドの断面図、第2図
は従来のインクジエソ1〜ヘツトの圧力室、およびイン
ク供給路の平面図、第3図は従来のインクジェットヘッ
ドを用いて低動粘度のインクを用いた場合の粒子化周波
数に対するインク粒子速度、およびインク粒子径の変動
率を示す図、第4図は従来のインクジェットヘッドを用
いて高動粘度のインクを用いた場合の粒子化周波数に刻
するインク粒子速度、およびインク粒子i¥の変動率を
示す図、第5図は本発明のインクジェットへy Fの圧
力室、およびインク供給路の平面図、第6図は本発明の
インクジェノt・ヘッドを用いて高動粘度のインクを用
いた場合の粒子化周波数に対するインク粒子速度、およ
びインク粒子径の変動率を示す図である。 図に於いて、■は圧電素子、2,21は圧力室、3゜2
2はノズル孔、4.24は共通インク室、5.23はイ
ンク供給路、lL’14,31は粒子化周波数に列する
インク粒子速度の変動率を示す曲線、12,13.32
は粒子化周波数に対するインク粒子1条の変動率を示す
曲線、Wは圧力室の幅寸法、Lは圧力室の長手方向の寸
法、Wはインク供給路の端部の幅寸法、4はインク供給
路のテーパ長さ、θはインク供給路の傾斜角度を示す。 第1図 第3図 → 才女)イしIvIヌ疫1弓( 第5図 4
Fig. 1 is a sectional view of a conventional inkjet head, Fig. 2 is a plan view of the pressure chambers of the conventional inkjet printer 1 to the head, and the ink supply path, and Fig. 3 is a cross-sectional view of a conventional inkjet head. Figure 4 shows the variation rate of ink droplet speed and ink particle diameter with respect to atomization frequency when using a conventional inkjet head and a high kinematic viscosity ink. FIG. 5 is a plan view of the pressure chamber and ink supply path to the ink jet of the present invention, and FIG. - It is a figure showing the ink droplet speed and the fluctuation rate of the ink droplet diameter with respect to the particulation frequency when a high kinematic viscosity ink is used using a head. In the figure, ■ is a piezoelectric element, 2 and 21 are pressure chambers, and 3°2
2 is a nozzle hole, 4.24 is a common ink chamber, 5.23 is an ink supply path, 1L'14, 31 is a curve showing the rate of variation in ink droplet velocity in line with the atomization frequency, 12, 13.32
is a curve showing the variation rate of a single ink particle with respect to the atomization frequency, W is the width dimension of the pressure chamber, L is the longitudinal dimension of the pressure chamber, W is the width dimension of the end of the ink supply path, and 4 is the ink supply The taper length of the path, θ, indicates the inclination angle of the ink supply path. Figure 1 Figure 3 → Saijo) IvI Dog Epidemic 1 Bow (Figure 5 4

Claims (1)

【特許請求の範囲】 (ll 電気エネルギーを機械エネルギーに変換する圧
電素子と、該圧電素子に所定の電圧を印加することによ
り発生ずる圧力波をインクに伝達する圧力室と、該圧力
室に連通しインクの供給を行うインク供給路と、該イン
ク供給路に連なるインク室と、前記圧力室に連通し、圧
力波による内圧変動によりインク滴を噴出するノズル孔
を有するインクジェットヘッドに於いて、前記インク供
給路は、前記圧力室より前記インク室に向かって該イン
ク供給路の幅がテーパー状に狭くなった構造を有してい
ることを特徴とするインクジェットヘッド。 (2)前記圧力室の幅寸法をW、長手方向の寸法をLと
し、前記インク供給路の長手方向の寸法をl、該インク
供給路のインク室に連なる終端部の幅寸法をWとした時
、l≧L1および1/8W≦W≦Wなる関係を有するこ
とを特徴とする特許請求の範囲第fl)項に記載のイン
クジェットヘッド。
[Claims] (ll) A piezoelectric element that converts electrical energy into mechanical energy, a pressure chamber that transmits pressure waves generated by applying a predetermined voltage to the piezoelectric element to ink, and a pressure chamber that communicates with the pressure chamber. In the inkjet head, the inkjet head has an ink supply path for supplying ink, an ink chamber connected to the ink supply path, and a nozzle hole communicating with the pressure chamber and ejecting ink droplets due to internal pressure fluctuations caused by pressure waves. The inkjet head is characterized in that the ink supply path has a structure in which the width of the ink supply path is tapered from the pressure chamber toward the ink chamber. (2) Width of the pressure chamber When the dimension is W, the longitudinal dimension is L, the longitudinal dimension of the ink supply path is l, and the width dimension of the terminal end of the ink supply channel connected to the ink chamber is W, then l≧L1 and 1/ The inkjet head according to claim fl), which has a relationship of 8W≦W≦W.
JP24686283A 1983-12-27 1983-12-27 Ink jet head Pending JPS60139456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24686283A JPS60139456A (en) 1983-12-27 1983-12-27 Ink jet head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24686283A JPS60139456A (en) 1983-12-27 1983-12-27 Ink jet head

