JPS60137840A - Production unit for parent material of optical fiber - Google Patents

Production unit for parent material of optical fiber

Info

Publication number
JPS60137840A
JPS60137840A JP24336083A JP24336083A JPS60137840A JP S60137840 A JPS60137840 A JP S60137840A JP 24336083 A JP24336083 A JP 24336083A JP 24336083 A JP24336083 A JP 24336083A JP S60137840 A JPS60137840 A JP S60137840A
Authority
JP
Japan
Prior art keywords
pressure
reaction tube
reaction pipe
optical fiber
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24336083A
Other languages
Japanese (ja)
Other versions
JPH0352418B2 (en
Inventor
Tamotsu Kamiya
保 神谷
Kunihiko Toyoda
豊田 邦彦
Noriaki Furuya
古屋 憲章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP24336083A priority Critical patent/JPS60137840A/en
Publication of JPS60137840A publication Critical patent/JPS60137840A/en
Publication of JPH0352418B2 publication Critical patent/JPH0352418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01846Means for after-treatment or catching of worked reactant gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To maintain inner pressure of a reaction pipe at constant positive pressure, and to prevent transformation of the pipe, by setting a control chamber having a device to measure pressure, a high-pressure gas inlet, and an exhaust vent at one end of a reaction pipe, connecting a control system to regulate a control valve set at the exhaust vent depending upon the measured value of the device to measure pressure to the control valve. CONSTITUTION:When glass is piled on the reaction pipe 1, measured pressure by the device 7 to measure pressure is compared with measured pressure by the outside instrument 15 by the calculating part 14. When there is difference between them, the control signal is sent to the drive part 13 of the electrically- operated valve 11, the motor 12 of the electrically-operated valve 11 is rotated and controlled to maintain the inner pressure of the reaction pipe 1 at set pressure. In this way, inner pressure of the reaction pipe 1 can be maintained at constant positive pressure, so that transformation of the reaction pipe can be prevented.

Description

【発明の詳細な説明】 本発明は光フアイバ母材の製造装置に関する。[Detailed description of the invention] The present invention relates to an optical fiber preform manufacturing apparatus.

光ファイ/く母材の代表的な製造方法として所謂内付け
CVD法が知られている。
A so-called internal CVD method is known as a typical manufacturing method for optical fiber/base materials.

上記の方法は低損失の光ファイバが製造できる反面、次
のような欠点も併存している。
Although the above method can produce a low-loss optical fiber, it also has the following drawbacks.

即ち、石英管等からなる反応管の内周面にカラス層を形
成する1余、間管は例えば1400〜1600℃の高温
に加熱されるため軟化し、それ自身の表面張力により次
第に収縮することになり、やがてはその内面に均質なガ
ラス層を形成することが困難になり、従って形成可能な
ガラス層の厚さが限られてくると共に1本のプリフォー
ムから得られる光ファイバ長もIKm程展であり、それ
以上の長尺光ファイバは望めない。
That is, the inner tube that forms a glass layer on the inner circumferential surface of a reaction tube made of quartz tube or the like is heated to a high temperature of, for example, 1,400 to 1,600°C, so it softens and gradually contracts due to its own surface tension. Eventually, it becomes difficult to form a homogeneous glass layer on the inner surface, which limits the thickness of the glass layer that can be formed, and the length of the optical fiber that can be obtained from one preform is approximately IKm. Therefore, we cannot hope for a longer optical fiber.

この傾向は特に高温を要する純石英ガラス(SiO2)
の形成時に著しくあられ4″’Llまたカラス形成時に
石英管が高温に加熱されるため、石英管断面に楕円化な
どの変形が生じ易く、得られるプリフォーム、ひいては
光フアイバ段階での断Hrii寸法精度が低下する。
This tendency is especially true for pure silica glass (SiO2), which requires high temperatures.
Also, since the quartz tube is heated to a high temperature during the formation of the crow, deformations such as ovalization are likely to occur in the cross section of the quartz tube, resulting in the preform obtained, and ultimately the cut Hrii dimension at the optical fiber stage. Accuracy decreases.

