JPS60138380A - Refrigerant circulator for air conditioner - Google Patents
Refrigerant circulator for air conditionerInfo
- Publication number
- JPS60138380A JPS60138380A JP59260718A JP26071884A JPS60138380A JP S60138380 A JPS60138380 A JP S60138380A JP 59260718 A JP59260718 A JP 59260718A JP 26071884 A JP26071884 A JP 26071884A JP S60138380 A JPS60138380 A JP S60138380A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- pressure reducing
- check valve
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は例えば空冷ヒートポンプ式空気調和機のサイク
ルに利用される冷媒循環装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a refrigerant circulation device used, for example, in the cycle of an air-cooled heat pump type air conditioner.
第1図に従来技術より成る冷凍サイクル系統図を示す。 FIG. 1 shows a diagram of a refrigeration cycle according to the prior art.
空冷ヒートポンプ式空気調和機の基本冷媒回路は冷媒圧
縮機1、四方切換弁2、室外熱交換器8、減圧装置4、
室内熱交換器6を順次配管接続して可逆冷媒冷凍回路が
形成されている。冷房運転時には室外熱交換器8にて得
られる高圧中流の液冷媒を室外熱交換器用減圧装置4a
を通さずに逆止弁81L’r介して直接室内熱交換器6
の入口部の減圧装置4bへ直接流出させて、減圧装置4
aによる不必要な圧力降下を避けている。また暖房運転
時には¥内熱交換器6にで得られる高圧中温の液冷媒′
を室内熱交換器用減圧装置4bを通さずに逆上弁8bを
介して直接、室外熱交換器8の人口部の減圧装置4aへ
直接流出させて冷房時と同様減圧装置4bによる不必要
な圧力降下を避けている。The basic refrigerant circuit of an air-cooled heat pump type air conditioner includes a refrigerant compressor 1, a four-way switching valve 2, an outdoor heat exchanger 8, a pressure reducing device 4,
A reversible refrigerant refrigeration circuit is formed by sequentially connecting the indoor heat exchangers 6 through piping. During cooling operation, the high-pressure midstream liquid refrigerant obtained in the outdoor heat exchanger 8 is transferred to the outdoor heat exchanger pressure reducing device 4a.
Directly connect the indoor heat exchanger 6 through the check valve 81L'r without passing through the indoor heat exchanger 6.
The pressure reducing device 4 is directly discharged to the pressure reducing device 4b at the inlet of the
This avoids unnecessary pressure drop due to a. In addition, during heating operation, high-pressure medium-temperature liquid refrigerant is obtained in the internal heat exchanger 6.
Flows directly to the pressure reducing device 4a of the outdoor heat exchanger 8 through the reverse valve 8b without passing through the indoor heat exchanger pressure reducing device 4b, thereby eliminating unnecessary pressure caused by the pressure reducing device 4b as in the case of cooling. Avoiding descent.
一方、それぞれの減圧装置4は複数本の減圧管4a、4
bより成り、冷媒を分流する分流器5a2.51)2よ
り流れ込んだ高圧、中温の冷媒を減圧して、低圧、低温
の冷媒として熱交換器内での圧力降下をある程度小さく
するような本数に分流させて熱交換器側へと流出させて
いる。On the other hand, each pressure reducing device 4 has a plurality of pressure reducing pipes 4a, 4.
The high pressure, medium temperature refrigerant flowing from the flow divider 5a2.51) 2, which divides the refrigerant, is depressurized and converted into a low pressure, low temperature refrigerant in such a number that the pressure drop within the heat exchanger is reduced to some extent. The water is divided and flows out to the heat exchanger side.
熱交換器の分流されたある一つの流れすなわち1パス轟
たりの抵抗をある程度小さな値とするように、バスの数
を決定するものであるが、熱交検器における上下位置関
係等により1パス当たりの長さが同一であっても、冷媒
の流れる量が異なる。これを防止するには減圧管をパス
数と同数設けて、減圧管より流れて来た場合はそのまま
熱交換器の各パスの人口へ、熱交換器より流出して来た
場合は、熱交換器の分流器から内外の連絡管へと直接流
出させている。The number of buses is determined so that the resistance of one divided flow in the heat exchanger, that is, one pass, is a certain small value, but the number of buses is determined depending on the vertical positional relationship in the heat exchanger. Even if the contact length is the same, the amount of refrigerant flowing will be different. To prevent this, install the same number of pressure reducing pipes as the number of passes, so that if the flow flows from the pressure reducing pipes, it goes directly to the population of each pass of the heat exchanger, and if it flows out from the heat exchanger, it goes through the heat exchanger. The water flows directly from the vessel's flow divider to the inner and outer connecting pipes.
