JPS60138381A - Refrigerator structure - Google Patents

Refrigerator structure

Info

Publication number
JPS60138381A
JPS60138381A JP24469783A JP24469783A JPS60138381A JP S60138381 A JPS60138381 A JP S60138381A JP 24469783 A JP24469783 A JP 24469783A JP 24469783 A JP24469783 A JP 24469783A JP S60138381 A JPS60138381 A JP S60138381A
Authority
JP
Japan
Prior art keywords
vacuum
refrigerator
vacuum pump
degree
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24469783A
Other languages
Japanese (ja)
Other versions
JPH0459551B2 (en
Inventor
印南 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24469783A priority Critical patent/JPS60138381A/en
Publication of JPS60138381A publication Critical patent/JPS60138381A/en
Publication of JPH0459551B2 publication Critical patent/JPH0459551B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 く発明の利用分野〉 この発明は、下側に冷蔵室や上部に冷凍室等を有する冷
蔵庫の断熱壁が真空空間を形成され、その断熱機能をよ
り向上させるようにされた冷蔵庫構造に関する発明であ
り、特に、該断熱壁の内部に形成された真空空間の真空
度が経時的に低下するのを防止するように所定の真空ポ
ンプを該真空空間に接続させた冷蔵庫構造に係る発明で
ある。
[Detailed Description of the Invention] Field of Application of the Invention The present invention is directed to a refrigerator having a refrigerator compartment on the lower side and a freezer compartment on the upper side. This invention relates to a refrigerator structure, in particular, a refrigerator in which a predetermined vacuum pump is connected to the vacuum space so as to prevent the vacuum degree of the vacuum space formed inside the heat insulating wall from decreasing over time. This invention relates to a structure.

く発明の背景〉 周知の如く、各家庭には冷蔵庫があり、又、レストラン
等にも商業用の冷蔵庫があり、スーパーマーケラ1〜等
においてはオープンショウケース等に冷凍機が設けられ
て広く採用されている。
BACKGROUND OF THE INVENTION As is well known, every household has a refrigerator, and there are also commercial refrigerators in restaurants, etc., and refrigerators are installed in open showcases in supermarkets, etc., and are widely used. It has been adopted.

而して、該種冷蔵庫の極めて広く用いられている家庭用
の冷蔵庫について第1図でl8説すると上下左右、及び
、背部の断熱壁2と該背部の断熱壁2から一体的に前延
する断熱壁3により上下の冷凍室4.5に郭成され、各
々酢6.7により密閉解放自在にされている。
According to this type of refrigerator, which is extremely widely used for home use, as shown in FIG. A heat insulating wall 3 defines upper and lower freezer compartments 4.5, each of which can be sealed and opened with vinegar 6.7.

而して、該冷蔵庫1の底部に設けられた圧縮器8により
低温、低圧ガス冷媒は高温、高圧のガス冷媒にされて圧
送され、冷蔵庫1の上部に設けた放熱器9により冷蔵庫
1の周辺空気と熱交換して放熱し、したがって、ガス冷
媒は冷却されて減圧機構である図示しないキャピラリー
チューブによって減圧膨張されて上記冷凍室4の内奥に
設けられた冷却機冷却器に送給され、該冷却機10によ
り冷蔵庫1内をファン11により循環されている空気を
冷却して冷蔵、及び、冷却作用に供給し、冷却機10か
ら送出される冷媒は再び上記圧縮器8に戻り冷凍サイク
ルを循環するようにされている。
The low-temperature, low-pressure gas refrigerant is converted into a high-temperature, high-pressure gas refrigerant by the compressor 8 installed at the bottom of the refrigerator 1, and is then pumped to the surrounding area of the refrigerator 1 by the radiator 9 installed at the top of the refrigerator 1. The gas refrigerant is cooled and expanded under reduced pressure by a capillary tube (not shown), which is a decompression mechanism, and is sent to the refrigerator cooler provided deep within the freezer compartment 4. The cooler 10 cools the air that is being circulated by the fan 11 inside the refrigerator 1 and supplies it for refrigeration and cooling action, and the refrigerant sent out from the cooler 10 returns to the compressor 8 again to start the refrigeration cycle. It is made to circulate.

而して、該種冷R庫1においては、その内部温度は冷凍
室に於て一18℃程度、又、冷蔵室は+3℃程度に保た
れるように設計されているが、当然のことながら、冷蔵
庫1の周囲濃度はその周囲の空気自体の温度、及び、放
熱器9からの放熱によ′る昇温を介して一般には高い。
Therefore, the internal temperature of the seed cold R storage 1 is designed to be maintained at around -18°C in the freezer compartment and around +3°C in the refrigerator compartment. However, the ambient concentration around the refrigerator 1 is generally high due to the temperature of the surrounding air itself and the temperature rise due to heat radiation from the radiator 9.

したがって、物理現象的に外部からの冷蔵庫1に対する
断熱壁2等を介しての入熱は避けられず、ぞのため、従
来より断熱壁2や扉6.7内に可及的に熱伝導率の低い
断熱材を介装充填添設させて外部からの入熱を抑tiす
るようにしている。
Therefore, due to physical phenomena, heat input from the outside to the refrigerator 1 through the heat insulating wall 2, etc. is unavoidable. A heat insulating material with a low temperature is added as an intervening filling to suppress heat input from the outside.

ところが、該種箱−義的な機械的断熱材の添設による外
熱侵入、′a断はづでにその材料17t1発の点等から
極限に達しており、冷蔵庫1のランニングコスト、或い
は、運転効率、熱効率等の点てずでに限界にきている問
題があった。
However, the intrusion of external heat due to the addition of a mechanical insulation material to the seed box has already reached its limit due to the fact that 17 tons of material is required, and the running cost of the refrigerator 1 or There were problems in terms of operational efficiency, thermal efficiency, etc., which had already reached their limits.

これに対処するに、特開昭58−78082号公報に示
されている如く、冷蔵庫の断熱壁に部分的に真空バック
された断熱材を充填介装させた手段や、又、特開昭57
−6279号公報に示されている如く、冷蔵庫1の断熱
壁の内外壁を真空空間とした新しい物理的な断熱技術が
開発されてきた。
To deal with this problem, as shown in Japanese Patent Application Laid-Open No. 58-78082, there is a method in which the heat insulating wall of the refrigerator is filled with a partially vacuum-backed heat insulating material;
As shown in Japanese Patent No. 6279, a new physical insulation technology has been developed in which the inner and outer walls of the insulating wall of the refrigerator 1 are made into a vacuum space.

又、該極真空空間を存する断熱圧縮器の該真空空間に従
来の可及的な熱伝導率の低い断熱材を充填させて両者−
相俟ってより断熱性能を向上させるように技術も改良さ
れてきている。
In addition, the vacuum space of the adiabatic compressor that exists in the extreme vacuum space is filled with a conventional heat insulating material with the lowest possible thermal conductivity, so that both
At the same time, technology has been improved to further improve insulation performance.