(−記の問題に対処するため、ガラス形成時における石
英管の内圧をその外圧よりも高く保持することにより該
管径を一定に制御する提案例が既になされており、その
提案例では、石英管の収縮力に均衡する内圧を発生させ
るべく、同管の一方の端部に内圧調iij部を設け、石
英管の外径の測定値に応じて石英管の内圧を調節するよ
うにしている。
(In order to deal with the problem mentioned above, a proposal has already been made to control the diameter of the quartz tube at a constant level by keeping the internal pressure of the quartz tube higher than its external pressure during glass formation. In order to generate an internal pressure that is balanced with the contraction force of the tube, an internal pressure adjustment part is provided at one end of the tube, and the internal pressure of the quartz tube is adjusted according to the measured value of the outside diameter of the quartz tube. .

しかしこの場合には、反応管の内圧が同管内をlAL才
気体の圧ブハ流量の変化により変動するため、内圧調節
部を常時作動させなければならず、また石英管の変形を
見ながら調節するため、債径を精密に制御することが困
難であった。
However, in this case, the internal pressure of the reaction tube fluctuates due to changes in the pressure and flow rate of the quartz gas inside the tube, so the internal pressure regulator must be operated constantly, and the pressure must be adjusted while monitoring the deformation of the quartz tube. Therefore, it was difficult to precisely control the bond diameter.

そこで本発明は上記の問題点に対処すべくなされたもの
であり、以下その構成を図示の実施例に」:り説明すれ
は、反応管1は回転部2によって回転自在に保持されて
おり、この反応管1の一端は配管3を介して図示しない
ガラス原料供給部に接続されており、この供給部からは
反応管1内に気相のガラス原料、例えば酸素と共に四塩
化硅素(主原料)、四塩化ゲルマニウム(ドープ原料)
等が導入されるようになっている。
The present invention has been made to solve the above problems, and the configuration thereof will be explained below with reference to the illustrated embodiment.The reaction tube 1 is rotatably held by a rotating part 2. One end of the reaction tube 1 is connected to a glass raw material supply section (not shown) via a pipe 3, and from this supply section, a glass raw material in a gas phase, such as oxygen, and silicon tetrachloride (main raw material) are supplied into the reaction tube 1. , germanium tetrachloride (dope raw material)
etc. are being introduced.

反応管加熱用のバーナからなる加熱部4は、反応管1の
長手方向沿いに移動自在となっており、この加熱部4に
は酸素および水素が供給されるようになっている。
A heating section 4 consisting of a burner for heating the reaction tube is movable along the longitudinal direction of the reaction tube 1, and oxygen and hydrogen are supplied to this heating section 4.

上記反応管1の他端には回転ンール6を介して制御室6
が連結されていると共に、この制御室6には圧力測定器
7と高圧ガス導入口8とIJ1気口9とが設けられてお
り、高圧力ス導入口8には高圧力ス導入器10を介して
図示しない供給源が接続され、同口8には供給源より高
圧ガスが導入される。
A control chamber 6 is connected to the other end of the reaction tube 1 via a rotary tube 6.
In addition, this control chamber 6 is provided with a pressure measuring device 7, a high pressure gas inlet 8, and an IJ1 air inlet 9, and a high pressure gas inlet 8 is connected to a high pressure gas inlet 10. A supply source (not shown) is connected through the port 8, and high pressure gas is introduced from the supply source into the port 8.

