JPS6013880B2 - Rotor blade outer skin structure - Google Patents

Rotor blade outer skin structure

Info

Publication number
JPS6013880B2
JPS6013880B2 JP4763677A JP4763677A JPS6013880B2 JP S6013880 B2 JPS6013880 B2 JP S6013880B2 JP 4763677 A JP4763677 A JP 4763677A JP 4763677 A JP4763677 A JP 4763677A JP S6013880 B2 JPS6013880 B2 JP S6013880B2
Authority
JP
Japan
Prior art keywords
skin
blade
rotor blade
outer skin
trailing edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4763677A
Other languages
Japanese (ja)
Other versions
JPS53133899A (en
Inventor
光平 斎藤
舜一 板東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP4763677A priority Critical patent/JPS6013880B2/en
Publication of JPS53133899A publication Critical patent/JPS53133899A/en
Publication of JPS6013880B2 publication Critical patent/JPS6013880B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はヘリコプターL風力発電用風車、送風機用のプ
ロペラ等の回転翼の羽根の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a rotor blade of a wind turbine for helicopter L wind power generation, a propeller for a blower, or the like.

従釆、回転翼の羽根はその重心を羽根の翼型前縁から2
0〜25%翼弦長付近に位置させることが好ましく、こ
の為羽根後縁側の重量をできる限り軽くすることが要求
された。
The center of gravity of the rotor blade is 2 points from the leading edge of the blade airfoil.
It is preferable to position the vane in the vicinity of 0 to 25% of the chord length, and for this reason, it is required to reduce the weight on the trailing edge side of the blade as much as possible.

それ故、羽根後部構造には種々の工夫がなされて来た。
例えば薄板外皮を羽根中方向に配置したリブで支えるリ
ブ構造や、羽根外皮間にハニカム又は発泡ブラスチック
ス等軽い材料を充填したサンドイッチ構造が知られてい
る。
Therefore, various improvements have been made to the blade rear structure.
For example, a rib structure in which a thin plate outer skin is supported by ribs arranged in the direction of the blade, and a sandwich structure in which a light material such as honeycomb or foamed plastic is filled between the blade outer skins are known.

しかし「リブ構造ではリブが羽根長手方向にある間隔を
持って取付けられているためリブの間は外皮だけで剛性
、強度を保持する必要があり、外皮を厚くする必要があ
り、重量増加する欠点がある。さらに、リブと外皮と主
桁を互いに絹立てる際に高い精度と手数を要し、高価で
あると云う欠点もあった。又羽根外形精度もよくなかっ
た。一方、サンドイッチ構造では、充填されるコァ(芯
材)によって羽根外型寸法が決まってしまうためコアの
成形に高精度の曲面切削加工が要求され「 このため「
羽根の断面形状が羽根長手方向に変化したり、厚さや中
が変化したり、涙れが大きい場合に特にコア切削加工の
費用が高くなると云う欠点があった。
However, in the rib structure, the ribs are installed at certain intervals in the longitudinal direction of the blade, so the outer skin between the ribs needs to maintain rigidity and strength, and the outer skin needs to be thicker, which increases the weight. In addition, it required high precision and labor to align the ribs, skin, and main girder with each other, and it was expensive.Also, the precision of the blade outline was not good.On the other hand, in the sandwich structure, Because the outer dimensions of the blade are determined by the core (core material) to be filled, high-precision curved surface cutting is required to form the core.
There is a drawback that the cost of cutting the core increases especially when the cross-sectional shape of the blade changes in the blade longitudinal direction, the thickness or inside changes, or the weeping is large.

特に、主桁とサンドイッチ部との接続部では、主桁とコ
アの寸法差を箸るしく小さくしなければ接着不可能であ
り〜かつ高価な特殊接着剤を必要とすると云う問題もあ
った。そこで羽根後部を形成する上下面の各外皮をハニ
カムコァ等を充填したサンドイッチ構造の外皮とし〜各
外皮は主桁後部と羽根後綾部の2ケ所のみで接着結合さ
れるような構成にして、空気力は上下外皮と主桁とのド
ラス構造として主桁に伝達されるよう構成するならばハ
ニカムコアの曲面切削が不要となり、かつ組立の手数を
はぶき主桁や外板の要求精度が緩和され、部品点数も極
めて少く安価であると云う効果を持つはずである。とこ
ろがこのような試みは従来成功しなかった。その理由は
羽根後部にかかる空気外力によって主桁との結合部に大
きな曲げモーメントが作用し、接着や鉄等では耐えるこ
とができないという問題があったためである。又羽根内
面側から主桁と外板との結合部に別な補強部材等をあて
ることが必要であり、組立の手間と部品点数が増大し〜
接着の信頼性が低下するという問題があったためである
。本発明はこのような問題を解決したサンドイッチ構造
の回転翼羽根の外皮構造を提供することを目的とする。
In particular, at the connection between the main girder and the sandwich part, there is a problem that bonding is impossible unless the dimensional difference between the main girder and the core is made extremely small, and an expensive special adhesive is required. Therefore, each outer skin on the upper and lower surfaces that form the rear part of the blade is constructed with a sandwich structure filled with honeycomb core, etc., and each outer skin is configured to be adhesively bonded at only two places, the rear part of the main spar and the rear twill part of the blade, so that the aerodynamic force If it is configured so that it is transmitted to the main girder as a drum structure of the upper and lower skins and the main girder, cutting of the curved surface of the honeycomb core is not necessary, and the required precision of the main girder and the skin plate is reduced, and the parts It should have the effect that the number of points is extremely small and it is inexpensive. However, such attempts have not been successful. The reason for this is that an external air force applied to the rear part of the blade causes a large bending moment to act on the joint with the main girder, which cannot be withstood by adhesives or iron. In addition, it is necessary to apply a separate reinforcing member to the joint between the main girder and the outer plate from the inner surface of the blade, which increases the assembly effort and number of parts.
This is because there was a problem that the reliability of adhesion decreased. An object of the present invention is to provide a sandwich-structure rotor blade skin structure that solves these problems.