さりながら、該種空間断熱壁を有する冷蔵庫においては
、例えば、真空度0.1Torrで熱伝導率が0.00
3W / m”Cである断熱製が良いものの、冷i厘製
造時において初期にこのような真空度、即ち、断熱性の
良さが得られ、したがって、理論的には実現可能であっ
ても実効上は不可能である欠点があった。
However, in a refrigerator having the seed space insulation wall, for example, the thermal conductivity is 0.00 at a vacuum degree of 0.1 Torr.
Although it is better to use a heat insulating product with a rating of 3W/m"C, such a degree of vacuum, that is, good heat insulation, can be obtained at the initial stage of cold i-rin manufacturing, so even if it is theoretically possible, it is not effective. The drawback was that the above was impossible.

即ち、冷蔵庫の耐用年数は通常10年、或いは、それ以
上であり、又、該冷蔵庫の真空断熱圧縮器がその真空空
間を上述の真空度に保たれていても、その壁構造面や組
付は面、溶接面、曲折部等に空気分子が残留Jることは
避けられず、したがって、経年的にこれらの残存空気分
子が徐々に飛び出し真空度を下げていくことになり、そ
のため、上記初期の断熱の良さが体化するという難点が
あり、又、製造後の移動や輸送、或いは、梱包時、据付
は時、或いは、据付は後の使用者側における移動等にお
ける微小な歪、或いは、これに加うるに激しい渇1東変
化等が加わって折り曲げ部、或いは、組付は部に極めて
微小な漏れ間隙が形成されることもあって、これらが相
俟って長年月の間には真空度が悪くなることが避(プら
れない不具合があった。
In other words, the useful life of a refrigerator is usually 10 years or more, and even if the vacuum adiabatic compressor of the refrigerator maintains the vacuum space at the above-mentioned degree of vacuum, the wall structure and assembly It is unavoidable that air molecules remain on surfaces, welded surfaces, bends, etc. Therefore, over time, these remaining air molecules will gradually fly out and reduce the vacuum level, which will cause the above-mentioned initial There is a problem that the good insulation properties of the product are realized, and there is also the problem that there may be slight distortion during movement or transportation after manufacturing, during packaging, during installation, or during movement by the user after installation. In addition to this, extremely small leakage gaps may be formed at bent or assembled parts due to severe drought changes, etc., and these factors combine to cause damage over many years. There was a problem in which the degree of vacuum could not be avoided.

〈発明の目的〉 この発明の目的は上述従来技術に基づく冷蔵庫の断熱機
能における断熱性能、就中、真空断熱壁の経年的断熱性
能低下の問題点を解決すべき技術的課題とし、冷R庫の
耐用年数の期間冷凍サイクルの機能が維持される間はそ
の熱効率が設計通りに製造初期のそれと同様に維持され
るようにするために常にその真空断熱壁の真空空間の真
空度を設計通りに維持することが出来るようにしてエネ
ルギー産業における冷熱利用分野に益する優れた冷蔵庫
構造を提供せんとするものである。
<Object of the Invention> The object of the present invention is to solve the technical problem of the thermal insulation performance of the refrigerator based on the above-mentioned conventional technology, especially the problem of the deterioration of the thermal insulation performance of the vacuum insulation wall over time, and to During the service life of the refrigeration cycle, the degree of vacuum in the vacuum space of its vacuum insulation wall should always be maintained as designed in order to ensure that its thermal efficiency is maintained as designed and similar to that at the initial stage of manufacture. It is an object of the present invention to provide an excellent refrigerator structure that can be maintained and is beneficial to the field of cold and heat utilization in the energy industry.

〈発明の概要〉 上述目的に沿い先述特許請求の範囲を要旨とするこの発
明の構成は、前述問題点を解決するために冷蔵庫が圧縮
器、放熱器、及び、冷却器によって所定の冷凍ザイクル
を介して冷凍、冷蔵作用を成し、その間、該冷蔵庫を初
期製造する時にその断熱壁内に形成した真空空間を1T
orr以下等の設定真空度に形成してヂエツクバルブを
介し真空ポンプに接続しておき、該断熱壁内の真空空間
内に臨ませた圧力レンツ−−を介して該ITorr以上
の圧力に成ることが検出された場合に所定時間該真空ポ
ンプを動作さUで初期の真空度を維持づるようにし、或
いは、タイマーを介して設定時間毎に該真空ポンプを動
作さぼる等して所定動作装置を介し該真空ポンプにより
初期真空度と同程亀の真空度を維持−4るようにして冷
蔵庫の耐用年数期間は冷凍サイクルと同等に真空断熱壁
の断熱性を確実に維持づることは出来るようにした技術
的手段を講じたものである。
<Summary of the Invention> In accordance with the above-mentioned object and the gist of the above-mentioned claims, the structure of the present invention is such that, in order to solve the above-mentioned problems, a refrigerator generates a predetermined freezing cycle using a compressor, a radiator, and a cooler. During the initial manufacture of the refrigerator, the vacuum space formed within the insulation wall is heated to 1T.
It is possible to create a set vacuum level of less than 1 Torr and connect it to a vacuum pump via a check valve, and then increase the pressure to more than 1 Torr via a pressure lens facing into the vacuum space within the insulating wall. When detected, the vacuum pump is operated for a predetermined period of time to maintain the initial degree of vacuum, or the vacuum pump is stopped operating at every set time via a timer, and the vacuum pump is operated via a predetermined operating device. A technology that uses a vacuum pump to maintain the same degree of vacuum as the initial vacuum, thereby ensuring that the insulation of the vacuum insulation wall is maintained for the lifetime of the refrigerator, equivalent to that of the refrigeration cycle. The measures taken were as follows.

〈実施例−構成〉 次に、この発明の実施例を第2図以下の図面に基づいて
J2明すれば以下の通りである。尚、第1図と同一態様
部分は同一符号を用いて説明するものとする。
<Embodiment - Configuration> Next, an embodiment of the present invention will be explained as follows based on the drawings from FIG. 2 onwards. Note that the same parts as in FIG. 1 will be explained using the same reference numerals.

尚、図示実施例は家庭用の冷蔵庫であるが、後述するよ
うにこの発明の対象はレストラン等の商業用、或いは、
マーケットのオー、プンショウケースの冷凍庫等にも適
用出来るものである。
Although the illustrated embodiment is a household refrigerator, as will be described later, the present invention is applicable to commercial refrigerators such as restaurants,
It can also be applied to the market's O, Punsho case freezers, etc.

第2.3図において1′はこの発明の冷蔵庫であり、そ
の上下左右、及び、背部の断熱壁2′、及び、該背部の
断熱壁2′より一体的に前延して左右のそれと一体的に
固定されている断熱壁3′は後に詳w1づるような溝層
とされ、従来態様同様に該前延する断熱壁3′はその上
下に冷凍室4、及び、冷蔵室5を形成するように郭成し
、その全面には密封開閉自在な扉6、γが上下に設(ブ
られている。
In Fig. 2.3, reference numeral 1' denotes the refrigerator of the present invention, which includes insulating walls 2' at the top, bottom, left and right, and back, and extends integrally from the insulating walls 2' at the back and is integrated with those on the left and right. The insulating wall 3' which is fixed to the wall is formed into a groove layer as will be described in detail later, and as in the conventional case, the extending insulating wall 3' forms a freezing compartment 4 and a refrigerating compartment 5 above and below. It is constructed like this, and on its entire surface, doors 6 and γ, which can be opened and closed in a sealed manner, are installed at the top and bottom.

又、該冷蔵庫1′の下部の機械室13に設けられた次述
圧縮器8は上部の放熱器9を介して冷凍室4の奥に設け
られた冷却器10に接続されており、該冷却器10は上
記壁8に配管接続され、先述第1図に示した従来態様同
様に冷凍サイクルを行って冷凍室4と冷蔵室5に対する
冷凍冷蔵作用を行い、又、背部の断熱壁2′の上部に段
(プられたモータ11は冷凍室4の輿に設けられたファ
ン12を回転させて冷Ml 1’内の空気を循環J゛る
ようにされている。
Further, the following compressor 8 installed in the machine room 13 at the lower part of the refrigerator 1' is connected to the cooler 10 installed at the back of the freezer compartment 4 via the radiator 9 at the upper part. The container 10 is connected to the wall 8 by piping, and performs a refrigeration cycle in the same way as in the conventional embodiment shown in FIG. A motor 11 installed at the top rotates a fan 12 provided at the top of the freezer compartment 4 to circulate the air inside the cold refrigerator.

上述の構造は従来の冷蔵庫1と実質的に変りはないもの
である。
The structure described above is substantially the same as that of the conventional refrigerator 1.

而して、該冷蔵庫1′の下部機械室13に於いては第2
.3.4図に示す様に密閉型のケーシング14が設【プ
られてJ3す、該ケーシングはその内部に於いて仕切壁
15を有して二室に郭成され、その一方側には前記冷媒
ガスの吸込み管1Gと吐出管17を有する上記圧縮器8
を連結するモータ18が設りられて上記仕切壁15に対
して電磁カップリング19を有している。
Therefore, in the lower machine room 13 of the refrigerator 1', the second
.. 3.4 As shown in Figure 4, a closed casing 14 is installed.The casing has a partition wall 15 inside and is divided into two chambers, one side of which has the above-mentioned chamber. The compressor 8 has a refrigerant gas suction pipe 1G and a discharge pipe 17.
A motor 18 is provided to connect the partition wall 15 and has an electromagnetic coupling 19 to the partition wall 15.

又、該ケーシング14の内部の仕切壁15の他の室には
第8図に示す様な通常の油回転タイプのバキューム用の
ポンプ20が設(プられており、その回転軸の該仕切壁
15側には図示しないリレー装置により励…消磁される
他の電磁カップリング19′ が設けられて該仕切壁1
9を介してモータ18の電磁カップリング19に対設さ
れている。
Further, in another chamber of the partition wall 15 inside the casing 14, a normal oil rotary type vacuum pump 20 as shown in FIG. 8 is installed. Another electromagnetic coupling 19' that is excited and demagnetized by a relay device (not shown) is provided on the partition wall 15 side.
The motor 18 is provided opposite to the electromagnetic coupling 19 via the motor 9 .

又、該ポンプ20の他側側には上記断熱壁2′内部の次
に詳説する真空空間に対して第3図に示す様に切換バル
ブ21を介して接続する吸込み管22が中途に逆支弁2
3を介設して接続されていると共に、排気管24を接続
してその先端が上記機械室13内に臨まされるようにさ
れている。
Further, on the other side of the pump 20, there is a suction pipe 22 which is connected to the vacuum space inside the heat insulating wall 2' through a switching valve 21, which will be described in detail next, as shown in FIG. 2
3, and an exhaust pipe 24 is connected so that its tip faces into the machine room 13.

而して、上記断熱壁2′は第5図に示す様に所定厚さの
金属製の外板25と内板26とが設定間隔を介して平行
に所定形状にその端部に於て折り曲げ成形一体溶接され
ており、その間に真空空間27を形成している。
As shown in FIG. 5, the heat insulating wall 2' is made by bending an outer plate 25 and an inner plate 26 made of metal with a predetermined thickness into a predetermined shape parallel to each other at a predetermined interval at their ends. They are molded and welded together to form a vacuum space 27 therebetween.

そして、該真空空間の下部は接続管28を介して上記切
換バルブ21に連通接続されていると共に第6図に示す
様に該真空空間27にお(プる設定負圧に対しC該両外
板25、及び、内板2Gの変形を避けるために設定薄圧
のハニカムyのスペーサ29が解説されており、又、そ
れらの間には、例えば、パーライト等の可及的に熱伝導
率の小さい断熱材30が介装充填されている。
The lower part of the vacuum space is connected to the switching valve 21 via a connecting pipe 28, and is connected to the vacuum space 27 as shown in FIG. In order to avoid deformation of the plate 25 and the inner plate 2G, a honeycomb y spacer 29 with a set thin pressure is explained, and between them, a material with as high thermal conductivity as possible, such as pearlite, is used. A small heat insulating material 30 is interposed and filled.

尚、上記スペーサ29には図示はしていないが、各セル
間を連通して負圧が導通されるように小孔が穿設されて
いるものとする。
Although not shown in the drawings, the spacer 29 is assumed to have a small hole bored therein so that the cells communicate with each other and negative pressure is conducted therebetween.

又、上記切換バルブ21は上記ポンプ20の吸込み管2
2に接続すると共に後述する如く、冷凍サイクルにお1
ノる初期真空引きに使用する引き抜き管31が切換接続
されるように付設されている。
Further, the switching valve 21 is connected to the suction pipe 2 of the pump 20.
1 to the refrigeration cycle as described later.
A draw tube 31 used for initial evacuation is attached so that it can be switched and connected.

尚、32は真空パック用のバルブであり、冷蔵庫1′内
に収納する食料品等の新鮮度を維持し、水分蒸発を防止
するために真空パックする場合に使用するバルブである
In addition, 32 is a valve for vacuum packing, and is a valve used when vacuum packing foodstuffs and the like stored in the refrigerator 1' to maintain freshness and prevent water evaporation.

上述構成において、このように工場で作製された冷蔵庫
1′を出荷するに際し冷凍ザイクル内の各機構部、及び
、配管内に冷媒、例えば、フロン12等を封入するが、
該冷媒封入に際し各機構部、及び、配管中に当然のこと
ながら空気があるため、そのままでは封入に不具合が生
ずる。
In the above configuration, when shipping the refrigerator 1' manufactured in a factory in this way, a refrigerant such as Freon 12, etc. is sealed in each mechanical part of the freezing cycle and in the piping.
Naturally, when the refrigerant is sealed, air is present in each mechanical part and the piping, so if the refrigerant is sealed as it is, problems will occur in the sealing.