一方、排気口9には電動弁11が連結されていると共に
、この電動弁11のオリフィスはモータ12により開閉
制御されるようになっており、したがって制御室6の内
圧を外気圧より高く保つことができるようモータ12は
オリフィスを小さくするが、この際、反応管1に供給さ
れる気相のガラス原料のみでは、オリフィス径を極めて
小さくしなければならずその制御が困難であり、かつ排
気中に存在する多量の5i0zG 402等のガラス微
粉によって直ちに閉塞されることになるため、前記高圧
ガス尋入口8より高圧ガスを導入することにより、オリ
フィス径を大きくすることができるようになっている。
On the other hand, an electric valve 11 is connected to the exhaust port 9, and the orifice of this electric valve 11 is controlled to open and close by a motor 12, so that the internal pressure of the control chamber 6 can be kept higher than the external pressure. The motor 12 makes the orifice smaller so that the gas phase is supplied to the reaction tube 1 only, and the orifice diameter must be made extremely small, which is difficult to control. The diameter of the orifice can be increased by introducing high-pressure gas from the high-pressure gas inlet 8, since the orifice will be immediately blocked by a large amount of fine glass powder such as 5i0zG 402 present in the orifice.

上記電動弁11のモータ12には駆動部13を介して演
算部14が接続されていると共に、この演算部140入
力側には外部設定器16および前記出力i1!II ’
)i:器7が接続されている。
A calculation section 14 is connected to the motor 12 of the electric valve 11 via a drive section 13, and on the input side of this calculation section 140 there is an external setting device 16 and the output i1! II'
)i: Device 7 is connected.

なお、制御室6はniJ記ガラス微粉の補集器としての
役割をも果すようになっている。
The control room 6 also serves as a collector for glass fine powder.

本発明では既知のごとく、反応管1を回転部2にセツト
シ、該反応管1を回転さ庁ながら内部に配管3より気相
のガラス原料とは素を通し、外部から加熱部4にて強二
f、2(L、上記カラス原第31と酸素とが反応して生
成されたガラス微粉を反応f1付に内付けするC −V
 D法に適用される。
As is known in the present invention, the reaction tube 1 is set in the rotating part 2, and while the reaction tube 1 is being rotated, the glass raw material in the vapor phase is passed inside through the piping 3, and heated from the outside in the heating part 4. 2f, 2(L, C -V where the glass fine powder produced by the reaction of the Karasuhara No. 31 and oxygen is internally attached to the reaction f1
Applies to Law D.

ここで上記装置の動作についで述べると、反応iB: 
1内でのガラス堆積11.J’ s圧力測定器7による
測定圧と外部設定器16の設定圧とが演算部14におい
て比較され、これらに差がある場合には、制御(ij号
が電動弁11の駆動部13に送られ、開弁11のモータ
12は反応管1の内圧が設定圧に維持されるよう回転制
御される。
Now, to describe the operation of the above device, reaction iB:
Glass deposition in 11. The pressure measured by the J's pressure measuring device 7 and the set pressure of the external setting device 16 are compared in the calculation section 14, and if there is a difference between them, the control (Ij is sent to the drive section 13 of the electric valve 11). The rotation of the motor 12 for opening the valve 11 is controlled so that the internal pressure of the reaction tube 1 is maintained at the set pressure.

すなわち設定圧が測定圧より高い場合には、駆動部13
の出力によって電動弁11を閉成するようモータ12を
作動し、逆にlIl!l定圧が設定圧より高い場合には
開弁11を開成するようモータ12を作動して、反応¥
i′1の内圧が一定となるよう制御される。
That is, when the set pressure is higher than the measured pressure, the drive unit 13
The motor 12 is operated to close the electric valve 11 by the output of lIl! When the constant pressure is higher than the set pressure, the motor 12 is operated to open the opening valve 11, and the reaction
The internal pressure of i'1 is controlled to be constant.

〔実施例〕〔Example〕

反応管1として外径24mm1内径21 nunのイz
1莢管を用い、表面温度1800℃としてガラス堆積j
曽数90層の光ファイバ母4Aを製造した。
The reaction tube 1 has an outer diameter of 24 mm and an inner diameter of 21 mm.
Glass was deposited using one capsule at a surface temperature of 1800°C.
An optical fiber motherboard 4A having 90 layers was manufactured.

内圧を外気圧と同一とした場合は、外径20■まで収縮
したのに対し、内圧を20:ヒ1 mm H2Oの陽圧
とした場合は、外径を±021媚以内の変動に保たれた
When the internal pressure was the same as the external pressure, it contracted to an outer diameter of 20cm, but when the internal pressure was a positive pressure of 20mm H2O, the outer diameter was kept within ±0.2cm. Ta.