熱交換器の小さな場合はパス数が少なく、かつ、取付け
るユニットの大きさも小さいが、パス数と同数の減圧管
を設けても、熱交換器での冷媒分布が余り悪くなりにく
いので、効果が小さいのに反して、減圧管等のコストは
そのままである為全体的には割高となってしまう。この
ため、減圧管を一本にしても先に記述したごとく熱交換
器を出た冷媒は減圧装置を通ると減圧してガス化する為
内外の連絡管での圧力降下が大きくなり、安定した運転
が不可能となり、これを防止する為に液冷媒のまま連絡
管へバイパスする為の逆止弁およびこの為のサイクル配
管等を必要とし、ユニットを小形化する上で、サイクル
配管接続等の作業および各種のサービス空間が小さくな
り、作業しにくくなる為、小型化しにくく、ロー付作業
等の不良。If the heat exchanger is small, the number of passes will be small and the size of the unit to be installed will be small, but even if you install the same number of pressure reducing pipes as the number of passes, the refrigerant distribution in the heat exchanger will not be affected too much, so it will not be effective. Although it is small, the cost of pressure reducing pipes, etc. remains the same, making it relatively expensive overall. For this reason, even if a single pressure reducing pipe is used, as described earlier, the refrigerant leaving the heat exchanger will be depressurized and gasified when passing through the pressure reducing device, resulting in a large pressure drop between the inner and outer connecting pipes, resulting in a stable In order to prevent this, a check valve to bypass the liquid refrigerant to the connecting pipe and cycle piping for this purpose are required, and in order to miniaturize the unit, it is necessary to Work and various service spaces become smaller, making it difficult to work, making it difficult to downsize, and causing defects in brazing work, etc.
を起こしやすい。easy to cause.
本発明は安価で、小形の可逆冷媒流れ用の冷媒循環装置
を得ることを目的とするものである。The object of the present invention is to provide a refrigerant circulation device for reversible refrigerant flow that is inexpensive and compact.
本発明は上記の目的を達成するために、密閉管の両先端
を減圧手段を介して連通し、該閉管の内部にストレーナ
と逆止弁装置を設け、上記ストレーナと逆止弁装置との
間の密閉管胴部に冷媒出入口通路を開口し、上記逆止弁
装置と片側の密閉管先端部との間の密閉管胴部に別の冷
媒出入口通路を開口するように構成した特徴を有する。In order to achieve the above object, the present invention communicates both ends of a closed pipe through a pressure reducing means, provides a strainer and a check valve device inside the closed pipe, and provides a gap between the strainer and the check valve device. A refrigerant inlet/outlet passage is opened in the closed tube body of the valve, and another refrigerant inlet/outlet passage is opened in the closed tube body between the check valve device and one end of the closed tube.
以下、本発明を第2図乃至第8図に示す一実施例により
詳細に説明する。図において第1図と同一あるいは類似
の部分は同一の符号で表わし、その説明を省略しである
。9は冷媒循環装置で、密閉管10の両先端を減圧手段
4を介して連通し、核密閉管lOの内部にストレーナ1
1と逆止弁装置12を設け、該ストレーナ11と逆止弁
装置12との間の密閉管10の胴部に冷媒出入口通路1
8を開口し、上記逆止弁装置12と片側の密閉管10の
先端部との間の密閉′u10の胴部には別の冷媒出入口
通路14を開口している。そして、1つの冷媒循環装置
9は室外熱交換器8の冷媒分流器5alに冷媒出入口通
路14を介して接続されており、もう1つの冷媒循環装
置9は室内熱交換器6に接続されている。そして2つの
冷媒循環装置冷媒出入口通路18は配管15によって連
結されている。Hereinafter, the present invention will be explained in detail with reference to an embodiment shown in FIGS. 2 to 8. In the figure, parts that are the same as or similar to those in FIG. 1 are represented by the same reference numerals, and their explanations will be omitted. Reference numeral 9 denotes a refrigerant circulation device, in which both ends of a sealed tube 10 are connected via a pressure reducing means 4, and a strainer 1 is installed inside the nuclear sealed tube IO.