そこで、予め該空気を引き抜く必要があるが、そこで第
5図に示す様に切換バルブ21を引き扱き管31側に切
換えて吸込み管22を介してポンプ20に冷凍サイクル
配管機構を第7図に示す様に接続Jる。
Therefore, it is necessary to draw out the air in advance, but the switching valve 21 is switched to the handling pipe 31 side as shown in FIG. 5, and the refrigeration cycle piping mechanism is connected to the pump 20 via the suction pipe 22 as shown in FIG. Connect as shown.

そして、図示しないリレーを介し電磁カップリング19
.10′ を電磁的に接続し、モータ18を作動させる
と第7図に示す様に圧縮器8、放熱器9キ17ビラリー
チユーブ33、冷却器10、及び、これらの配管を介し
、これらの内部空気が全て引き抜き管31、吸込み管2
2を介しポンプ20により引き扱かれ、排気管24によ
り排気され、所定に真空にされる。
Then, the electromagnetic coupling 19 is connected via a relay (not shown).
.. 10' are connected electromagnetically and the motor 18 is operated, the compressor 8, the radiator 9, the radiator 9, the cooling tube 33, the cooler 10, and the air flow through these pipes, as shown in FIG. All internal air is extracted from the extraction pipe 31 and suction pipe 2.
2 by a pump 20, exhausted by an exhaust pipe 24, and evacuated to a predetermined level.

そこで、所定に上記冷媒としてのフロン12等を封入ず
れば、該冷蔵庫1′のポンプ20は冷媒封入に利用され
る。
Therefore, if a predetermined amount of Freon 12 or the like as the refrigerant is sealed, the pump 20 of the refrigerator 1' can be used for filling the refrigerant.

而して、上述の如く冷媒ガスを冷凍サイクル系統に封入
した後に切換バルブ21を排気管29と吸込み管21を
接続させてモータ18を作動さV1真空断熱壁2′内の
真空空間21内の空気を全てポンプ20を介して排気す
る。
After the refrigerant gas is sealed into the refrigeration cycle system as described above, the switching valve 21 is connected to the exhaust pipe 29 and the suction pipe 21, and the motor 18 is operated. All air is evacuated via pump 20.

而して、この場合、該真空空間27内の真空度が1To
rr以下、望ましくは、0,2T Orr以下になるよ
うにし、この設定1−or、rの圧力になった時図示し
ない所定動作装置としてのセンサーがこれを検出してリ
レーを介し電磁クラッチ19′ を消磁すると共に、モ
ータ18を停止させる。
In this case, the degree of vacuum in the vacuum space 27 is 1To.
rr or less, preferably 0.2T Orr or less, and when the pressure reaches the setting 1-or, r, a sensor (not shown) as a predetermined operating device detects this and activates the electromagnetic clutch 19' via a relay. At the same time, the motor 18 is stopped.

尚、この停止状態において逆止弁23が働き、外気が再
び該真空断熱壁2′内に逆流することはない。− 又、全ての真空断熱壁2′内の真空空間27内に負圧が
行き渡ることは該真空断熱壁2′の内外板25.26′
 に介装したハニカム状のスペーサ29の図示しない小
孔群により保証される。
Note that in this stopped state, the check valve 23 operates, and the outside air will not flow back into the vacuum heat insulating wall 2' again. - Also, the fact that the negative pressure is distributed in the vacuum space 27 in all the vacuum insulating walls 2' means that the inner and outer panels 25, 26' of the vacuum insulating walls 2'
This is ensured by a group of small holes (not shown) of a honeycomb-shaped spacer 29 interposed therein.

該真空断熱壁2′内の真空空間27内の真空度をI T
orr 、望ましくは、0.2王orrとしたのは以下
に詳述する如く設置され使用に供される状態で上記ポン
プ20が所定の経時的動作により常に該真空断熱壁2″
の真空度を保持し、冷蔵庫1′の運転効率、及び、熱効
率を最適に保つようにするためである。
The degree of vacuum in the vacuum space 27 within the vacuum insulation wall 2' is I T
orr, preferably 0.2 orr, because when the pump 20 is installed and put into use as described in detail below, the vacuum insulation wall 2'' is always maintained by the predetermined operation over time.
This is to maintain the degree of vacuum of the refrigerator 1' and to maintain optimal operating efficiency and thermal efficiency of the refrigerator 1'.

即ち、これを理論、及び、実験に基づいて第9.10図
により説明すると、先ず、第9図に113いて、真空ポ
ンプ20の圧力、電力特性を示し、横軸に圧力、縦軸に
電力を取ると、図示する様に油の温度によって特性曲線
は多少その消費電力に上下の特性はあるものの、圧力を
下げていくと、即ち、図上右側から左側に圧力を下げて
いくと、約300Torrまでは消費電ツノが上がり、
それ以降の圧力を下げていくと消f[電力も下がるζ、
とが分る。
That is, this will be explained based on theory and experiments using Figure 9.10. First, Figure 9 shows the pressure and power characteristics of the vacuum pump 20, with the horizontal axis representing the pressure and the vertical axis representing the power. As shown in the figure, the power consumption of the characteristic curve varies somewhat depending on the temperature of the oil, but as the pressure is lowered, that is, from the right side to the left side in the figure, the characteristic curve becomes approximately Power consumption increases up to 300 Torr,
As the pressure is lowered from then on, f disappears [power also decreasesζ,
I understand.

そして、圧力が1Jorrより下がれば、就中、0.2
 T orrより低い真空圧力においてはほとんど特性
に変化がないことが図に於ても、又、理論によっても実
験によっても分っている。
If the pressure drops below 1 Jorr, especially 0.2
It is known from the diagram, theory, and experiment that there is almost no change in the characteristics at a vacuum pressure lower than Torr.

したがって、真空ポンプの特性は作用する圧力が1 T
orr 、特に、0.2T orr以下ではその消費電
力はほとんど変らないことが分る。
Therefore, the characteristic of a vacuum pump is that the working pressure is 1 T
It can be seen that the power consumption hardly changes when orr is 0.2 T orr or less.

又、その消費電力は使用数当該真空ポンプ20にとって
最少の消費電力を維持することが出来ることも分る。
It can also be seen that the power consumption can be maintained at a minimum for the number of vacuum pumps 20 in use.