以上説明したように、本発明は反応管を回転自在に保持
する回転部と、この反応管の一端からその内部に気相の
ガラス原料を供給1−る原料供給部と、上記反応管を加
熱する加熱部とを備えた光フアイバ母材の製造装置にお
いて、反応管の他端に圧力測定器と尚圧ガス導入口と排
気口とをイーする制御室を設けると共に該排気口には調
節弁を設け、該調節弁には圧力測定器の測定値により向
弁を制御する制御系を接続してなるので、反応管の内圧
を一定陽圧に維持することができ、間管の変形を防ぐこ
とができる。
As explained above, the present invention includes a rotating part that rotatably holds a reaction tube, a raw material supply part that supplies a vapor phase glass raw material from one end of the reaction tube to the inside of the reaction tube, and a raw material supply part that heats the reaction tube. In the optical fiber base material manufacturing apparatus, the other end of the reaction tube is provided with a pressure measuring device, a pressurized gas inlet and an exhaust port, and a control chamber is provided at the other end of the reaction tube. Since the control valve is connected to a control system that controls the opposite valve based on the measured value of the pressure measuring device, the internal pressure of the reaction tube can be maintained at a constant positive pressure and deformation of the intermediate tube can be prevented. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

図「11は本発明に係る光ファイバ母相の製造装置の一
実施例を示す説明図である。 1・・・・・反応’ilj’ 2・・・・・回転部 4・・・・φ加熱部 6・・・・・制御室 7・・・・−圧力測定器 8・・・・・高圧ガス導入口 9・・・・・(J1気口 11・・・・・−1”4節弁用の電動弁特許出願人 代理人 弁理士 井 藤 誠
Figure 11 is an explanatory diagram showing an embodiment of the optical fiber matrix manufacturing apparatus according to the present invention. 1... Reaction 'ilj' 2... Rotating part 4... φ Heating section 6...Control room 7...-Pressure measuring device 8...High pressure gas inlet 9...(J1 air port 11...-1"4 section Patent attorney Makoto Ito, patent attorney for electric valve patent

Claims (1)

【特許請求の範囲】[Claims] 反応管を回転自在に保持する回転部と、この反応管の一
端からその内部に気相のガラス原料を供給する原料供給
部と、上記反応管を加熱する加熱部とを備えた光ファイ
バ母相の製造装置において、反応管の他端に圧力測定器
と高圧ガス導入口と排気口とを有する制御室を設けると
共G′千該排気口には調節弁を設け、該調節弁には圧力
測定器の測定値より量弁を制御する制御系を接続したこ
とを特徴とした光ファイバ母相の製造装置。
An optical fiber matrix comprising: a rotating part that rotatably holds a reaction tube; a raw material supply part that supplies a vapor phase glass raw material from one end of the reaction tube to the inside of the reaction tube; and a heating part that heats the reaction tube. In the manufacturing equipment of G', a control chamber having a pressure measuring device, a high-pressure gas inlet, and an exhaust port is provided at the other end of the reaction tube, and a control valve is provided at the exhaust port. An optical fiber matrix manufacturing device characterized by being connected to a control system that controls a volume valve based on the measured values of a measuring device.
JP24336083A 1983-12-23 1983-12-23 Production unit for parent material of optical fiber Granted JPS60137840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24336083A JPS60137840A (en) 1983-12-23 1983-12-23 Production unit for parent material of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24336083A JPS60137840A (en) 1983-12-23 1983-12-23 Production unit for parent material of optical fiber

Publications (2)

Publication Number Publication Date
JPS60137840A true JPS60137840A (en) 1985-07-22
JPH0352418B2 JPH0352418B2 (en) 1991-08-09

Family

ID=17102676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24336083A Granted JPS60137840A (en) 1983-12-23 1983-12-23 Production unit for parent material of optical fiber

Country Status (1)