Publications (1)

Publication Number Publication Date
JPS60139456A true JPS60139456A (en) 1985-07-24

Family

ID=17154831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24686283A Pending JPS60139456A (en) 1983-12-27 1983-12-27 Ink jet head

Country Status (1)

Country Link
JP (1) JPS60139456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894667A (en) * 1986-02-05 1990-01-16 Canon Kabushiki Kaisha Ink jet recording head having a surface inclined toward the nozzle for acting on the ink

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663462A (en) * 1979-10-29 1981-05-30 Canon Inc Recording head
JPS5677162A (en) * 1979-11-30 1981-06-25 Fujitsu Ltd Ink jet recorder
JPS5791275A (en) * 1980-11-28 1982-06-07 Seiko Epson Corp Ink jet head
JPS587363A (en) * 1981-07-06 1983-01-17 Seiko Epson Corp Ink jet head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663462A (en) * 1979-10-29 1981-05-30 Canon Inc Recording head
JPS5677162A (en) * 1979-11-30 1981-06-25 Fujitsu Ltd Ink jet recorder
JPS5791275A (en) * 1980-11-28 1982-06-07 Seiko Epson Corp Ink jet head
JPS587363A (en) * 1981-07-06 1983-01-17 Seiko Epson Corp Ink jet head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894667A (en) * 1986-02-05 1990-01-16 Canon Kabushiki Kaisha Ink jet recording head having a surface inclined toward the nozzle for acting on the ink
US5023630A (en) * 1986-02-05 1991-06-11 Canon Kabushiki Kaisha Ink jet recording head having a surface inclined toward the nozzle for acting on the ink

Similar Documents

Publication Publication Date Title
US6409318B1 (en) Firing chamber configuration in fluid ejection devices
JPS61206662A (en) Method of driving ink jet head
US6378972B1 (en) Drive method for an on-demand multi-nozzle ink jet head
JPH1199649A (en) Ink jet head, manufacture thereof, and ink jet unit
KR20030084685A (en) Ink jet head
US20060061609A1 (en) Droplet ejection head driving method, droplet ejection head and droplet ejection device
JPS58168572A (en) Liquid droplet spouting method
JPH02281959A (en) Method for adjusting peformance of print head by adjustment of viscosity of ink
JP2001130004A (en) Recording head and ink jet recorder
KR100320689B1 (en) Lipuid ejecting method and liquid ejecting head
JPH05330045A (en) Recording head and ink-jet recording device with the same recording head
JP2785727B2 (en) Ink jet print head and driving method thereof
JPH0462157A (en) Ink-jet recording device
JPS60139456A (en) Ink jet head
JPH02184449A (en) Driver for ink jet head
JP4763418B2 (en) Ink jet head driving method, ink jet head, and ink jet recording apparatus
JP3755569B2 (en) Ink jet recording head driving method and circuit thereof
JPH02273242A (en) Ink jet head
JP4678158B2 (en) Droplet ejection head driving method, droplet ejection head, and droplet ejection apparatus
JP3093323B2 (en) Ink jet recording head and ink jet recording apparatus using the head
JP2002144557A (en) Method for driving ink-jet head
JPS60262659A (en) Ink jet head
JPH0764059B2 (en) Inkjet recording device
JPH08252913A (en) Liquid jet apparatus and method
JP3302401B2 (en) Ink jet driving apparatus and ink jet driving method