本発明によれば、主桁の後縁側上部に結合され該主桁か
ら羽根後縁までの翼形上面を形成するサンドイッチ構造
上部外皮と、主桁の後縁側下部に結合され該主桁から羽
根後緑までの翼形下面を形成するサンドイッチ構造下部
外皮とを有し、かつ前記上部外皮及び下部外皮の後端を
羽根後緑部で結合して構成した回転翼羽根の外皮構造に
おいて、前記上部外皮及び下部外皮のそれぞれの前記主
桁結合部近傍に外皮厚さを薄くし他の外皮部分より曲げ
剛性を4・よくした薄板部を設け、かつ該薄板部の翼弦
方向長さを前記上及び下部外皮の翼弦方向中寸法の約3
〜15%にしたことを特徴とする回転翼羽根の外皮構造
が提供される。
According to the present invention, the sandwich structure upper skin is connected to the upper part of the trailing edge of the main spar and forms an airfoil-shaped upper surface from the main spar to the trailing edge of the blade; A rotor blade outer skin structure comprising a sandwich structure lower skin forming an airfoil-shaped lower surface up to a rear green, and the rear ends of the upper skin and the lower skin are joined by a blade rear green. A thin plate portion is provided in the vicinity of the main spar joint of each of the outer skin and the lower skin, the outer skin thickness is thinner, and the bending rigidity is 4.0 mm higher than that of the other skin parts, and the length in the chord direction of the thin plate portion is set to the above-mentioned above. and approximately 3 of the mid-chord dimension of the lower skin.
A rotor blade skin structure characterized in that the rotor blade has a thickness of 15%.

この場合「前託上及び下部外皮は「繊維強化ブラスチッ
ク板の間に発泡プラスチックまたはハニカム構造物等の
軽量芯部村を介在させて形成したサンドイッチ構造にし
、必要強度に対する重量をできるだけ軽減することが好
ましい。
In this case, it is preferable that the upper and lower outer skins have a sandwich structure with a lightweight core village such as foamed plastic or honeycomb structure interposed between fiber-reinforced plastic plates to reduce the weight as much as possible relative to the required strength. .

さらに、前記主桁により前記上及び下部外皮から羽根前
緑までの翼形前部を形成すれば、羽根の構造を簡単にす
ることができる。
Furthermore, if an airfoil-shaped front part from the upper and lower skins to the blade front green is formed by the main spar, the structure of the blade can be simplified.

また、前記薄板部は前記サンドイッチ構造の芯村を除去
した板材構造にし「前記上及び下部外皮の後端は互いに
直接結合して外皮自体で羽根後綾部を形成するようにす
ることもでき、こうすることにより構造簡単で製作容易
なかつ軽量な回転翼羽根を得ることができる。
Further, the thin plate part may have a plate material structure with the core village of the sandwich structure removed, and the rear ends of the upper and lower skins may be directly connected to each other to form the blade rear twill part with the skin itself. By doing so, it is possible to obtain a rotor blade that has a simple structure, is easy to manufacture, and is lightweight.

次に図面に従って詳細に説明する。Next, a detailed explanation will be given according to the drawings.

第i図はヘリコプターの回転翼羽根に適用した本発明の
実施例であり、第2図は第1図の羽根の翼形拡大断面図
であり〜第3図は姿部を示す部分拡大図である。
Figure i shows an embodiment of the present invention applied to a rotor blade of a helicopter, and Figure 2 is an enlarged sectional view of the airfoil shape of the blade in Figure 1 to Figure 3 is a partial enlarged view showing the external part. be.

図示の場合、主桁2は羽根の前縁部が一体に形成されて
おり「羽根川こかかる遠心力、曲げモーメント荷重、涙
れ荷重等の主たる荷重を受け持つ主要構造部材であり、
根元側には回転翼羽根の支持機構に取り付けるためのラ
グ3が形成されている。羽根川ま前緑部5及び後緑部6
を含む。主桁2の後縁側上下端部には、上及び下部外皮
8? 9との結合部7が設けられている。主桁2と上部
外皮8および下部外皮9によって、一つの翼型が形成さ
れる。ここで該上部外皮8と下部外皮9はL各々の主桁
結合部7に結合されるとともに、後案談葺合部軍01こ
おいて接着あるいは鋲により互いに直接結合されて後縁
部を形成している。しかし場合によっては他の適当な部
材を使用しへ上及び下部外皮の後端を該部材に結合して
羽根後綾部を形成することもできる。上部外皮8及び下
部外皮9は回転翼根元部ならびに先端部のカバー11,
12に接続される部分を除き「前記2ケ所の結合部7,
10以外では結合されていない。該上部外皮8と該下部
外皮9は、例えばハェカムコアの芯材13の上下面にガ
ラス繊維強化プラスチックスの表皮1亀,G5が接着結
合されたサンドイッチ構造である。
In the illustrated case, the main girder 2 is a main structural member in which the front edge of the blade is integrally formed and is responsible for the main loads such as centrifugal force, bending moment load, and tear load applied to the blade.
A lug 3 is formed on the root side for attachment to a support mechanism for the rotor blade. Hanekawa front green section 5 and back green section 6
including. At the upper and lower ends of the rear edge of the main girder 2 are upper and lower outer skins 8? A connecting portion 7 with 9 is provided. The main spar 2, upper skin 8, and lower skin 9 form one airfoil. Here, the upper skin 8 and the lower skin 9 are joined to the main girder joining part 7 of each L, and are directly joined to each other by adhesive or rivets at the rear plan joining part 01 to form a trailing edge part. ing. However, if desired, other suitable members may be used to which the trailing ends of the upper and lower skins are connected to form the trailing twill. The upper skin 8 and the lower skin 9 have covers 11 at the root and tip of the rotor blades,
Except for the part connected to 12, "the two connecting parts 7,
No combination other than 10. The upper outer skin 8 and the lower outer skin 9 have a sandwich structure in which, for example, a glass fiber reinforced plastic skin 1, G5 is adhesively bonded to the upper and lower surfaces of a core material 13 of a honeycomb core.

芯材13はその前縁側および後縁側の一部分のみが斜め
に切り落されている。この構成においてはトハニカムコ
ア量3の厚さは薄くてよいため曲面に切削しなくとも容
易に曲面に沿わせる事が出釆、従ってハニカムコア13
の切削は単なる平面切削だけで良い。しかも、外皮8及
び9は空気流にさらされる面のみに精度が必要で、他面
は凹凸があっても良いので、ハニカムコァ13と末硬イ
びRPシートとを翼型をしためす型治具上で一回の加熱
硬化で製作出来る。このため、該上部ならびに下部外皮
8,9は安価に製造される。該上部ならびに下部外皮8
,9には、主桁結合部7とハニカムコア斜め加工部17
との間にハニカムコア13を有しない薄板部16が形成
される。
The core material 13 has only a portion on its front edge side and rear edge side cut off diagonally. In this configuration, the thickness of the honeycomb core 3 may be thin, so it can be easily made to follow the curved surface without cutting into the curved surface.
Cutting can be done by simply cutting a flat surface. Moreover, precision is required only on the surfaces of the outer skins 8 and 9 that are exposed to airflow, and the other surfaces may have irregularities, so a molding jig is used to form the airfoil shape between the honeycomb core 13 and the end-hardened RP sheet. It can be manufactured by heating and curing once. For this reason, the upper and lower outer skins 8, 9 are manufactured at low cost. The upper and lower skins 8
, 9, the main girder joint part 7 and the honeycomb core diagonal processing part 17
A thin plate portion 16 having no honeycomb core 13 is formed between the two.

該薄板部16の翼弦方向長さは、該外皮8,9の中C(
第2図参照)の15%以下、好ましくは3%から15%
になるように選定される。このような薄坂部16を設け
かつ前記範囲の最さ1こ選定することにより、次のよう
な空気外力に対抗出来る実用的な回転羽根の外皮機造が
得られたのである。
The length of the thin plate portion 16 in the chord direction is the middle C(
(see Figure 2), preferably 3% to 15%
selected to be. By providing such a thin slope portion 16 and selecting the thinnest portion 16 within the above range, a practical rotary blade outer skin structure capable of resisting the following external air force was obtained.

すなわち、従来のサンドイッチ機造外皮を有する回転翼
羽根の様に該薄板部16に相当する部分が無かったりあ
るいは極端に短かいような構造では、該上部ならびに下
部外皮8,9に作用する空気外力による曲げモーメント
荷重が主桁との結合部7に働らき、この結合部7の接着
あるいは鏡結合等ではその大きな曲げモーメント荷重に
耐えることができなかった。
In other words, in a rotor blade having a conventional sandwich machine skin, in which there is no portion corresponding to the thin plate portion 16 or the portion is extremely short, the outer air force acting on the upper and lower skins 8 and 9 A bending moment load acts on the joint 7 with the main girder, and bonding or mirror joining of the joint 7 could not withstand the large bending moment load.

本発明の如く主桁との結合部附近に薄板部16を設ける
と、薄板部はハニカムコア挿入部と比べて剛性が小さい
のでこの部分が一つのピン継手の如き効果を持ち、その
ため結合部7に働くモーメント荷重を軽減することが出
来る。この点をもっと詳細に説明すると、上部外皮8及
び下部外皮9はそれぞれ主桁2の後縁側に対しピン継手
により結合され、上部外皮8の後縁と下部外皮9の後緑
は互に剛結合された三角形のラーメン構造とトラス構造
の複合された構造物と見ることができる。別の観点から
見ると、上部外皮8と下部外皮9の後縁での結合部は荷
重を受けたとき或る程度の回転を生ずるので、この後緑
結合部もピン継手に近く、三角ラーメン構造と考えるこ
ともできる。そして、この3角形のラーメン又はトラス
構造の場合、後縁結合部の変位は曲げ変位に比べて極め
て小さいので、上部外皮8及び下部外皮9をそれぞれ別
個に考えるときは、各々は両端支持の梁として取扱うこ
とができる。したがつて、たとえば上部外皮8について
考察すると、この外皮8は前縁を主桁2にピン結合され
、後縁をピン継手により支持されるか或いは剛結合によ
り支持された梁と考えてよく、この外皮8にたとえば上
向きに一様分布の空気力が使用したとき、外皮8に生じ
る曲げモーメントは、両端がピン継手と考えたときは弦
方向の中央部で最大で両端で0になり、後縁部を固定支
持と考えたときは前緑で0で、後方に向って二次曲線状
に増加する。いずれにしても、上部外皮8と主桁との結
合部では、その結合をピン継手と考えるとモーメントは
0になる。実際には薄板部16は完全なピン継手ではな
く、剛継手とピン継手の中間の性質を有するものである
から、上部外皮8と主桁との結合部には或る程度のモー
メントが生じるが、その大きさは薄坂部16を設けない
場合に比し、大中に低減されることになる。この事は、
第4図及び第5図に示す模式図でもあきらかである。
When the thin plate part 16 is provided near the connecting part with the main girder as in the present invention, since the thin plate part has lower rigidity than the honeycomb core insertion part, this part has an effect like a pin joint, and therefore the connecting part 7 It is possible to reduce the moment load acting on the To explain this point in more detail, the upper skin 8 and the lower skin 9 are each connected to the rear edge side of the main girder 2 by a pin joint, and the rear edge of the upper skin 8 and the rear green of the lower skin 9 are rigidly connected to each other. It can be seen as a composite structure of a triangular rigid frame structure and a truss structure. From another point of view, since the joint at the trailing edge of the upper skin 8 and the lower skin 9 undergoes some degree of rotation when subjected to a load, this rear green joint is also similar to a pin joint and has a triangular rigid frame structure. You can also think that. In the case of this triangular rigid frame or truss structure, the displacement of the trailing edge joint is extremely small compared to the bending displacement, so when considering the upper skin 8 and the lower skin 9 separately, each of them is It can be treated as Therefore, for example, considering the upper skin 8, this skin 8 may be considered as a beam whose leading edge is pin-coupled to the main girder 2 and whose rear edge is supported by a pin joint or by a rigid connection. For example, when a uniform upwardly distributed aerodynamic force is applied to the outer skin 8, the bending moment generated in the outer skin 8, assuming that both ends are pin joints, is maximum at the center in the chord direction, becomes 0 at both ends, and at the rear. When the edge is considered as a fixed support, it is 0 in the front green and increases in a quadratic curve shape toward the rear. In any case, if the connection between the upper skin 8 and the main girder is considered to be a pin joint, the moment becomes 0. In reality, the thin plate part 16 is not a perfect pin joint, but has properties intermediate between a rigid joint and a pin joint, so a certain amount of moment is generated at the joint between the upper skin 8 and the main girder. , its size is significantly reduced compared to the case where the thin slope portion 16 is not provided. This thing is
This is also clear from the schematic diagrams shown in FIGS. 4 and 5.

即ち、両端を固定支持した部村に一様分布荷重がかかる
場合、一様な剛性を有する部材であれば固定端のモーメ
ントはW12/12である。ここでWは分布荷重、1は
都材長さである。そこで、固定端部に隣接して他の部分
に比して剛性の小さい部分を有する構成を取ると、固定
舵−メント‘ま響よ小さく偽。例として、剛性の比が1
0の場合の固定端モーメントの値を、接触に11/1(
11剛性の小さい部分の長さ1:全長)を取って示すと
第5図の如くになる。
That is, when a uniformly distributed load is applied to a member fixedly supported at both ends, the moment at the fixed end is W12/12 if the member has uniform rigidity. Here, W is the distributed load, and 1 is the length of the material. Therefore, if a configuration is adopted in which a portion adjacent to the fixed end has a lower rigidity than other portions, the fixed rudder will have a small and false illusion. As an example, if the stiffness ratio is 1
The value of the fixed end moment in the case of 0 is set to 11/1 (
11 The length of the portion with low rigidity (1: total length) is shown in Figure 5.

これからあきらかな様に、11/1≠0.1近辺に固定
端モーメントを最小にする11/1の最適値があり、そ
の場合の固定端モーメントは約1′2に減少する。この
モーメントの減少の割合および最適な11/1の値は剛
性比によって変り、剛性比が大であればある程、固定端
モーメントの減少は大きくかつ最適な11/1の値は4
・さくなる。
As is clear from this, there is an optimum value of 11/1 that minimizes the fixed end moment in the vicinity of 11/1≠0.1, and in that case the fixed end moment is reduced to about 1'2. The rate of decrease in this moment and the optimal value of 11/1 vary depending on the rigidity ratio; the larger the rigidity ratio, the greater the reduction in the fixed end moment, and the optimal value of 11/1 is 4.
・It becomes thinner.

剛性比を大にする為には薄板部16の板厚を十分薄くす
ればよいが、これには限度がある。
In order to increase the rigidity ratio, the thickness of the thin plate portion 16 may be made sufficiently thin, but there is a limit to this.

すなわち、板厚減少による強度の低下、ならびに外皮が
トラスとして機能するために生ずる圧縮力によって座屈
しないなどの要求を満足するため、板厚を小さくする事
には限界があり実用上得られる剛性比の場合の最適な1
1/】の値は3%から15%である。実際に回転翼に適
用した場合、結合部のモーメントがいかに低減されるか
を、第6図から第8図に例を示して更に詳述する。
In other words, there is a limit to reducing the thickness of the plate in order to meet the requirements of not buckling due to the compressive force generated by the outer skin functioning as a truss, and there is a limit to the rigidity that can be obtained in practice. Optimal 1 for the ratio
1/] is between 3% and 15%. How the moment of the coupling portion is reduced when actually applied to a rotary blade will be explained in further detail with examples shown in FIGS. 6 to 8.

第6図は、本発明によって薄坂部がある翼の揚力分布を
示し、第7図と第8図は「剛性の比が10の場合の薄板
部のある場合(1,/1=0.07)と、ない場合の上
側外皮のモーメントと鱒断力の分布を示したものである
。このモーメントと奥断力の分布は、簡単には次のよう
にして求められる。すなわち、曲げモーメントと鯛断力
の分布は、上側上皮を、両端固定支持したはりと考え、
それに前端から後端に向けて一様に減少する分布揚力が
働くものと仮定して求める。はり‘ま、前部簿坂部、ハ
ニカム、サンドイッチ部、後部薄板部に分け、それぞれ
の構成に応じた異なる曲げ剛性を有するものと考える。
このような仮定にもとづき、曲げモーメントと灘断力の
分布は材料力学のはり理論を用いて求めることができ、
その一例は第7図、第8図に示した通である。尚、揚力
は上側外皮がほとんどを受け持ち、下側外皮の荷重はわ
ずかである。薄板部がある場合、結合部に働く曲げモー
メントは薄板部をもうけることにより、約1/2に低減
しており、効果があきらかである。
FIG. 6 shows the lift force distribution of a wing with a thin slope section according to the present invention, and FIGS. ) and the distribution of the moment of the upper skin and the trout shearing force when there is no such thing.The distribution of this moment and the deep shearing force can be easily obtained as follows. The distribution of shearing force is based on the assumption that the upper epithelium is a beam with both ends fixed and supported.
It is calculated assuming that a distributed lift force that decreases uniformly from the front end to the rear end acts on it. It is considered to be divided into a beam, a front slope section, a honeycomb section, a sandwich section, and a rear thin plate section, each of which has a different bending rigidity depending on its structure.
Based on these assumptions, the distribution of bending moment and shear force can be determined using the beam theory of mechanics of materials.
An example of this is shown in FIGS. 7 and 8. It should be noted that most of the lifting force is carried by the upper skin, and the load on the lower skin is small. When there is a thin plate part, the bending moment acting on the joint part is reduced to about 1/2 by providing the thin plate part, and the effect is clear.

一方、上側外皮中央部のサンドイッチ構造部では、薄板
部をもうけることにより逆にモーメントが増加するが、
サンドイッチ構造部は強度的に十分な余裕を有しており
、この発明の効果を滅するものではない。また、薄板部
自体の強度は問題とならない。なぜならば、一般に、こ
の様な結合部を含む構造の強度は、結合部の強度によっ
て支配され、結合部以外の強度は結合部より数情高いの
が普通である。また結合部以外で仮に問題があったとし
ても、板厚を厚くすることによって容易に強度を向上で
きる。一方、結合部は、板厚を増しても強度向上はわず
かである。更に具体的な例によって示すと次の通りであ
る。回転翼は、翼弦長750肌、直径10の、回転数2
0仇pmとし、最大揚力を発生しているものとする。
On the other hand, in the sandwich structure section at the center of the upper outer skin, the moment increases by providing a thin plate section, but
The sandwich structure has sufficient strength and does not diminish the effects of the present invention. Further, the strength of the thin plate part itself is not a problem. This is because, generally, the strength of a structure including such a joint is controlled by the strength of the joint, and the strength of the parts other than the joint is usually numerically higher than the strength of the joint. Furthermore, even if there is a problem in areas other than the joint, the strength can be easily improved by increasing the thickness of the plate. On the other hand, even if the thickness of the joint is increased, the strength of the joint is only slightly improved. A more specific example is as follows. The rotor blade has a chord length of 750, a diameter of 10, and a rotation speed of 2.
It is assumed that the maximum lift force is generated at 0 pm.

また外皮は第3図に示す様に、ガラス繊維強化プラスチ
ックスとハニカム・コアで構成され、薄板部の厚さは3
肋、サンドイッチ構造部は、コア厚さ1仇駁、表皮が0
.5肋とする。この場合、薄板部に働く荷重は、 曲げモーメント 単位幅(1柵)当り 14.1玄9・
舵桝鱒断力 単位幅(1帆)当り 0.22k
g圧縮力 単位幅(1柵)当り 0.31kg
でおり、各々による応力は、曲げモーメントによる引張
圧縮応力 9.4k9/舵の2奥断力による雛断応力
0.11k9/のの2圧縮力による圧縮応
力 0.10k9/肋ここで、圧縮力は前述
の計算で求めた奥断力のうち羽根後端の結合部に生ずる
鱗断力から求められる。
As shown in Figure 3, the outer skin is composed of glass fiber reinforced plastics and a honeycomb core, and the thickness of the thin plate part is 3.
The ribs and sandwich structure have a core thickness of 1 and a skin of 0.
.. There should be 5 ribs. In this case, the load acting on the thin plate part is bending moment per unit width (1 fence) 14.1 x 9.
Rudder trout shearing force 0.22k per unit width (1 sail)
g Compressive force 0.31kg per unit width (1 fence)
The stress due to each is tensile and compressive stress due to bending moment 9.4k9 / chick shear stress due to rudder's 2 deep shear force
Compressive stress due to 2 compressive force of 0.11k9/0.10k9/bar Here, the compressive force is determined from the scale shearing force generated at the joint at the rear end of the blade out of the deep shearing force determined by the above calculation.

すなわち、上側外皮と下側外皮を、前端部が支持され後
端部が互い結合された3角形トラスを構成するものと考
え、その後端部に上述の鱗断力に相当する外力が作用し
たぱあし、の圧縮力を求める。曲げモーメントによる引
張圧縮応力は、曲げモーメントを1′6×〔板厚〕2で
割ることにより、鱒断力による応力は、数断力を2/3
×〔板厚〕で割ることにより、また引張力による応力は
、引張力を板厚で割ることによって求められる。ガラス
繊維強化プラスチックスの強度は、引張圧縮に対して約
40k9/柵2、奥断に対して10k9/肋2程度あり
、十分な余裕を有していることがあきらかである。
In other words, the upper skin and the lower skin are considered to constitute a triangular truss in which the front end is supported and the rear end is connected to each other. and find the compressive force of. The tensile and compressive stress due to the bending moment can be calculated by dividing the bending moment by 1'6 x [plate thickness]2, and the stress due to the trout shearing force can be calculated by dividing the number shearing force by 2/3.
× [Plate thickness] The stress due to tensile force can be calculated by dividing the tensile force by the plate thickness. The strength of the glass fiber reinforced plastics is approximately 40k9/2 fences for tensile compression and 10k9/2 ribs for deep cutting, and it is clear that the strength is sufficient.

また、疲労強度に対しても、ガラス繊維強化プラスチツ
クスの107回における強度は、引張圧縮に対し18【
9/側2、駒断に対して3k9/肌2程度あり、最大荷
重の繰り返し‘こ対しても余裕を有する。
In addition, regarding fatigue strength, the strength of glass fiber reinforced plastics after 107 cycles is 18[
9/side 2, there is about 3k9/skin 2 for the piece cutting, and there is plenty of room even when the maximum load is repeated.

ただし、薄坂部とハニカム・サンドイッチ構造の遷移部
において応力集中が生ずるが、ハニカム・コアの厚さ方
向の勾配を小さくし、かつガラス繊維強化プラスチック
スの層を連続させる等によって容易に応力集中を下げる
ことができる。
However, stress concentration occurs at the transition between the thin slope and the honeycomb sandwich structure, but this can be easily avoided by reducing the gradient in the thickness direction of the honeycomb core and by making the layers of glass fiber reinforced plastics continuous. Can be lowered.

たとえば、ハニカム・コアの厚さの勾配を30oとした
場合の応力集中は、中実な金属構造の応力集中から類推
すると、最大に見積っても1.9塁度であり、この応力
集中を考えても十分な強度を有している。以上示した応
力は、板厚を増加することによって容易に減少させるこ
とができる。
For example, when the gradient of the thickness of a honeycomb core is 30 degrees, the stress concentration is estimated to be 1.9 degrees at maximum, by analogy with the stress concentration of a solid metal structure. It has sufficient strength. The stress shown above can be easily reduced by increasing the plate thickness.

たとえば板厚を1.2倍にすれば、曲げモーメントによ
る応力を1/1.44にすることができる。なお各部の
荷重と応力は、電子計算機を用いた有限要素法によって
、より正確に求められる。この様に、薄板部をもうける
ことによって、薄坂部を含めて外皮線造そのものに問題
となることはなく、かつ、板厚をかえること等によって
、種々の回転翼および実用要求に容易に対応できる。
For example, if the plate thickness is increased by 1.2 times, the stress due to bending moment can be reduced to 1/1.44. The loads and stresses in each part can be determined more accurately by the finite element method using an electronic computer. In this way, by creating a thin plate part, there is no problem with the outer skin structure itself, including the thin slope part, and by changing the plate thickness, etc., it is possible to easily meet various rotor blades and practical requirements. .

本実施例では、第3図に示すごとくガラス繊維布をサン
ドイッチ構造部ではコア両面に各3層を積層し、該薄板
部16には更に4層を追加して頚層し合計10層積層し
て必要な強度を得ている。
In this embodiment, as shown in FIG. 3, three layers of glass fiber cloth are laminated on each side of the core in the sandwich structure part, and four additional layers are added to the thin plate part 16 as a neck layer, making a total of 10 layers. The required strength has been obtained.

本発明の考え方から、薄板部16の材料としては、縦弾
性率が低くて高い坑張力を有する材料例えばガラス繊維
などが最も適しているが、炭素繊維やケプラー繊維でも
実施可能である。特に、剛性の必要なサンドイッチ構造
部には剛性の高い炭素繊維やケプラー繊維を用い、薄坂
部16付近は剛性の低いガラス繊維を用いる等の組合わ
せによれば本発明の利点を更に強調することができる。
本発明は前記の如く構成されているので次の如き効果が
得られる。すなわち、コア13の曲面切削を全く必要と
せず、単に端部17を斜めに切削するだけで良く、しか
もコアに対してきびしい切削精度を要求しなくてすむた
め非常に安価に製作し得る。
From the concept of the present invention, the most suitable material for the thin plate portion 16 is a material having a low modulus of longitudinal elasticity and high tensile strength, such as glass fiber, but carbon fiber or Keplerian fiber may also be used. In particular, the advantages of the present invention can be further emphasized by combining carbon fibers or Keplerian fibers with high rigidity for the sandwich structure requiring rigidity, and using glass fibers with low rigidity near the thin slope section 16. I can do it.
Since the present invention is configured as described above, the following effects can be obtained. That is, it is not necessary to cut the curved surface of the core 13 at all, and it is sufficient to simply cut the end portion 17 diagonally, and it is not necessary to require severe cutting precision for the core, so it can be manufactured at a very low cost.

そして、又外皮8,9の片面(外面)のみに精度が要求
され、他面は全く凹凸でもよいということから、ハニカ
ムコアと未硬化FRPシートを一回で加熱硬化させて成
形する方法を採用することができ、外皮の製作がきわめ
て容易でかつ安価に出来、しかも空気力に対して十分な
強度を有する実用的な回転度の後部構造が得られる。又
、従来のハニカムサンドィッチ構造やリブ構造では、非
常に高価で実施不可能に近かったような複雑な形状を持
つ回転翼羽根、例えば翼形断面形状が羽根長手方向に変
化したり羽根厚さが変化したり振れが箸るしく大きくな
る様な場合でも、本発明の外皮構造によれば製造費や設
備工程に何ら変化なく安価に実施し得るという馨るしい
効果が得られる。
Furthermore, since precision is required only on one side (outer surface) of the outer skins 8 and 9, and the other side can be completely uneven, we adopted a method of heating and curing the honeycomb core and uncured FRP sheet at one time. The outer skin can be manufactured very easily and inexpensively, and a rear structure with a practical degree of rotation that has sufficient strength against aerodynamic forces can be obtained. In addition, conventional honeycomb sandwich structures and rib structures are extremely expensive and impractical for rotor blades with complex shapes, for example, when the cross-sectional shape of the airfoil changes in the longitudinal direction of the blade or when the blade thickness changes. Even in the case where the deflection or runout increases significantly, the outer shell structure of the present invention has the advantageous effect of being able to be implemented at low cost without any change in manufacturing costs or equipment processes.

こうして、空気力学的に最適の羽根形状を持つ高性能な
回転翼を容易かつ安価に提供することができるようにな
った。又、主桁部2の結合部分7に接着結合を用いる場
合、結合部分は、薄坂部16に連続して設けられている
から剛性が小さく、小さな接着圧力でも互いに密着し、
十分均一な接着剤厚さが得られ接着強さの信頼性が高い
In this way, it has become possible to easily and inexpensively provide a high-performance rotor blade with an aerodynamically optimal blade shape. In addition, when adhesive bonding is used for the connecting portion 7 of the main girder portion 2, since the connecting portion is provided continuously on the thin slope portion 16, the rigidity is low, and even with a small adhesive pressure, the bonding portions are in close contact with each other.
Adhesive thickness is sufficiently uniform and adhesive strength is highly reliable.

さらに結合部分は一枚の外皮について2ケ所のみである
から、常に接着部に圧力が作用し、接着不良がないので
1回で組立を完了することができ、組立費用がきわめて
安価になり、かつ信頼性が向上するという効果も得られ
る。本発明の方法は本実施例のみならず、その思想を逸
脱することなく種々の変形を含むことが出釆、各種のプ
ロペラ、ファン等の回転翼羽根に広く適用することが可
能である。
Furthermore, since there are only two joining parts per outer skin, pressure is always applied to the adhesive parts, and there is no adhesion failure, so assembly can be completed in one time, and assembly costs are extremely low. The effect of improving reliability can also be obtained. The method of the present invention is applicable not only to the present embodiment, but also to various modifications without departing from the concept thereof, and can be widely applied to rotor blades of various propellers, fans, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の外皮構造を有するヘリコプターの回転
翼羽根の平面図、第2図は第1図の線0一D‘こ沿った
拡大断面図、第3図は第2図の部分mを示す部分拡大斜
視図、第4図は従来の外皮構造の曲げモーメント分布を
示す漠式図、第5図は本発明の外皮構造の曲げモーメン
ト分布の例を示す模式図、第6図は、第2図に示す回転
翼羽根上での揚力分布を示す模式図、そして、第7図及
び第8図は、第6図に示す回転翼羽根と、同様な構造で
薄板のない回転翼羽根との、上例外皮のモーメント分布
と鯛断力分布とを示す穣式グラフである。 1・・…・回転翼羽根、2・・・・・・王桁、7…・・
・外皮の主桁への結合部、8・・…・上部外皮、9・・
・・・・下部外皮、10……外皮の後緑結合部、16…
…薄板部。 宗完丁図 帯2図 第3図 第4図 亭完5図 籍6図 ※7函 繁8図
FIG. 1 is a plan view of a helicopter rotor blade having the skin structure of the present invention, FIG. 2 is an enlarged cross-sectional view taken along line 01D' in FIG. 1, and FIG. 3 is a portion m of FIG. 2. FIG. 4 is a schematic diagram showing the bending moment distribution of the conventional skin structure, FIG. 5 is a schematic diagram showing an example of the bending moment distribution of the skin structure of the present invention, and FIG. Fig. 2 is a schematic diagram showing the lift force distribution on the rotor blade, and Figs. 2 is a graph showing the moment distribution of the upper skin and the sea bream shearing force distribution. 1...Rotor blade, 2...King digit, 7...
・Joining part of outer skin to main girder, 8... Upper outer skin, 9...
...Lower integument, 10... Posterior green joint of integument, 16...
...Thin plate part. Sokancho Zui 2, Figure 3, Figure 4, Teikan 5, Book 6, *7, Box 8,

Claims (1)

【特許請求の範囲】 1 主桁の後縁側上部に結合された該主桁から羽根後縁
までの翼形上面を形成するサンドイツチ構造上部外皮と
、主桁の後縁側下部に結合され該主桁から羽根後縁まで
の翼形下面を形成するサンドイツチ構造下部外皮とを有
し、かつ前記上部外皮及び下部外皮の後端を羽根後縁部
で結合して構成した回転翼羽根の外皮構造において、前
記上部外皮及び下部外皮のそれぞれの前記主桁結合部近
傍に外皮厚さを薄くし他の外皮部分より曲げ剛性を小さ
くした薄板部を設け、かつ該薄板部の翼弦方向長さを前
記上及び下部外皮の翼弦方向巾寸法の約3〜15%にし
たことを特徴とする回転翼羽根の外皮構造。 2 前記特許請求の範囲第1項において、前記上及び下
部外皮が、繊維強化プラスチツク板の間に発泡プラスチ
ツクまたはハニカム構造物等の軽量芯部材を介在させて
形成したサンドイツチ構造であることを特徴とする回転
翼羽根の外皮構造。 3 前記特許請求の範囲第1項において、前記主桁が前
記上及び下部外皮から羽根前縁までの翼形前部を形成し
ていることを特徴とする回転翼羽根の外皮構造。 4 前記特許請求の範囲第1項において、前記薄板部が
前記サンドイツチ構造の芯材を除去して板材構造である
ことを特徴とする回転翼羽根の外皮構造。 5 前記特許請求の範囲第1項において、前記上及び下
部外皮の後端を互いに直接結合して羽根後縁部を形成し
たことを特徴とする回転翼羽根の外皮構造。
[Scope of Claims] 1. A sanderch structure upper skin that forms an airfoil upper surface from the main spar to the trailing edge of the blade, which is connected to the upper part of the trailing edge of the main spar, and an upper skin that is connected to the lower part of the trailing edge of the main spar, In a rotor blade skin structure, the rotor blade has a sanderch structure lower skin forming an airfoil-shaped lower surface from to the blade trailing edge, and is configured by joining the rear ends of the upper skin and the lower skin at the blade trailing edge, A thin plate portion having a thinner outer skin thickness and lower bending rigidity than other outer skin portions is provided in the vicinity of the main spar joint of each of the upper skin and the lower skin, and the length in the chord direction of the thin plate portion is set to the above-mentioned upper skin. and an outer skin structure for a rotor blade, characterized in that the width of the lower outer skin in the chord direction is about 3 to 15%. 2. The rotating device according to claim 1, wherein the upper and lower outer skins have a sandwich structure formed by interposing a lightweight core member such as foamed plastic or a honeycomb structure between fiber-reinforced plastic plates. The outer skin structure of the wing blade. 3. The skin structure of a rotor blade according to claim 1, wherein the main spar forms an airfoil-shaped front part from the upper and lower skins to the leading edge of the blade. 4. The outer skin structure of a rotor blade according to claim 1, wherein the thin plate portion has a plate structure by removing the core material of the sanderch structure. 5. The outer skin structure of a rotor blade according to claim 1, wherein the rear ends of the upper and lower outer skins are directly connected to each other to form a blade trailing edge.
JP4763677A 1977-04-25 1977-04-25 Rotor blade outer skin structure Expired JPS6013880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4763677A JPS6013880B2 (en) 1977-04-25 1977-04-25 Rotor blade outer skin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4763677A JPS6013880B2 (en) 1977-04-25 1977-04-25 Rotor blade outer skin structure

Publications (2)

Publication Number Publication Date
JPS53133899A JPS53133899A (en) 1978-11-22
JPS6013880B2 true JPS6013880B2 (en) 1985-04-10

Family

ID=12780709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4763677A Expired JPS6013880B2 (en) 1977-04-25 1977-04-25 Rotor blade outer skin structure

Country Status (1)

Country Link
JP (1) JPS6013880B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0817921D0 (en) * 2008-10-01 2008-11-05 Airbus Uk Ltd Aircraft skin panel with ultrasonic gauge
US10773484B2 (en) * 2018-02-02 2020-09-15 The Boeing Company Hinged composite sandwich panels

Also Published As

Publication number Publication date
JPS53133899A (en) 1978-11-22

Similar Documents

Publication Publication Date Title
US4616977A (en) Hubless, hingeless and bearingless helicopter rotor system
KR100468508B1 (en) A composite tip cap assembly for a helicopter main rotor blade
US5269658A (en) Composite blade with partial length spar
US3782856A (en) Composite aerodynamic blade with twin-beam spar
US8079819B2 (en) Optimization of premium fiber material usage in wind turbine spars
US3754840A (en) Composite helicopter rotor and blade
US10710712B2 (en) Rotor blade afterbody
JP6446455B2 (en) Bonded and adjustable composite assembly
US6155784A (en) Variable pitch aircraft propeller
US3000446A (en) Helicopter rotor blades
US20090140527A1 (en) Wind turbine blade stiffeners
US20110052408A1 (en) Swept blades utilizing asymmetric double biased fabrics
WO1998030446A9 (en) Variable pitch aircraft propeller
US20110052407A1 (en) Swept blades utilizing asymmetric double biased fabrics
US2754915A (en) Blade having symmetrical extruded spar
US4349316A (en) Twist control for helicopter tail rotor pitch change
WO2011078337A1 (en) Windmill rotary vane
US2694458A (en) Rotor blade construction
EP2895389B1 (en) Passive load alleviation for aerodynamic lift structures
JP2011137388A5 (en)
US3018832A (en) Aircraft structure
US2941603A (en) Helicopter rotor blade
US2467031A (en) Rotor blade for rotating wing aircraft
US4306837A (en) Bearingless tail rotor for helicopters
JPS6013880B2 (en) Rotor blade outer skin structure