一方、第10図に示す様に真空度と断熱性との関係は横
軸に圧力を縦軸に熱伝導率を取ると図示する曲線の様に
圧力が下がれば、即ち、図上布側から左側へ移行づれば
その熱伝導率は下がる特性はが分っている。
On the other hand, as shown in Figure 10, the relationship between vacuum degree and heat insulation is that if the pressure is plotted on the horizontal axis and the thermal conductivity is plotted on the vertical axis, if the pressure decreases as shown in the curve shown in the diagram, that is, from the fabric side in the diagram. It is known that the thermal conductivity decreases as it moves to the left.

特に、102Torrがら1O−2Torrにがけては
急激にその熱伝導率が降下し、就中、1lorr近辺で
は急激に熱伝導率が下がることが分っている。
In particular, it has been found that the thermal conductivity decreases rapidly from 102 Torr to 10-2 Torr, and in particular, the thermal conductivity decreases rapidly near 1 Lorr.

したがって、この発明において、真空l!7i熱壁2熱
的2′内空間21の真空度を低くして外部からの熱の侵
入を阻止し、冷蔵庫1′の熱効率を向上させると共に初
期の真空度を維持するようにするために、真空ポンプ2
0を所定の経時的間隔で稼動させるには真空空間21の
真空度を高めると共にそれに使用する真空ポンプ20の
消費電力をなるべく少なくして運転コス1を経済的に低
く押えることが望ましいことは勿論である。
Therefore, in this invention, the vacuum l! 7i thermal wall 2 thermal 2' In order to lower the degree of vacuum in the internal space 21 to prevent heat from entering from the outside, improve the thermal efficiency of the refrigerator 1', and maintain the initial degree of vacuum, vacuum pump 2
In order to operate 0 at predetermined intervals over time, it is of course desirable to increase the degree of vacuum in the vacuum space 21 and to reduce the power consumption of the vacuum pump 20 used there as much as possible to keep the operating cost 1 economically low. It is.

したがって、上述の如く第9.10図に基づいて1lo
rrより低い負圧においては真空ポンプ2゜の消費型ツ
ノがほとんど変らず、又、最低に抑制され、しかも、そ
の熱伝導率が最も急激に降下することが出来る両者の良
いところがマツチングすることが分り、又、第10図か
ら熱伝導率が急激に下がるその変化率の終わりは0.2
lorr程度であり、又、消費電力の約−走化が始まる
のは0.2TO白゛であることからその圧力の限界負圧
は(1,2Torrとすることが望ましいことが理論的
にも実験的にも分る。
Therefore, as mentioned above, based on Figure 9.10, 1lo
At a negative pressure lower than rr, the consumption horn of the vacuum pump 2° hardly changes, is suppressed to the lowest level, and its thermal conductivity drops most rapidly, which is a good combination of the two. As can be seen from Figure 10, the rate of change at which the thermal conductivity rapidly decreases is 0.2.
lorr, and since the power consumption starts at about 0.2 TOrr, the critical negative pressure for that pressure is (theoretically and experimentally) it is desirable to set it at 1.2 TOrr. I understand it too.

そこで、この発明においては第11図に示す様に工場で
出荷する際に上記断熱壁2′の内部真空空間21に臨ま
せて適宜の周公知の所定動作装置としての圧力センサー
34を臨ませて設け、これを1T orr〜O,:)T
orr以上の圧力になると通電動作するようにセットし
てマイクロコンピュータ35の判定回路3Gに接続して
おく。
Therefore, in this invention, as shown in FIG. 11, a pressure sensor 34 as a well-known predetermined operating device is placed facing the internal vacuum space 21 of the heat insulating wall 2' when shipped from the factory. and set this to 1T orr~O, :)T
It is set and connected to the determination circuit 3G of the microcomputer 35 so that it is energized when the pressure exceeds orr.

したがって、出荷当時は上記冷蔵庫1′の真空断熱壁2
′の真空空間27は上記1〜0.2TOrr状態に保た
れてユーザーに渡され、所定に据え付けられた後の実稼
動に供された場合、先述の如く残留空気分子や、或いは
、リーク等により断熱壁2′の内部真空中1!127内
の真空度が下がり、その真空度は常に圧力センサー34
に検知されてマイクロコンピュータ35の判定回路36
に通電されているために、該真空空間21の負圧が設定
°された負圧度1〜02. l 1より上昇すると直ち
に該判定回路3Gは設定値外であることを判定して所定
のリレー回路を介しモータ18を軌道させると共に電磁
カップリング19を励磁させて両電磁クラッチ19.1
9′ を連係させて真空ポンプ20を回動させ、吸い込
み管22を介し断熱壁2′内の残留空気を吸い込み、排
気管24から冷蔵庫1′の周囲に排気してその真空度を
下げていく。
Therefore, at the time of shipment, the vacuum insulation wall 2 of the refrigerator 1'
When the vacuum space 27 of ' is kept at the above-mentioned 1 to 0.2 TOrr state and handed over to the user and used for actual operation after being installed in a specified manner, the vacuum space 27 of The degree of vacuum in the internal vacuum 1!127 of the heat insulating wall 2' decreases, and the degree of vacuum is constantly detected by the pressure sensor 34.
is detected by the determination circuit 36 of the microcomputer 35.
Since the negative pressure in the vacuum space 21 is energized, the negative pressure in the vacuum space 21 is set to a negative pressure degree of 1 to 02. As soon as the value rises above 1, the determination circuit 3G determines that the value is outside the set value, and causes the motor 18 to orbit via a predetermined relay circuit, and also excites the electromagnetic coupling 19 to activate both electromagnetic clutches 19.1.
9' is linked to rotate the vacuum pump 20, sucking in the residual air inside the heat insulating wall 2' through the suction pipe 22, and exhausting it around the refrigerator 1' through the exhaust pipe 24 to lower the degree of vacuum. .

そして、その真空度が設定子めされた1〜0.5T o
rrに達すると、圧力センサー34がその真空度を検出
通電して判定回路3Gにおいて設定値内であることを判
定し、モータ18を切ると共にに電磁カップリング19
′を消磁し、真空ポンプ20を停止させる。
Then, the degree of vacuum is 1 to 0.5T o
When rr is reached, the pressure sensor 34 detects the degree of vacuum, energizes it, determines that it is within the set value in the determination circuit 3G, turns off the motor 18, and turns off the electromagnetic coupling 19.
' is demagnetized and the vacuum pump 20 is stopped.

尚、一旦所定の真空度に達した後は吸込み管22の逆止
弁23が働くために外気は断熱壁2′の真空空間27内
に入ることはない。
Note that once a predetermined degree of vacuum is reached, the check valve 23 of the suction pipe 22 operates, so that outside air does not enter the vacuum space 27 of the heat insulating wall 2'.

そして、該圧力センサー34は常に断熱壁2′内゛の真
空空間21真空度を監視していることにより、全く自動
的に常に設定値の1〜Q、2T Orrの真空度に保た
れ、そのため断熱壁2′の断熱性は設計通り、即ち、初
期状態と同一に保たれる。
Since the pressure sensor 34 constantly monitors the degree of vacuum in the vacuum space 21 inside the heat insulating wall 2', the degree of vacuum is completely automatically maintained at the set value of 1 to Q, 2T Orr. The thermal insulation properties of the insulation wall 2' remain as designed, ie, the same as the initial state.

又、該断熱性は上記真空壁9の真空度一定による低い熱
伝導率を介しての保持のみならず、その内外板25.2
6間に充填介装され1=パーライト等の断熱材30によ
っても助成される。
Moreover, the heat insulation property is not only maintained through the low thermal conductivity due to the constant degree of vacuum of the vacuum wall 9, but also through the insulation of the inner and outer panels 25.2.
It is also supported by a heat insulating material 30 such as perlite, which is filled between the holes 6 and 1.

そして、上記真空空間27の負圧による変形は第6図に
示したハニカム状のスペーサ29により、又、充填断熱
材30により充分に保証される。
Further, deformation due to the negative pressure in the vacuum space 27 is sufficiently ensured by the honeycomb-shaped spacer 29 shown in FIG. 6 and by the filled heat insulating material 30.

尚、冷蔵庫1′の冷凍サイクル運転についてはモータ1
8が圧縮器8を直結動作して冷媒ガスを吸込み管1G、
吐出管11を介して循環させ、従来同様に冷凍冷蔵作用
を行うことは勿論である。
In addition, for the refrigeration cycle operation of the refrigerator 1', the motor 1
8 directly connects the compressor 8 to suck refrigerant gas through the pipe 1G;
Of course, it can be circulated through the discharge pipe 11 to perform the freezing and refrigeration function in the same manner as in the past.

したがって、該モータ18はケーシング14内に一基の
み設けられてはいるが、上記冷凍サイクルと真空断熱壁
2′の真空度維持のために相互に独立的に用いられ、又
、オーバーして同時平行的に作動されても何等障害とは
ならない。
Therefore, although only one motor 18 is provided in the casing 14, it is used independently to maintain the vacuum level of the refrigeration cycle and the vacuum insulation wall 2', and may also be used simultaneously Even if they are operated in parallel, there is no problem.

又、上述の実施例にJ3いて真空断熱壁2′の真空空間
21内の真空と維持については圧力センサー34を介し
て自動的に行うようにされた態様であるが、第12図に
示す実施例の様にマイクロコンピュータ35′ 内に圧
力レンザーに代えてタイマー34′を設け、例えば、−
日1回5分程度所定の時間に上記モータ18電磁カツプ
リング19.19′を介して真空ポンプ20が動作して
定期的に、且つ、自動的に真空空間27内の排気を行い
、常に所定の1〜0.2−「Orr以下の真空度をの維
持づるようにすることも出来、この場合、マイクロコン
ピュータ35′の判定回路36′ においてはタイマー
による通電が設定時間経過したか否かによって上記真空
ポンプ20の駆動動作を制御づるようにされていること
になる。
Furthermore, in the above embodiment J3, the vacuum in the vacuum space 21 of the vacuum insulation wall 2' is automatically maintained via the pressure sensor 34, but the embodiment shown in FIG. As in the example, a timer 34' is provided in place of the pressure lens in the microcomputer 35', and for example, -
The vacuum pump 20 is operated via the electromagnetic coupling 19, 19' of the motor 18 at a predetermined time of about 5 minutes once a day to periodically and automatically evacuate the vacuum space 27, so that the vacuum space 27 is always evacuated at a predetermined level. It is also possible to maintain the degree of vacuum below 1 to 0.2-Orr. In this case, the determination circuit 36' of the microcomputer 35' determines whether or not the energization by the timer has elapsed for the set time. This means that the driving operation of the vacuum pump 20 is controlled.

このようなタイマー利用の態様を用いた場合、前述第1
1図の圧ツノセンサーを用いた実施例において圧力セン
サー34の動作にタイマーを付設して真空ポンプ20の
作動後一定時間だ(ブこれを動作するように制御させて
も良い。
When using this type of timer usage, the above-mentioned first
In the embodiment using the pressure horn sensor shown in FIG. 1, a timer may be attached to the operation of the pressure sensor 34 to control the operation for a certain period of time after the vacuum pump 20 is activated.

又、第13図に示づ実施例においては、又、第4図に示
す上述実施例においては真空ポンプ2oはモータ18に
対して仕切壁15を介し電磁カップリング19.19’
 を介して待機させて冷凍サイクル側の圧縮器8側より
の不足冷媒のリークを防止づるようにしであるが、第1
3図に示づ様に該仕切壁15に確実なシール37を段番
)てモータ18に対して真空ポンプ20を駆動軸38を
介して直結タイプにし、冷媒ガスのリークを防止すると
共に構造を簡単にする態様も可能であり、又、第14図
に示す様に仕切壁15を介しての左右の室を完全に郭成
し、各部屋に各々独立したモータ18.18′ を設け
て各々圧縮器8、及び、真空ポンプ20を直結させるよ
うにして冷媒ガスのリークを完全に防止すると共に真空
断熱壁2′の真空度維持を確実に行うと共に、それと冷
凍サイクルの動作を全く独立して行うにうにりることも
可能である。
Furthermore, in the embodiment shown in FIG. 13, and in the above-described embodiment shown in FIG.
In order to prevent the leakage of insufficient refrigerant from the compressor 8 side of the refrigeration cycle, the first
As shown in Figure 3, the vacuum pump 20 is directly connected to the motor 18 via the drive shaft 38 by providing a reliable seal 37 on the partition wall 15, thereby preventing leakage of refrigerant gas and improving the structure. A simpler version is also possible, as shown in FIG. 14, in which the left and right chambers are completely defined through the partition wall 15, and each chamber is provided with an independent motor 18, 18'. By directly connecting the compressor 8 and the vacuum pump 20, leakage of refrigerant gas is completely prevented, the degree of vacuum of the vacuum insulation wall 2' is reliably maintained, and the operation of the refrigeration cycle is completely independent of the compressor 8 and the vacuum pump 20. It is also possible to do so.

又、上述各実施例は冷蔵庫の上下両側、及び、背部の断
熱壁についてその内部に真空空間を形成させた実施例に
ついての強制排気の態様であるが、扉についても同様に
し、排気経路については適宜スイーベルジョイントを介
してそのシールを行う等の態様も採用可能である。
Furthermore, in each of the above-mentioned embodiments, a vacuum space is formed inside the insulating wall on both the upper and lower sides of the refrigerator and the back of the refrigerator, and the forced exhaust is performed. It is also possible to adopt a mode in which the sealing is performed via a swivel joint as appropriate.

尚、この発明の実/Il!i態様は上述各実施例に限る
ものでないことは勿論であり、例えば、タイマーや圧ノ
ノセンザー等を設りずに冷凍1ノ−イクル用の圧縮器の
モータを真空ポンプに直結さμて冷凍サイクル時には強
制的に自動的に同時に真空断熱壁の真空空間内の排気を
行うようにして常に設定真空度、乃至、それ以下の負圧
を保つようにする等種々の態様が採用可能である。
Furthermore, the fruit of this invention/Il! Of course, the embodiment i is not limited to the above-mentioned embodiments. For example, a refrigeration cycle can be implemented by directly connecting the motor of a compressor for one-cycle refrigeration to a vacuum pump without providing a timer or pressure sensor, etc. Various modes can be adopted, such as forcing and automatically evacuating the vacuum space of the vacuum insulation wall at the same time so as to always maintain a negative pressure at or below the set degree of vacuum.

又、この発明の適用対象の冷蔵庫は家庭用の冷蔵庫のみ
ならず一般商業用、又、スーパーマーケットのオープン
ショウケースの冷凍庫等にも適用可能であることは先述
した如く勿論のことである。
Furthermore, as mentioned above, the refrigerator to which the present invention is applied is applicable not only to household refrigerators but also to general commercial refrigerators and freezers in open showcases in supermarkets.

〈発明の効果〉 以」ここの発明によれば、基本的に、一般家庭用商業用
、或いは、業務用の冷R庫において、その断熱壁の内部
に真空空間を形成させて所定の真空度を保つようにした
ことにより、従来の冷蔵庫の断熱壁の如く、単に断熱材
を介装させたものに比し、その断熱性能を一桁下げるこ
とが出来、冷蔵庫の熱効率、運転効率を向上させること
ができるという効果が奏される。
<Effects of the Invention> According to the present invention, basically, a vacuum space is formed inside the heat insulating wall of a refrigerator for general household, commercial, or business use to achieve a predetermined degree of vacuum. By maintaining this, the insulation performance can be lowered by an order of magnitude compared to the insulation walls of conventional refrigerators, which are simply interposed with insulation material, improving the thermal efficiency and operating efficiency of the refrigerator. The effect of being able to do this is produced.

而して、該真空断熱壁内の真空空間に接続させた真空ポ
ンプにより一旦据付けられた冷蔵庫の断熱壁の真空空間
から所定に排気することが出来るために、冷蔵庫の耐用
年数の間常に初期出荷時の4!IS造の断熱壁の真空空
間の真空度が維持され、したがって、設計通りの熱効率
、運転効率が維持出来るという優れた効果が奏される。
Since the vacuum space of the insulated wall of the refrigerator once installed can be evacuated to a specified level by a vacuum pump connected to the vacuum space within the vacuum insulated wall, the initial shipment is always maintained during the service life of the refrigerator. Time 4! The degree of vacuum in the vacuum space of the IS-built insulation wall is maintained, and therefore the excellent effect of maintaining the designed thermal efficiency and operating efficiency is achieved.

よって、不可避的に初期真空を行っても真空空間内に残
留づる空気分子や、或いは、不足にして外部から侵入づ
る空気にJ:り真空空間内の真空度が低下しても、常に
これを設旧通りの真空度に回復できるという効果が奏さ
れる。
Therefore, even if an initial vacuum is created unavoidably, there will be air molecules remaining in the vacuum space, or even if the vacuum level in the vacuum space decreases due to insufficient air entering from the outside. The effect is that the degree of vacuum can be restored to the original level.

又、該真空空間に接続した真空ポンプが所定動作装置に
より所定に稼動されることにより、一定時間毎に、或い
は、所定圧力以上で真空ポンプが稼動することになり、
したがって、該真空断熱壁の真空断熱の1t31能雑持
に要づる電力が最小限で済みランニングコストが易(な
るという効果も奏される。
Further, the vacuum pump connected to the vacuum space is operated in a predetermined manner by a predetermined operation device, so that the vacuum pump is operated at a predetermined time interval or at a predetermined pressure or higher,
Therefore, the electric power required to maintain the vacuum insulation capacity of the vacuum insulation wall for 1t31 hours is minimized, and the running cost is also reduced.

又、このように所定動作装置を介して真空ポンプを稼動
させるために逆に定期、不定期に真空ポンプの稼動を介
して該真空ポンプの自動メンテナンスが行え、その耐久
性が冷蔵庫の耐久性と等しくされるという効果も奏され
る。
In addition, since the vacuum pump is operated via a predetermined operation device in this way, automatic maintenance of the vacuum pump can be performed periodically or irregularly by operating the vacuum pump, and its durability is the same as that of the refrigerator. The effect of being made equal is also produced.

又、該冷蔵庫は冷凍室、並びに、冷蔵室の温麿が上記真
空断熱性能向上により初期の冷凍冷蔵温度維持を耐用年
数聞書に同じ(維持することが出来るという効果も奏さ
れる。
In addition, this refrigerator also has the effect that the temperature of the freezer compartment and the refrigerator compartment can be maintained at the same initial freezing and refrigeration temperature over a service life due to the above-mentioned improved vacuum insulation performance.

又、冷蔵庫に真空ポンプを設けていることにより上記真
空断熱壁の真空空間排気に使用できるのみならず、初期
冷媒を冷凍サイクル径に封入する場合に該系統の空気を
真空ポンプを用いて排気し、その後冷媒封入を行うこと
が出来るという効果も奏され、又、メンテナンス後冷媒
の再封入時、或いは、保守点検時においても、特に、他
の真空ポンプを運び込む等の煩瑣な作業が不要となるメ
リットもある。
In addition, by providing a vacuum pump in the refrigerator, it can not only be used to exhaust the vacuum space of the vacuum insulation wall, but also when the initial refrigerant is sealed in the refrigeration cycle diameter, the air in the system can be evacuated using the vacuum pump. This also has the effect of allowing the refrigerant to be filled afterwards, and also eliminates the need for troublesome work such as bringing in another vacuum pump, especially when refilling the refrigerant after maintenance or during maintenance inspections. There are also benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術に基づく冷蔵庫の断熱壁の構造説明概
略断面図、第2図以下はこの発明の詳細な説明図であり
、第2図は1実施例の概略説明斜視図、第3図は同部分
切截側断面図、第4図は真空ポンプ、及び、モータの駆
動部分断面図、第5図は真空断熱壁の部分拡大断面図、
第6図は断熱材の部分正面図、第7図は冷媒封入時の概
略模式図、第8図は真空ポンプの概略説明構造断面図、
第9図は真空ポンプの圧力と消費電力の関係説明グラフ
図、第10図は圧力と熱伝導率の関係説明グラフ図、第
11図は真空断熱壁の真空度の制御フロー図、第12図
は他の実施例の第1図相当フロー図、第13.14図は
別の実施例の第4図相当部分断面図である。 1′・・・冷蔵庫、 8・・・圧縮器、9・・・放熱器
、10・・・冷却器、 2′・・・断熱壁、27・・・真空空間、20・・・真
空ポンプ、 34.34′ ・・・所定動作装置(圧力センサータイ
マー) 18・・・モータ 第1図 ? 第5図 第13図 37 第14図
FIG. 1 is a schematic sectional view explaining the structure of a heat insulating wall of a refrigerator based on the prior art, FIG. is a cutaway side sectional view of the same part, FIG. 4 is a sectional view of the drive part of the vacuum pump and motor, and FIG. 5 is a partial enlarged sectional view of the vacuum insulation wall.
Fig. 6 is a partial front view of the heat insulating material, Fig. 7 is a schematic diagram when refrigerant is filled in, Fig. 8 is a schematic structural cross-sectional view of the vacuum pump,
Figure 9 is a graph explaining the relationship between vacuum pump pressure and power consumption, Figure 10 is a graph explaining the relationship between pressure and thermal conductivity, Figure 11 is a control flow diagram of the vacuum degree of the vacuum insulation wall, and Figure 12 1 is a flowchart corresponding to FIG. 1 of another embodiment, and FIGS. 13 and 14 are partial sectional views corresponding to FIG. 4 of another embodiment. 1'...Refrigerator, 8...Compressor, 9...Radiator, 10...Cooler, 2'...Insulating wall, 27...Vacuum space, 20...Vacuum pump, 34.34'... Predetermined operating device (pressure sensor timer) 18... Motor Figure 1? Figure 5 Figure 13 Figure 37 Figure 14

Claims (1)

【特許請求の範囲】 (1)圧縮器が放熱器及び冷却器に接続されて装備され
ている冷蔵庫の断熱壁が真空空間を形成した断熱壁にさ
れている構造において、該断熱壁内の真空空間接続の真
空ポンプが設けられていることを特徴とづる冷蔵庫構造
。 (2)上記真空ポンプが上記圧縮器のモータに連係され
ていることを特徴とする特許 囲第1項記載の冷蔵庫構造。 (3)圧縮器が放熱器及び冷却器に接続されて装備され
ている冷蔵庫の断熱壁が真空空間を形成した断熱壁にさ
れでいる構造において、該断熱壁内の真空空間接続の真
空ポンプが設(ノられ、而して該真空ポンプが所定動作
装置に接続されていることを特徴とする冷R庫構造。 (4》上記所定動作装置がITorr以上の圧力センサ
ーであることを特徴とする上記特許請求の範囲第2項記
載の冷蔵庫構造。 (5)上記所定動作装置がタイマーであることを特徴と
する上記特許請求の範囲第2項記載の冷蔵庫構造。
[Scope of Claims] (1) In a structure in which an insulating wall of a refrigerator in which a compressor is connected to a radiator and a cooler is an insulating wall that forms a vacuum space, the vacuum inside the insulating wall A refrigerator structure characterized by being provided with a space-connected vacuum pump. (2) The refrigerator structure according to item 1 of the patent specification, wherein the vacuum pump is linked to the motor of the compressor. (3) In a refrigerator in which a compressor is connected to a radiator and a cooler, the insulating wall of the refrigerator is an insulating wall that forms a vacuum space, and a vacuum pump connected to the vacuum space within the insulating wall is installed. A cold storage structure characterized in that the vacuum pump is connected to a predetermined operating device. (4) The predetermined operating device is a pressure sensor of ITor or more. The refrigerator structure according to claim 2. (5) The refrigerator structure according to claim 2, wherein the predetermined operating device is a timer.
JP24469783A 1983-12-27 1983-12-27 Refrigerator structure Granted JPS60138381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24469783A JPS60138381A (en) 1983-12-27 1983-12-27 Refrigerator structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24469783A JPS60138381A (en) 1983-12-27 1983-12-27 Refrigerator structure

Publications (2)

Publication Number Publication Date
JPS60138381A true JPS60138381A (en) 1985-07-23
JPH0459551B2 JPH0459551B2 (en) 1992-09-22

Family

ID=17122585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24469783A Granted JPS60138381A (en) 1983-12-27 1983-12-27 Refrigerator structure

Country Status (1)

Country Link
JP (1) JPS60138381A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280570A (en) * 1986-05-30 1987-12-05 株式会社富士通ゼネラル Electric refrigerator
WO2005093349A1 (en) * 2004-03-22 2005-10-06 Arcelik Anonim Sirketi A cooling device and a method for improving insulation
JP2014163620A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Refrigerator
EP3387351A4 (en) * 2015-12-09 2019-07-31 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US20220324366A1 (en) * 2017-02-17 2022-10-13 Lg Electronics Inc. Refrigerator, refrigerating or warming apparatus, and vacuum adiabatic body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512140U (en) * 1978-07-07 1980-01-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512140U (en) * 1978-07-07 1980-01-25

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280570A (en) * 1986-05-30 1987-12-05 株式会社富士通ゼネラル Electric refrigerator
WO2005093349A1 (en) * 2004-03-22 2005-10-06 Arcelik Anonim Sirketi A cooling device and a method for improving insulation
JP2014163620A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Refrigerator
EP3387351A4 (en) * 2015-12-09 2019-07-31 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US11555643B2 (en) 2015-12-09 2023-01-17 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US20220324366A1 (en) * 2017-02-17 2022-10-13 Lg Electronics Inc. Refrigerator, refrigerating or warming apparatus, and vacuum adiabatic body
US11872921B2 (en) * 2017-02-17 2024-01-16 Lg Electronics Inc. Refrigerator, refrigerating or warming apparatus, and vacuum adiabatic body

Also Published As

Publication number Publication date
JPH0459551B2 (en) 1992-09-22

Similar Documents

Publication Publication Date Title
JP3391511B2 (en) Refrigerator or freezer
US8726688B2 (en) Refrigerator for fresh products with temperature leveling means
US10260796B2 (en) Refrigerator
JP3461736B2 (en) refrigerator
JP2007139384A (en) Refrigerator
JPS60138381A (en) Refrigerator structure
JP2875087B2 (en) refrigerator
CN1934400B (en) Refrigerator
JP2010169302A (en) Refrigerator
WO1994005959A1 (en) Refrigerator and freezer units
JP4218514B2 (en) refrigerator
JP2006125843A (en) Cooling cycle and refrigerator
TWI422790B (en) Refrigerator
CN216647485U (en) Honeycomb type express delivery cabinet with cold-stored function
JP2008020165A (en) Cooling storage
JP2010038483A (en) Refrigerator
RU2762803C1 (en) Refrigeration unit
KR200278169Y1 (en) Inner panel bearing storeroom of kimchi-storage
US11098944B2 (en) Evaporator and refrigerator comprising same
KR100370100B1 (en) Methode for controlling working of refrigerator
KR100226840B1 (en) Refrigerating cycle in refrigerator
CN114646175A (en) Direct-cooling type single-system double-temperature-control refrigeration method
CN109579336A (en) Refrigerator noise reduction refrigeration system and refrigerator with the system
KR19990080066A (en) Refrigerator
JP2019027674A (en) refrigerator