Country Link
JP (1) JPS60137840A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813989A (en) * 1985-06-21 1989-03-21 The Furukawa Electroic Co., Ltd. Apparatus for fabricating optical fiber preform
EP1300371A2 (en) * 2001-10-03 2003-04-09 Alcatel Method and device for manufacturing an optical fibre preform by the modified chemical vapour deposition process
EP1719739A1 (en) * 2004-02-27 2006-11-08 Sumitomo Electric Industries, Ltd. Method and device for producing optical fiber matrix
JP2013075787A (en) * 2011-09-30 2013-04-25 Fujikura Ltd Method for producing optical fiber preform and method for producing optical fiber
WO2017016539A1 (en) * 2015-07-29 2017-02-02 J-Fiber Gmbh Method for the defined separation of a glass layer on an inner wall of a preform and preform and communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200303001A (en) 2001-11-09 2003-08-16 Sharp Kk Liquid crystal display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813989A (en) * 1985-06-21 1989-03-21 The Furukawa Electroic Co., Ltd. Apparatus for fabricating optical fiber preform
EP1300371A2 (en) * 2001-10-03 2003-04-09 Alcatel Method and device for manufacturing an optical fibre preform by the modified chemical vapour deposition process
EP1300371A3 (en) * 2001-10-03 2003-08-13 Alcatel Method and device for manufacturing an optical fibre preform by the modified chemical vapour deposition process
EP1719739A1 (en) * 2004-02-27 2006-11-08 Sumitomo Electric Industries, Ltd. Method and device for producing optical fiber matrix
EP1719739A4 (en) * 2004-02-27 2011-06-22 Sumitomo Electric Industries Method and device for producing optical fiber matrix
JP2013075787A (en) * 2011-09-30 2013-04-25 Fujikura Ltd Method for producing optical fiber preform and method for producing optical fiber
WO2017016539A1 (en) * 2015-07-29 2017-02-02 J-Fiber Gmbh Method for the defined separation of a glass layer on an inner wall of a preform and preform and communication system
US10604440B2 (en) 2015-07-29 2020-03-31 J-Fiber Gmbh Method for the defined separation of a glass layer on an inner wall of a preform and preform and communication system

Also Published As

Publication number Publication date
JPH0352418B2 (en) 1991-08-09

Similar Documents

Publication Publication Date Title
US4813989A (en) Apparatus for fabricating optical fiber preform
US6344232B1 (en) Computer controlled temperature and oxygen maintenance for fiber coating CVD
US6074691A (en) Method for monitoring the flow of a gas into a vacuum reactor
JPS62107071A (en) Gaseous phase deposition apparatus
JPH02275727A (en) Drawing method for optical fiber
JPH04228439A (en) Manufacture of preform for optical fiber with regular properties
JPS60137840A (en) Production unit for parent material of optical fiber
JP2000122725A (en) Gas supply controller
Pervadchuk et al. Optimal control of distributed systems in problems of quartz optical fiber production
JP2682603B2 (en) Inorganic coated optical fiber manufacturing apparatus and manufacturing method
JPH04292434A (en) Production of optical fiber preform
JP2697898B2 (en) Method for producing hermetic coated optical fiber
WO2019182060A1 (en) Optical fiber manufacturing method and manufacturing device
JPS59217633A (en) Apparatus for manufacturing optical fiber preform
JPS6036344A (en) Manufacture of optical fiber
KR100378374B1 (en) Close process in preform conducting work and apparatus therefor
JP2002274861A (en) Process and apparatus for controlling internal pressure in silica tube by cvd method
JPS6047216B2 (en) Method for producing base material for optical fiber
JPS6082668A (en) Gas flow rate controller
JP2002323146A (en) Pressure controller and semiconductor manufacturing device
JP2004099342A (en) Method and apparatus for manufacturing glass member
JP2583392B2 (en) Method for manufacturing hermetic coated optical fiber
JP2685889B2 (en) Method for producing hermetic coated optical fiber
JPH03205817A (en) Semiconductor manufacturing device
JPS621332B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees