JPS60138450A - Thin tube type isotachophoresis analysis - Google Patents

Thin tube type isotachophoresis analysis

Info

Publication number
JPS60138450A
JPS60138450A JP59253666A JP25366684A JPS60138450A JP S60138450 A JPS60138450 A JP S60138450A JP 59253666 A JP59253666 A JP 59253666A JP 25366684 A JP25366684 A JP 25366684A JP S60138450 A JPS60138450 A JP S60138450A
Authority
JP
Japan
Prior art keywords
electrolyte
terminal
electrophoresis
leading
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59253666A
Other languages
Japanese (ja)
Other versions
JPS6160387B2 (en
Inventor
Takao Yagi
八木 孝夫
Shunei Mizuno
水野 俊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59253666A priority Critical patent/JPS60138450A/en
Publication of JPS60138450A publication Critical patent/JPS60138450A/en
Publication of JPS6160387B2 publication Critical patent/JPS6160387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To prevent the formation of a mixed zone of both liquids by monitoring the introduction of a terminal liquid and a leading liquid introduced thereafter at an exhausting hole provided deviatedly to an electrophoresis tube. CONSTITUTION:The terminal electrolyte T is introduced from a terminal liquid electrode cell 2. Since the exhausting hole 7 provided deviatedly to the electrophoresis tube 3 is opened, the electrolyte T is exhausted from the hole 7 in order, and the terminal electrolyte introduction is stopped when the exhausting is attained. Next, the leading electrolyte L is introduced from a leading liquid electrode cell 4, said electrolyte is attained to the hole 7 and exhausted partially together with the terminal electrolyte. At the exhausting time point, the hole 7 is closed by an on-off valve 9. Thereby, a boundary surface P of both electrolytes is formed clearly. The sample is injected from a sample injecting hole 6 by using a microsyringe 11. Since a needle 12 of the microsyringe 11 is not passed through the terminal electrolyte at all, the mixed zone of both electrolytes is not formed.

Description

【発明の詳細な説明】 この発明は細管式等速電気泳動分析法に関する。[Detailed description of the invention] This invention relates to a capillary isotachophoresis analysis method.

さらに詳しくは、この発明はターミナル液電極槽側及び
リーディング液電極槽側から泳動I管にターミナル電解
液及びリーディング電解液をそれぞれ導入し、これらの
両電解液が加圧式開閉弁を備えた排液口から排出される
に至った時点で両電解液、の導入を停止し、その後試料
注入口から泳動細管に注入された試料を等速電気泳動さ
せて試料中の目的物質を検出する細管式等速電気泳動分
析法において、ターミナル液電極槽からターミナル電解
液を泳動細管へ導入し、その電解液が試料注入口の位置
を含み且つリーディング液電極槽側の泳動m管へ偏設し
た排液口から排出されるに至った時点でその導入を停止
し、その停止後に、リーディング!電極槽からターミナ
ル電解液を泳動細管へ導入してなる細管式等速電気泳動
分析法に関する。
More specifically, this invention introduces a terminal electrolyte and a leading electrolyte into the migration I tube from the terminal liquid electrode tank side and the leading liquid electrode tank side, respectively, and drains these two electrolytes with a pressurized on-off valve. A capillary type, etc. in which the introduction of both electrolytes is stopped when the electrolytes are discharged from the mouth, and then the sample injected into the electrophoresis capillary from the sample injection port is subjected to isokinetic electrophoresis to detect the target substance in the sample. In fast electrophoresis analysis, the terminal electrolyte is introduced from the terminal liquid electrode tank into the electrophoresis capillary, and the electrolyte includes the position of the sample injection port, and the drain port is located unevenly in the migration tube on the leading liquid electrode tank side. Stop the introduction as soon as it is ejected from the system, and after that stop, the leading! This invention relates to a capillary isokinetic electrophoresis analysis method in which a terminal electrolyte is introduced from an electrode bath into an electrophoresis capillary.

電気泳動法には、連通ずる泳動細管(キー17ビラリチ
ユーブ)内にターミナル電解液とり−ゲイングミ解散と
を充填し、その境界面に荷電状態になる物質(アミノ酸
類、ペプチド類、生体物質など)の試料を注入し、定電
流による電気泳動を行い被検出物を分離(ヌは分画)し
、定性及び/又は定量する細管式等速電気泳動法がある
。この電気泳動法においては、一般的な試料注入部は、
例えば第3図のごとく屈曲部(5a)に、マイクロシリ
ンジ(11a)の針(12a)が試料注入時のリーディ
ング液電極槽(4a)側に延びるよう構成され、更に排
液口をその試料注入口よりリーディング液電極槽(4a
)側に離れて配設されている。従って両電解液の境界面
は前記排液口附近に形成され、試料注入に際しては、マ
イクロシリンジの針がターミナル電解液を通って境界面
又はリーディング電解液に至り、この針の挿入・出時に
両電解液と試料との混合ゾーンを作りやすい。その結果
、両電解液の分離に必要な泳動距離が試料分離の前段で
必要となり、相当長い泳動細管と泳動時間が必要となる
In the electrophoresis method, a communicating electrophoresis tube (key 17 cell tube) is filled with a terminal electrolyte solution and a gain gummy solution, and substances (amino acids, peptides, biological substances, etc.) that become charged at the interface are charged. There is a capillary isokinetic electrophoresis method in which a sample is injected, electrophoresis is performed using a constant current, and the substance to be detected is separated (fractionation) for qualitative and/or quantitative determination. In this electrophoresis method, a typical sample injection part is
For example, as shown in Fig. 3, the bent part (5a) is configured so that the needle (12a) of the microsyringe (11a) extends toward the leading liquid electrode tank (4a) when injecting the sample, and the drain port is also connected to the sample inlet. Leading liquid electrode tank (4a
) are placed apart from each other. Therefore, an interface between both electrolytes is formed near the drain port, and when injecting a sample, the needle of the microsyringe passes through the terminal electrolyte and reaches the interface or leading electrolyte, and when the needle is inserted and removed, both Easy to create a mixing zone between electrolyte and sample. As a result, the electrophoresis distance required to separate both electrolytes is required at the stage prior to sample separation, and a considerably long electrophoresis tube and electrophoresis time are required.

この発明は、これらの事情に鑑みなされたちので、その
主要な特徴は、ターミナル液電極槽からターミナル電解
液を泳動細管へ導入し、その電解液が試料注入口の位置
を含み且つリーディング液電極槽層側の泳動細管へ偏設
した排液口から排出されるに至った時点でその導入を停
止し、その停止後にリーディング液電極槽からターミナ
ル電解液を泳動細管へ導入したことにあり、この特徴に
J:って、試料注入に際してマイクロシリンジなどの釘
がリーディング電解液中をのみ通過でき、従ってターミ
ナル電解液との混合がほどんどなく、泳動距離及び時間
の短縮ができる。なお、泳動細管の排液口を試料注入口
の位置を含み、且つリーディング液電極槽側の泳動細管
へ偏設する具体的構成例としては、実施例のものが好ま
しいものとして挙げられるが、その他に屈曲しない直線
状泳動細管部に試料注入口と対向して設けるものが挙げ
られる。そしてこれらの例は、何れも、まずターミナル
電解液が導入され、しかる後にリーディング電解液が導
入される。
This invention was developed in view of these circumstances, and its main features are that the terminal electrolyte is introduced into the electrophoresis capillary from the terminal liquid electrode tank, and that the electrolyte includes the position of the sample injection port and the leading liquid electrode tank. This feature lies in the fact that the introduction of the electrolyte was stopped when the liquid was discharged from the drain port located unevenly into the electrophoresis tube on the layer side, and after that, the terminal electrolyte was introduced from the leading liquid electrode tank into the electrophoresis tube. Therefore, when injecting a sample, a nail such as a microsyringe can pass only through the leading electrolyte, so there is little mixing with the terminal electrolyte, and the migration distance and time can be shortened. As a specific example of a structure in which the drain port of the electrophoresis tube is located at the position of the sample injection port and is located unevenly in the electrophoresis tube on the leading liquid electrode tank side, the example of the embodiment is mentioned as a preferable example, but there are other examples. One example is one in which a linear electrophoresis capillary section that is not bent is provided facing the sample injection port. In each of these examples, the terminal electrolyte is first introduced, and then the leading electrolyte is introduced.

以下図に示す実施例に基づいてこの発明を詳述する。な
お、これによってこの発明が限定されるものではない。
The present invention will be described in detail below based on embodiments shown in the figures. Note that this invention is not limited to this.

まず第1図において、この発明を実施するだめの一例を
示す細管式電気泳動分析装置(1)は、ターミナル液電
極槽(21と、泳動細管部(3)と、リーディング液電
極槽(4)とから主として構成されている。
First, in FIG. 1, a capillary electrophoresis analyzer (1) showing an example of a device for carrying out the present invention consists of a terminal liquid electrode tank (21), an electrophoresis capillary section (3), and a leading liquid electrode tank (4). It is mainly composed of.

前記泳動細管部(3)は、途中の屈曲部(5)に試料注
入口(6)を有し、その試料注入口よりリーディング液
電極槽(2)側に排液口(ドレン)(7)を一方のリー
ディング液電極槽(4)側に電位勾配検出器(8)をそ
れぞれ設置している。ここで(9)は前記排液口(7)
の加圧弐閤閉弁、00)は前記試料注入口(6)のセプ
タムである。なお、前記両電極槽(2)・(4)は切換
によって何れも大気解放可能である。
The electrophoresis thin tube part (3) has a sample injection port (6) at a bent part (5) in the middle, and a drain port (7) on the leading liquid electrode tank (2) side of the sample injection port. A potential gradient detector (8) is installed on one side of the leading liquid electrode tank (4). Here (9) is the drain port (7)
The pressurized closing valve, 00) is the septum of the sample injection port (6). Note that both the electrode tanks (2) and (4) can be opened to the atmosphere by switching.

更に前記屈曲部(5)回りの構成を具体的に詳しく説明
すると、第2図において、屈曲部(5)は略直角に折曲
し、その外側の垂直部にセプタム(10)が設置されて
、マイクロシリンジ(11)の針(12)がリーディン
グ液電極11i f’l)側の泳動細管中を進むよう構
成されている。一方排液口は屈曲部(5)の外側水平部
に設置されている。
Further, to explain in detail the structure around the bending part (5), in FIG. , the needle (12) of the microsyringe (11) is configured to advance through the electrophoresis tube on the leading liquid electrode 11i f'l) side. On the other hand, the drain port is installed on the outer horizontal part of the bent part (5).

次に、以上のような構成からなる細管式等速電気泳動分
析装置(1)の作動を説明する。
Next, the operation of the capillary isotachophoresis analyzer (1) having the above configuration will be explained.

まず、第2図において、ターミナル液電極槽(2)側か
らターミナル電解液を導入する。この場合、排液口(7
)は解放されているので、ターミナル電解液(T)は順
次その排液口(7)より排出されるが、その排出に至っ
た時点でターミナル電解液の導入を止め、一方のリーデ
ィング電解液(L)をリーディング液電極槽(4)側か
ら導入する。かくしてリーディング電解液は排液口(7
)に至って一部のターミナル電解液と共に排出される。
First, in FIG. 2, the terminal electrolyte is introduced from the terminal liquid electrode tank (2) side. In this case, drain port (7
) is released, the terminal electrolyte (T) is sequentially discharged from its drain port (7), but at the point when the terminal electrolyte (T) is discharged, the introduction of the terminal electrolyte is stopped and one of the leading electrolytes (T) is discharged. L) is introduced from the leading liquid electrode tank (4) side. Thus, the leading electrolyte is drained from the drain port (7).
) and is discharged together with some terminal electrolyte.

この排出の時点・で排液口(7)を開閉弁(9)によっ
て閉塞すると、両電解液の境界面(P)が明確に且つ所
定位置に形成される。
When the drain port (7) is closed by the on-off valve (9) at the time of this discharge, a boundary (P) between both electrolytes is clearly formed at a predetermined position.

ここでマイクロシリンジ(11)を用いて第2図のごと
く試料が試料注入口(6)から注入される。つまり、マ
イクロシリンジ(11)の針(12)がセプタム00)
を貫通して泳動細管(3)内のリーディング電解液(L
)のみの領域に注入される。従ってこの試料注入に際し
ては、釘(12)がターミナル電解液(T)を全く通過
しないので、はとんど雨雪解散の混合ゾーンを形成づる
ことはなく、短かい泳動時間にて分離が可能になる。
Here, the sample is injected from the sample injection port (6) using the microsyringe (11) as shown in FIG. In other words, the needle (12) of the microsyringe (11) is septum 00).
leading electrolyte (L) in the electrophoresis tube (3).
) is injected only into the area. Therefore, when injecting this sample, the nail (12) does not pass through the terminal electrolyte (T) at all, so a mixing zone of rain and snow dissolution is hardly formed, and separation can be performed in a short electrophoresis time. become.

すなわち、上述のごとく試3°Mを注入しtc後、定電
流高圧電流源(図示省略)により一定電流を供給して等
速電気泳動を行う。か<b’r試料イオン(陰イオン)
は易動度の大きさの順に泳動細管内部に分1i1ff(
分画)され、互いに明確な境界を保持しながら、各ゾー
ンがイオン量で決まる一定の幅をもって等速度で矢印六
方向に移動を行なう。この場合、各ゾーンには易動度に
応じてそれぞれ違った固有の電位勾配か形成されるので
、この電位勾配を検出器(8)によつ−C検出し分離さ
れた単一成分イオンを知ることができる。りなわら、そ
の電位勾配値から分取ずべき目的物質イオンを検知づる
ことができる。
That is, as described above, after injecting a sample of 3°M and tc, isokinetic electrophoresis is performed by supplying a constant current from a constant current high voltage current source (not shown). ka<b'r sample ion (anion)
are divided into minutes 1i1ff (
Each zone moves at a constant speed in the six directions of arrows with a constant width determined by the amount of ions while maintaining clear boundaries with each other. In this case, a unique potential gradient is formed in each zone depending on its mobility, so this potential gradient is detected by the detector (8) and the separated single component ions are detected. You can know. However, the target substance ions to be fractionated can be detected from the potential gradient value.

なお、雨雪解散を上述のように順に泳動細tJ (31
に導入した後におりる排液口(7)の閉塞に際して、予
めリーディング液電極槽(4)のみを大気解放に切換え
れば、雨雪解散の境界面(P)が排液口(7)にお【プ
る加圧の影響をほとんど受けないので、より明確に、且
つ所定位置に形成できる。
In addition, the rain and snow are dissolved in order as described above.
When the drain port (7) is blocked after introducing the liquid into the liquid, if you switch only the leading liquid electrode tank (4) to the atmosphere in advance, the boundary surface (P) for rain and snow dissolution will be at the drain port (7). Since it is almost unaffected by the applied pressure, it can be formed more clearly and in a predetermined position.

更に試料注入に際して、予めターミナル液電極槽(2)
のみを大気解放に切換えれば、大量の試1’31を導入
しても。その試料がターミナル液電極槽(2)側へ移行
注入されるので所定の泳動距離が確保でき、正確な分離
分析かで−きる。また、低濃度の試料を大量に導入する
ことも可能どなる。
Furthermore, when injecting the sample, prepare the terminal liquid electrode tank (2) in advance.
Even if a large amount of test 1'31 is introduced, if only the sample is changed to open to the atmosphere. Since the sample is transferred to the terminal liquid electrode tank (2) and injected, a predetermined migration distance can be ensured and accurate separation analysis can be performed. It also becomes possible to introduce large amounts of samples with low concentrations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するための細管式等速電気泳動
分析装置の一例を示す機能説明図、第2図はその試料注
入口回りの拡大断面図、第3図は従来例を示す第1図相
当図である。 (1)・・・・・・細管式等速電気泳動分析装置、(2
)・・・・・・ターミナル液電極層、(3)・・・・・
・泳動細管部、(4)・・・・・・リーディング液電極
槽、(6)・・印試斜注入[」、(7)・・・・・・排
液口、(8)・・・・・・電位勾配検出器。
Fig. 1 is a functional explanatory diagram showing an example of a capillary type isotachophoresis analyzer for carrying out the present invention, Fig. 2 is an enlarged cross-sectional view around the sample injection port, and Fig. 3 is a diagram showing a conventional example. This is a diagram equivalent to Figure 1. (1)... Capillary type isotachophoresis analyzer, (2
)...Terminal liquid electrode layer, (3)...
・Migration thin tube section, (4)...Leading liquid electrode tank, (6)...Mark test oblique injection ['', (7)...Drain port, (8)... ...Potential gradient detector.

Claims (1)

【特許請求の範囲】 1、ターミナル液電極槽側及びリーディング液電極槽側
から泳動細管にターミナル電解液及びリーディング電解
液をそれぞれ導入し、これらの両電解液が加圧式開閉弁
を備えた排液口から排出されるに至った時点で両電解液
の導入を停止し、その後試料注入口から泳動細管に注入
された試料を等速電気泳動させて試料中の目的物質を検
出する■1管式等速電気泳動分析法において、 ターミナル液電極槽からターミナル電解液を泳動細管へ
導入し、その電解液が試料注入口の位置を含み且つリー
ディング液電極層側の泳動細管へ偏設した排液口から排
出されるに至った時点でその導入を停止し、その停止後
にリーディング液電極槽からターミナル電解液を泳動細
管へ導入することを特徴とする細管式等速電気泳動分析
法。
[Claims] 1. A terminal electrolyte and a leading electrolyte are introduced into the electrophoresis tube from the terminal liquid electrode tank side and the leading liquid electrode tank side, respectively, and both electrolytes are drained with a pressurized on-off valve. The introduction of both electrolytes is stopped when the electrolytes are discharged from the mouth, and then the sample injected into the electrophoresis tube from the sample injection port is subjected to isokinetic electrophoresis to detect the target substance in the sample ■One-tube type In isotachophoresis analysis, the terminal electrolyte is introduced from the terminal liquid electrode tank into the electrophoresis tube, and the electrolyte includes the position of the sample injection port and is located at a drain port located unevenly in the electrophoresis tube on the leading liquid electrode layer side. A capillary isokinetic electrophoresis analysis method characterized in that the introduction of the terminal electrolyte is stopped when the leading solution is discharged from the electrode tank, and after the introduction of the terminal electrolyte is stopped, the terminal electrolyte is introduced from the leading solution electrode tank into the electrophoresis capillary.
JP59253666A 1984-11-29 1984-11-29 Thin tube type isotachophoresis analysis Granted JPS60138450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253666A JPS60138450A (en) 1984-11-29 1984-11-29 Thin tube type isotachophoresis analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253666A JPS60138450A (en) 1984-11-29 1984-11-29 Thin tube type isotachophoresis analysis

Publications (2)

Publication Number Publication Date
JPS60138450A true JPS60138450A (en) 1985-07-23
JPS6160387B2 JPS6160387B2 (en) 1986-12-20

Family

ID=17254487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253666A Granted JPS60138450A (en) 1984-11-29 1984-11-29 Thin tube type isotachophoresis analysis

Country Status (1)

Country Link
JP (1) JPS60138450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906344A (en) * 1989-06-22 1990-03-06 Bio-Rad Laboratories, Inc. Thermal technique for bulk fluid movement in capillary electrophoresis
US5232565A (en) * 1988-09-27 1993-08-03 The Board Of Trustees Of The Leland Standford Junior University Capillary electrophoretic system
US5298134A (en) * 1988-08-24 1994-03-29 Board Of Trustees Of The Leland Stanford Junior University Capillary device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298134A (en) * 1988-08-24 1994-03-29 Board Of Trustees Of The Leland Stanford Junior University Capillary device
US5232565A (en) * 1988-09-27 1993-08-03 The Board Of Trustees Of The Leland Standford Junior University Capillary electrophoretic system
US4906344A (en) * 1989-06-22 1990-03-06 Bio-Rad Laboratories, Inc. Thermal technique for bulk fluid movement in capillary electrophoresis

Also Published As

Publication number Publication date
JPS6160387B2 (en) 1986-12-20

Similar Documents

Publication Publication Date Title
Moini Capillary electrophoresis mass spectrometry and its application to the analysis of biological mixtures
Wahl et al. Use of small‐diameter capillaries for increasing peptide and protein detection sensitivity in capillary electrophoresis‐mass spectrometry
Lin et al. On‐line sample concentration techniques in capillary electrophoresis: Velocity gradient techniques and sample concentration techniques for biomolecules
EP1296134B1 (en) Sampling device and its use for controlling sample introduction in microcolumn separation techniques
Vrouwe et al. Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection
Xu et al. Electrokinetic supercharging preconcentration and microchip gel electrophoretic separation of sodium dodecyl sulfate‐protein complexes
Ptolemy et al. New advances in on-line sample preconcentration by capillary electrophoresis using dynamic pH junction
Busnel et al. Electrokinetic supercharging for highly efficient peptide preconcentration in capillary zone electrophoresis
Thormann et al. Screening for urinary methadone by capillary electrophoretic immunoassays and confirmation by capillary electrophoresis‐mass spectrometry
JPS60138450A (en) Thin tube type isotachophoresis analysis
Tachibana et al. Effects of the length and modification of the separation channel on microchip electrophoresis–mass spectrometry for analysis of bioactive compounds
Albin et al. The use of capillary electrophoresis in a micropreparative mode: Methods and applications
Manabe et al. Fully automated capillary isotachophoresis of proteins
CN103884807A (en) &lt;18&gt;O on-line marked protein quantitative analysis platform, and operation method thereof
JPH0572178A (en) Electrophoretic device
Takigiku et al. Capillary‐zone electrophoresis with fraction collection for desorption mass spectrometry
JPH032851Y2 (en)
Nesbitt et al. Nanoliter‐volume protein enrichment, tryptic digestion, and partial separation based on isoelectric points by CE for MALDI mass spectral analysis
EP0607495B1 (en) Capillary electrophoresis
Chen et al. Combination of flow injection with electrophoresis using capillaries and chips
JPH03118463A (en) Electrophoresis apparatus
JP3036651B2 (en) Sample injection device for capillary electrophoresis device
JPS58134Y2 (en) Isokinetic electrophoresis analyzer
JPS5841478Y2 (en) electrophoresis analyzer
KR0177013B1 (en) Electrophoresis apparatus