1 and a check valve device 12, and a refrigerant inlet/outlet passage 1 is provided in the body of the sealed pipe 10 between the strainer 11 and the check valve device 12.
8 is opened, and another refrigerant inlet/outlet passage 14 is opened in the body of the seal 'u10 between the check valve device 12 and the tip of the sealing tube 10 on one side. One refrigerant circulation device 9 is connected to the refrigerant divider 5al of the outdoor heat exchanger 8 via a refrigerant inlet/outlet passage 14, and the other refrigerant circulation device 9 is connected to the indoor heat exchanger 6. . The two refrigerant circulation device refrigerant inlet/outlet passages 18 are connected by a pipe 15.
上記の冷媒循環装置9を用いた場合の可逆冷凍サイクル
を第2図に示す。第2図において冷房運転した場合可逆
冷媒流れ用減圧装置は、室外熱交換器よりの冷媒は冷媒
人出口11より流入し、逆止弁部を通過して、冷媒出入
口10より連絡管を通って室内熱交換器側の可逆冷媒流
れ用減圧装置の冷媒出入口10より流入し、ストレーナ
部を通って減圧管にて減圧して低圧・低温の気液二相冷
媒となって、減化弁部の入口側へ戻り、冷媒人出口11
より室内熱交換用冷媒分流器5a1へと流出する。FIG. 2 shows a reversible refrigeration cycle using the refrigerant circulation device 9 described above. In the case of cooling operation in FIG. 2, in the reversible refrigerant flow decompression device, the refrigerant from the outdoor heat exchanger flows in from the refrigerant outlet 11, passes through the check valve section, and passes through the connecting pipe from the refrigerant inlet/outlet 10. The refrigerant flows into the refrigerant inlet/outlet 10 of the pressure reducing device for reversible refrigerant flow on the indoor heat exchanger side, passes through the strainer section, is depressurized in the pressure reducing pipe, becomes a low-pressure, low-temperature gas-liquid two-phase refrigerant, and is transferred to the reducing valve section. Return to the entrance side and refrigerant exit 11
The refrigerant flows out to the indoor heat exchange refrigerant flow divider 5a1.
各出入口は密閉管9より成形して作られておυ、ストレ
ーナ9b部のスクリーン91)lとスクリーンホルダ9
b2は一体品にて密閉管9内に挿入後スクリーンホルダ
9b2の前後にて、ローリングカシメして必要な保持力
を持たせている。また逆止弁9a部の弁9alは、ロー
リング絞シもしくは密閉管9の拡管(図示せず)により
設けた段差を弁9alのストッパーとし、弁galを挿
入した後弁座9a 2i圧入もしくはローリング絞りに
て固定し、密閉管9の両端を絞り、減圧に必要な内径と
長さを有した減圧管4をこれにロー付しである。この減
圧管4が長い場合は、循環装置本体となっている密閉管
9に直接巻き付けておけば使用する空間が小さくて済む
と同時に、同一本体に接続されている為本体と振動数が
一致する。Each inlet/outlet is made by molding the sealed tube 9, and the screen 91)l of the strainer 9b and the screen holder 9
After b2 is inserted into the sealed tube 9 as an integral part, it is rolled and caulked before and after the screen holder 9b2 to provide the necessary holding force. In addition, the valve 9al of the check valve 9a section uses a step provided by rolling throttling or expansion of the sealed pipe 9 (not shown) as a stopper of the valve 9al, and after inserting the valve gal, the valve seat 9a 2i is press-fitted or rolled throttling. The closed tube 9 is fixed at both ends, and a pressure reducing tube 4 having an inner diameter and length necessary for pressure reduction is brazed thereto. If the decompression tube 4 is long, it can be wrapped directly around the sealed tube 9, which is the main body of the circulation system, to reduce the space required, and at the same time, since it is connected to the same main body, the vibration frequency matches that of the main body. .
本発明は上記の如き構成にしたので、ストレーナ、逆止
弁、減圧用分流器、減圧管および付属のパイプを全てを
一体品としている為、小型軽量化させると共に、ロー付
箇所は出入口の2箇所と減圧管の2箇所の計4箇所のみ
に減少し、低コストとなると共にロー付不良も減少する
。Since the present invention has the above-described structure, the strainer, check valve, pressure reducing flow divider, pressure reducing pipe, and attached pipes are all integrated, making it smaller and lighter. The number of locations is reduced to four in total, including the two locations on the decompression pipe and the decompression pipe, resulting in lower costs and fewer brazing defects.
第1図は従来技術により、成る冷凍サイクル系統図。第
2図は本発明による減圧装置を用いた冷凍サイクル系統
図。第8図は本発明の可逆冷媒流れ用の冷媒循環装置の
断面図である。
1・・・圧縮機 2・−・四方弁 8・・・室外熱交換
器6・・・室内熱交換器 9・・・冷媒循環装置 10
・・・密閉管 11・・・ストレーナ 12川逆止弁装
置1B、14・・・冷媒出入口通路
J1閏
第う閏FIG. 1 is a system diagram of a refrigeration cycle constructed by a conventional technique. FIG. 2 is a refrigeration cycle system diagram using the pressure reducing device according to the present invention. FIG. 8 is a cross-sectional view of the refrigerant circulation device for reversible refrigerant flow of the present invention. 1... Compressor 2... Four-way valve 8... Outdoor heat exchanger 6... Indoor heat exchanger 9... Refrigerant circulation device 10
... Sealed pipe 11 ... Strainer 12 River check valve device 1B, 14 ... Refrigerant inlet/outlet passage J1 leap
Claims (1)
部にストレーナと逆止弁装置を設け、上記ストレーナと
逆止弁装置との間の密閉管胴部に冷媒出入口通路γ開口
し、上記逆止弁装置と片側の密閉管先端部との間の密閉
管胴部に別の冷媒出入口通路を開口してなる空気調和機
用冷媒循環装置。Both ends of the sealed pipe are communicated via a pressure reducing means, a strainer and a check valve device are provided inside the closed pipe, and a refrigerant inlet/outlet passage γ is opened in the body of the sealed pipe between the strainer and the check valve device. A refrigerant circulation device for an air conditioner, wherein another refrigerant inlet/outlet passage is opened in a closed tube body between the check valve device and the end portion of one side of the closed tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59260718A JPS60138380A (en) | 1984-12-12 | 1984-12-12 | Refrigerant circulator for air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59260718A JPS60138380A (en) | 1984-12-12 | 1984-12-12 | Refrigerant circulator for air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60138380A true JPS60138380A (en) | 1985-07-23 |
JPH0222313B2 JPH0222313B2 (en) | 1990-05-18 |
Family
ID=17351791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59260718A Granted JPS60138380A (en) | 1984-12-12 | 1984-12-12 | Refrigerant circulator for air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60138380A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49129153U (en) * | 1973-03-03 | 1974-11-06 | ||
JPS5612550U (en) * | 1979-07-11 | 1981-02-03 |
-
1984
- 1984-12-12 JP JP59260718A patent/JPS60138380A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49129153U (en) * | 1973-03-03 | 1974-11-06 | ||
JPS5612550U (en) * | 1979-07-11 | 1981-02-03 |
Also Published As
Publication number | Publication date |
---|---|
JPH0222313B2 (en) | 1990-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8020405B2 (en) | Air conditioning apparatus | |
JPS60138380A (en) | Refrigerant circulator for air conditioner | |
JP2985882B1 (en) | Double tube heat exchanger | |
JP3397055B2 (en) | Heat exchanger | |
JPH0367968A (en) | Heat exchanger for condensing refrigerant | |
JPS6149992A (en) | Heat exchanger equipped with plurality of circuits | |
JPS58133579A (en) | Heat exchanger unit | |
JPS60235960A (en) | Refrigerator | |
JPH0338596Y2 (en) | ||
JPH0638250Y2 (en) | Operation valve with check valve | |
JPH0618860U (en) | Heat pump combined refrigeration circuit with intermediate injection circuit | |
JPS58104479A (en) | Air conditioner | |
JPS58208569A (en) | Refrigeration cycle of heat pump type air conditioner | |
JPS60121165U (en) | Cooling/heating cold storage heat system | |
JP2500632Y2 (en) | Refrigerant circuit of air conditioner | |
JPS6284266A (en) | Air conditioner | |
JPS62196572A (en) | Air-cooled heat pump type air conditioner | |
JPH05118710A (en) | Orifice structure of heat pump type air conditioner | |
JPS5986878A (en) | Refrigeration cycle device for air conditioner | |
JPS602774U (en) | Heat pump type air conditioner | |
JPS60111853A (en) | Air conditioner | |
JPS60253763A (en) | Refrigeration cycle | |
JPS5850371A (en) | Check valve | |
JPS6086362A (en) | Decompressor | |
JPS58175762A (en) | Separation type air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |